Correction du devoir à la maison de Mathématiques n°4

EXERCICE 1

a) Pour
$$x$$
 au voisinage de 0 :
$$ln\left(\frac{e^x-1}{x}\right)$$

$$= ln\left(\frac{(1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+o(x^4)-1}{x}\right)$$

$$= ln(1+\frac{x}{2}+\frac{x^2}{6}+\frac{x^3}{24}+o(x^3))$$

$$= \left(\frac{x}{2}+\frac{x^2}{6}+\frac{x^3}{24}\right)-\frac{1}{2}\left(\frac{x^2}{4}+\frac{x^3}{6}\right)+\frac{1}{3}\frac{x^3}{8}+o(x^3)$$

$$= \frac{1}{2}x+\left(\frac{1}{6}-\frac{1}{8}\right)x^2+\left(\frac{1}{24}-\frac{1}{12}+\frac{1}{24}\right)+o(x^3)$$

$$= \frac{1}{2}x+\frac{1}{24}x^2+o(x^3)$$

On a donc :
$$\left[ln(\frac{e^x - 1}{x}) = \frac{1}{2}x + \frac{1}{24}x^2 + o(x^3) \right]$$

b) Pour x au voisinage de 0 :

$$\frac{\frac{x-\sin(x)}{e^x-1}}{\frac{e^x-1}{1+x+\frac{x}{2}+o(x^4)}}$$

$$=\frac{\frac{x-(x-\frac{x^3}{6}+o(x^4))}{1+x+\frac{x}{2}+o(x^2)-1}}$$

$$=\frac{\frac{x^3}{6}+o(x^4)}{x+\frac{x^2}{2}+o(x^2)}$$

$$=\frac{\frac{x^2}{6}+o(x^3)}{1+\frac{x}{2}+o(x)}$$

$$=(\frac{x^2}{6}+o(x^3))(1-\frac{x}{2}+o(x))$$

$$=\frac{x^2}{6}-\frac{x^3}{12}+o(x^3)$$

On a donc:
$$\frac{x - \sin(x)}{e^x - 1} = \frac{x^2}{6} - \frac{x^3}{12} + o(x^3)$$

c) Pour
$$x$$
 au voisinage de 0 :
$$ln(ch(x)) = ln(1 + \frac{x^2}{2} + o(x^2)) = \frac{x^2}{2} + o(x^2)$$
 On a donc :
$$\boxed{ln(ch(x)) = \frac{x^2}{2} + o(x^2)}$$

d) $xln(x) \xrightarrow[x\to 0]{} 0$ donc

$$exp(xln(x)) = 1 + xln(x) + o(xln(x)) \Rightarrow exp(xln(x)) - 1 = xln(x) + o(xln(x)) \sim xln(x)$$

$$\sqrt{1+x} - 1 = 1 + \frac{1}{2}x + o(x) - 1 = \frac{1}{2}x + o(x) \sim \frac{1}{2}x$$

$$Donc \frac{e^{xln(x)} - 1}{\sqrt{1+x} - 1} \sim \frac{xln(x)}{\frac{x}{2}} \sim 2ln(x)$$

On a donc :
$$\overline{ \frac{e^{xln(x)}-1}{\sqrt{1+x}-1}} \underset{x=0}{\sim} 2ln(x)$$

e)
$$u_n = \sqrt[3]{n^2 + n + 1} - \sqrt[3]{n^2 + 1}$$

$$= \sqrt[3]{n^2} \sqrt[3]{1 + \frac{1}{n} + \frac{1}{n^2}} - \sqrt[3]{n^2} \sqrt[3]{1 + \frac{1}{n^2}}$$

$$= n^{2/3} (1 + \frac{1}{3} \frac{1}{n} + o(\frac{1}{n}) - (1 + o(\frac{1}{n})))$$

$$= n^{2/3} (\frac{1}{3} \frac{1}{n} + o(\frac{1}{n}))$$

$$\sim n^{2/3} \frac{1}{3} \frac{1}{n}$$

$$\sim \frac{1}{n^2}$$

On a donc :
$$u_n \sim \frac{1}{3n^{1/3}}$$

Alors a est une fonction continue sur son domaine. On peut donc considérer A une primitive de A.

Comme :
$$\forall x>1$$
 , $[x,x^2]\subset]1,+\infty[$, alors : $f(x)=A(x^2)-A(x)$

Comme A est une primitive d'une fonction continue, alors, A est C^1 et A'=a

On a donc f C^1 comme composée de fonctions C^1 .

On a alors:
$$\forall x > 1$$
, $f'(x) = 2xa(x^2) - a(x) = \frac{2x}{\ln(x^2)} - \frac{1}{\ln(x)} = \frac{x-1}{\ln(x)}$

Bilan :
$$f$$
 est C^1 sur $]1, +\infty[$ et $\forall x > 1$, $f'(x) = \frac{x-1}{\ln(x)}$

EXERCICE 2

a)
$$\frac{u_n}{n^{3/2}} = \frac{\ln(n)}{n^{1/2}} \underset{n \to +\infty}{\longrightarrow} 0 \text{ donc } u_n = o(\frac{1}{n^{1/2}})$$

Comme $\frac{1}{n^{1/2}} > 0$ et que $\sum \frac{1}{n^{1/2}}$ est convergente, alors, par négligeabilité : $\sum u_n$ est convergente.

b) Pour
$$n \ge exp(1)$$
 on a : $0 \le \frac{1}{n+2} \le u_n$

Comme $\sum \frac{1}{n+2}$ est une série de Riemann divergente, alors, par comparaison : $\sum u_n$ est divergente.

c) On a : $|u_n| \leq \frac{1}{n^2}$ et $\sum \frac{1}{n^2}$ est une série de Riemann convergente, donc, par comparaison, $\sum |u_n|$ est convergente.

Par absolue convergence : $\sum u_n$ est convergente.

d) Si on pose $\forall n \in \mathbb{N}^*$, $a_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$ alors (a_n) est la suite des sommes partielles d'une série de Riemann divergente.

On en déduit (a_n) est décroissante et $\lim_{n\to+\infty} a_n = +\infty$

On a ainsi, comme $|u_n| = \frac{1}{a_n}$: $\begin{cases} \sum u_n \text{ est une série alternée} \\ (|u_n)| \text{ est décroissante} \\ \lim_{n \to +\infty} |u_n| = 0 \end{cases}$

Donc, par le théorème spécial : $\sum u_n$ est convergente.

Exercice 3

1°) Posons
$$\forall x \in]0; +\infty[\ ,\ f(x) = \frac{\sin(\sqrt{x})}{x(x+1)}$$

1°) a) f est continue sur $[0; \pi]$, I_1 pose problème en 0.

$$\frac{\sin(\sqrt{x})}{x(x+1)} \underset{x=0}{\sim} \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}} > 0$$

Mais par Riemann, $x \mapsto \frac{1}{\sqrt{x}}$ est intégrable sur $]0,\pi]$ donc par équivalent $x \mapsto f(x)$ est intégrable sur $]0,\pi]$. Par absolue convergence on a donc : I_1 est convergente.

2

1°) b) f est continue sur $[\pi; +\infty[$, I_2 pose problème en $+\infty$.

$$0 \le |f(x)| \le \frac{1}{x(1+x)} \le \frac{1}{x^2} > 0$$

Mais $\int_{-x^2}^{+\infty} \frac{1}{x^2} dx$ est une intégrale de Riemann convergente, donc, par la règle de comparaison I_2 est absolument convergente et donc, par absolue convergence, I_2 est convergente.

1°) c)
$$\begin{cases} I = I_1 + I_2 \\ I_1 \text{ est convergente} \\ I_2 \text{ est convergente} \end{cases}$$
 donc $\boxed{I \text{ est convergente}}$.

2°) $x \mapsto \frac{\sin(\frac{1}{x})}{\sqrt{x}}$ est continue sur $]0; +\infty[$, A pose donc problème en 0 et $+\infty$

$$\forall x \in]0;1], 0 \le \left|\frac{\sin(\frac{1}{x})}{\sqrt{x}}\right| \le \frac{1}{\sqrt{x}}$$

Comme $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$ est une intégrale de Riemann convergente, alors, par la règle de comparaison $\int_{0}^{1} \frac{\sin(\frac{1}{x})}{\sqrt{x}} dx$ est

Au voisinage de $+\infty$: $\frac{\sin(\frac{1}{x})}{\sqrt{x}} \sim \frac{1}{3} > 0$

Comme $\frac{3}{2} > 1$, alors par Riemann $x \mapsto \frac{1}{x^{\frac{3}{2}}} dx$ est intégrable sur $[1, +\infty[$ et donc par équivalent $x \mapsto \frac{\sin(\frac{1}{x})}{\sqrt{x}}$ est intégrable sur $[1, +\infty[$ et donc, par absolue convergence $\int_{1}^{+\infty} \frac{\sin(\frac{1}{x})}{\sqrt{x}} dx$ est convergente.

Bilan :
$$\int_{0}^{1} \frac{\sin(\frac{1}{x})}{\sqrt{x}} dx$$
 convergente et $\int_{1}^{+\infty} \frac{\sin(\frac{1}{x})}{\sqrt{x}} dx$ convergente donnent $A = \int_{0}^{+\infty} \frac{\sin(\frac{1}{x})}{\sqrt{x}} dx$ est convergente.

- 3°) $x\mapsto \frac{\sin(t)}{\sqrt{t}}$ est continue sur]0; $+\infty[$, B pose donc problème en 0 et $+\infty$
- Au voisinage de 0 : $\frac{\sin(t)}{\sqrt{t}} \sim \frac{t}{\sqrt{t}} = \sqrt{t} \longrightarrow 0$

 $x \mapsto \frac{\sin(t)}{\sqrt{t}}$ est donc prolongeable par continuité en 0 et donc $\int_{0}^{\pi} \frac{\sin(t)}{\sqrt{t}} dt$ est convergente.

• Soit $A > \pi$ alors par intégration par parties : $\int_{-\pi}^{A} \frac{\sin(t)}{\sqrt{t}} dt = \left[\frac{-\cos(t)}{\sqrt{t}}\right]_{\pi}^{A} + \int_{-\pi}^{A} \frac{\cos(t)}{2t\sqrt{t}} = \frac{-\cos(A)}{\sqrt{A}} - \frac{1}{\sqrt{\pi}} + \int_{-\pi}^{A} \frac{\cos(t)}{2t\sqrt{t}} dt$

Mais $\left|\frac{\cos(t)}{t\sqrt{t}}\right| \leq \frac{1}{t^{\frac{3}{2}}}$ et comme $\frac{3}{2} > 1$, alors par Riemann, $t \mapsto \frac{1}{t^{\frac{3}{2}}}$ est intégrable sur $[\pi, +\infty[$. Alors, par équivalent $t \mapsto \frac{\cos(t)}{2t\sqrt{t}}$ est intégrable sur $[\pi, +\infty[$.

Par absolue convergence on a ainsi : $\int_{-\infty}^{+\infty} \frac{\cos(t)}{2t\sqrt{t}} dt$ convergente.

Puisque
$$\left| \frac{-\cos(A)}{\sqrt{A}} \right| \le \frac{1}{\sqrt{A}}$$
 alors $\lim_{A \to +\infty} \frac{-\cos(A)}{\sqrt{A}} = 0$

On déduit donc de l'intégration par partie précédente que : $\lim_{A\to +\infty}\int\limits_{-}^{A}\frac{\sin(t)}{\sqrt{t}}dt=\left[-\frac{1}{\sqrt{\pi}}+\int\limits_{-}^{+\infty}\frac{\cos(t)}{2t\sqrt{t}}dt\right]\in\mathbb{R}.$

On a donc que $\int_{-\infty}^{+\infty} \frac{\sin(t)}{\sqrt{t}} dt$ est convergente.

• Finalement,
$$\begin{cases} \int_{0}^{\pi} \frac{\sin(t)}{\sqrt{t}} dt \text{ convergente} \\ \int_{-\pi}^{+\infty} \frac{\sin(t)}{\sqrt{t}} dt \text{ convergente} \end{cases}$$
 permet de conclure que B est convergente.

Problème 1

endomorphisme. De plus $\Delta^n = O$ et $\Delta^{n-1}(X^n) = n! \neq 0_E$ donc :

La dérivation est endomorphisme nilpotent de $\mathbb{R}_n[X]$, d'indice de nilpotence n.

2°) $u \in \mathcal{N}$ donc u est nilpotent et on note p son indice de nilpotence. $v \in \mathcal{N}$ donc v est nilpotent et on note q son indice de nilpotence.

Comme u et v commutent : $(u \circ v)^p = u^p \circ v^p = O \circ v^p = O \text{ donc } u \circ v \in \mathcal{N}$

Par la formule du binôme, comme u et v commutent : $(u+v)^{p+q} = \sum_{k=0}^{p+q} {p+q \choose k} u^k \circ v^{p+q-k}$

Si $k \geq p$ alors $u^k = O$ et donc $u^k \circ v^{p+q-k} = O$

Si $k \leq p$ alors $p-k \geq 0$ et donc $p+q-k \geq q$ ce qui donne $v^{p+q-k} = O$ et donc $u^k \circ v^{p+q-k} = O$ Finalement $(u+v)^{p+q} = O$ et donc $u+v \in \mathcal{N}$

Bilan : $u, v \in \mathcal{N}$ tels que $u \circ v = v \circ u \Rightarrow u \circ v \in \mathcal{N}$ et $u + v \in \mathcal{N}$

3°) Soit $u, v \in L(E)$ tels que $u \circ v \in \mathcal{N}$

Alors $\exists p \in \mathbb{N}^*$, $(u \circ v)^p = O$. On compose par v à gauche et u à droite et on a : $v \circ (u \circ v)^p \circ u = O$ Mais $v \circ (u \circ v)^p \circ u = v \circ (u \circ (v \circ u)^{p-1} \circ v) \circ u = (v \circ u) \circ (v \circ u)^{p-1} \circ (v \circ u) = (v \circ u)^{p+1}$ Ce qui donne $(v \circ u)^{p+1} = O$ et donc $v \circ u \in \mathcal{N}$

Bilan : $u, v \in L(E)$ On a : $u \circ v \in \mathscr{N} \Rightarrow v \circ u \in \mathscr{N}$

4°) a) Si $\forall x \in E$, $f^{p-1}(x) = 0_E$ alors $f^{p-1} = O$ donc f est nilpotente d'indice inférieur à p-1. Absurde puisque f est nilpotent d'indice p.

Donc: $\exists x \in E , f^{p-1}(x) \neq 0_E$

(4°) b) Soit $(a_0, a_1, \dots, a_{p-1}) \in \mathbb{R}^p$ tel que : $\sum_{k=0}^{p-1} a_k f^k(x) = 0_{\mathbb{R}^n}$

Raisonnons par l'absurde et supposons que $(a_0, a_1, \dots, a_{p-1}) \neq (0, 0, \dots, 0)$

On peut alors poser $i = Min(\{k \in [0; p-1], a_k \neq 0\})$ et on a $\sum_{k=1}^{p-1} a_k f^k(x) = 0_{\mathbb{R}^n}$

En composant par f^{p-1-i} on a : $\sum_{k=i}^{p-1} a_k f^{k+p-i}(x) = 0_{\mathbb{R}^n}$ Et comme pour k > i on a $f^{k+p-i} = 0_{L(E)}$ alors il reste $a_i f^{p-1}(x) = 0_{\mathbb{R}^n} \Rightarrow a_i = 0$ puisque $f^{p-1}(x) \neq 0_{\mathbb{R}^n}$ ce qui contredit la définition de i. Absurde.

On a donc $(a_0, a_1, ..., a_{p-1}) = (0, 0, ..., 0)$ et on a montrer que :

la famille $(x, f(x), \dots, f^{p-1}(x))$ est libre dans \mathbb{R}^n

4°) c) Une famille libre de E possède au plus n éléments, donc avec la famille du b) on a : $p \le n$

4

5°) Soit $u \in \mathcal{N}$. On note p l'indice de nilpotence de u.

On utilise l'analogie avec le DL : $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^p + o(x^p)$

Posons $w = \sum_{k=0}^{p-1} u^k$, alors $w \circ (Id_E - u) = \sum_{k=0}^{p-1} u^k - \sum_{k=0}^{p-1} u^{k+1} = Id_E - u^p$ par télescopage. Mais comme $u^p = O$ alors $w \circ (Id_E - u) = Id_E$ et donc $Id_E - u$ est inversible et $(Id_E - u)^{-1} = w$.

Bilan : Si
$$u \in \mathcal{N}$$
 alors $Id_E - u$ est inversible et $(Id_E - u)^{-1} = \sum_{k=0}^{p-1} u^k$

6°) Soit $u \in \mathcal{N}$ d'indice de nilpotence n.

On utilise le 4°) b) avec p = n et les mêmes notations. La famille $B = (u^{n-1}(x), u^{n-2}(x), \dots, u(x), x)$ étant une famille libre de E, c'est une base de E puisqu'elle contient exactement n = dim(E) vecteurs.

La matrice de u dans cette base est exactement celle voulue!!! On a donc : Si $u \in \mathcal{N}$ d'indice de nilpotence n alors il existe une base de E

relativement à laquelle la matrice de
$$u$$
 est
$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 & 0 \\ \vdots & & \ddots & \ddots & 1 \\ \vdots & & \dots & \ddots & 1 \end{pmatrix}$$

7°) a) Avec les hypothèses de cette question, on considère une combinaison linéaire de la famille $(x, u(x), \ldots, u^{p-1}(x), y, u(y), \ldots, u^{q-1}(y))$ qui est nulle.

Soit donc
$$(a_0, a_1, \dots, a_{p-1}, b_0, b_1, \dots, b_{q-1}) \in \mathbb{R}^{p+q}$$
 tel que : $\sum_{i=0}^{p-1} a_i u^i(x) + \sum_{j=0}^{q-1} b_j u^j(y) = 0_E$

On pose r = p - q et on a $r \ge 0$ car par hypothèse $p \ge q$.

On compose alors, la relation ci-dessus par u^q et on obtient : $\sum_{i=0}^{p-1} a_i u^{i+q}(x) + \sum_{j=0}^{q-1} b_j u^{j+q}(y) = 0_E$

Comme $j+q \geq q$ on a $u^{j+q}(y) = 0_E$, il reste donc : $\sum_{i=0}^{p-1} a_i u^{i+q}(x) = 0_E$

Pour $i + q \ge p \Leftrightarrow i \ge p - q \Leftrightarrow i \ge r$ on a : $u^{i+q}(x) = 0_E$ il reste donc : $\sum_{i=0}^{r-1} a_i u^{i+q}(x) = 0_E$

 $i \in \llbracket 0, r-1 \rrbracket \Rightarrow i+q \in \llbracket q, q+r-1 \rrbracket \Rightarrow i+q \in \llbracket q, p-1 \rrbracket$

on peut donc appliquer la question 4°b) et obtenir $a_i = 0$ pour $i \in [0, r-1]$

Reporter dans notre relation de départ il reste donc : $\sum_{i=r}^{p-1} a_i u^i(x) + \sum_{j=0}^{q-1} b_j u^j(y) = 0_E$

Changement d'indice j=i-r dans la première somme. Comme p-1-r=p-1-(p-q)=q-1 on a $\frac{q-1}{q-1}$

alors :
$$\sum_{j=0}^{q-1} a_{j+r} u^{j+r}(x) + \sum_{j=0}^{q-1} b_j u^j(y) = 0_E \Rightarrow \sum_{j=0}^{q-1} [a_{j+r} u^{j+r}(x) + b_j u^j(y)] = 0_E$$

On compose par u^{q-1} et on obtient : $\sum_{j=0}^{q-1} [a_{j+r}u^{j+r+q-1}(x) + b_ju^{q-1+j}(y)] = 0_E$

Et compte tenu de $u^p(x) = 0_E$ et $u^q(y) = 0_E$ il reste (puisque q - 1 + r = q - 1 + p - q = p - 1): $a_{p-1}u^{p-1}(x) + b_{q-1}u^{q-1}(y) = 0_E$

 $a_{p-1}u^{p-1}(x) + b_{q-1}u^{q-1}(y) = 0_E$ Mais comme $(u^{p-1}(x), u^{q-1}(y))$ est libre alors : $a_{p-1} = 0$ et $b_{q-1} = 0$

Il reste alors : $\sum_{j=0}^{q-2} [a_{j+r}u^{j+r}(x) + b_ju^j(y)] = 0_E$

On compose alors par u^{q-2} et on obtient $a_{p-2} = 0$ et $b_{q-2} = 0$

On réitère ce procédé jusqu'à épuisement des termes et on obtient que tous les coefficients a_i et b_j sont nuls ce qui, finalement, permet de montrer que : la famille $(x, u(x), \dots, u^{p-1}(x), y, u(y), \dots, u^{q-1}(y))$ est libre.

7°) b) Soit $u \in \mathcal{N}$ d'indice de nilpotence p tels que $p \geq 2$ et $p \geq n-1$

• Soit $x \in Im(u^{p-1})$

Alors x peut s'écrire $x = u^{p-1}(z)$ avec $z \in E$.

Donc, comme $p \ge 2 \Leftrightarrow p-2 \ge 0$ on peut écrire : $x = u(u^{p-2}(z))$ et donc $x \in Im(p)$.

De plus $u(x) = u(u^{p-1}(z)) = u^p(z) = 0_E$ car u est nilpotente d'indice p. On en déduit $x \in ker(u)$

 $x \in ker(u)$ et $x \in Im(u)$ donc $x \in ker(u) \cap Im(u)$

On a montrer: $\forall x \in E$, $x \in Im(u^{p-1}) \Rightarrow x \in ker(u) \cap Im(u)$

Donc: $Im(u^{p-1}) \subset x \in ker(u) \cap Im(u)$

• Soit $x \in ker(u) \cap Im(u)$

Si $x = 0_E$ alors directement $x \in Im(u^{p-1})$. On considère maintenant le cas $x \neq 0_E$

Alors $x \in Im(u) \Rightarrow x = u(y)$ avec $y \in E$

De plus $x \in ker(u) \Rightarrow u(x) = 0_E \Rightarrow u^2(y) = 0_E$

Comme $u^{p-1} \neq 0_{L(E)}$ alors $\exists z \in Im(u^{p-1})$ tel que $z \neq 0_E$

Comme $z \in Im(u^{p-1})$ on peut écrire $z = u^{p-1}(t)$ avec $t \in E$

Raisonnons par l'absurde et supposons que $(u^{p-1}(t), u(y))$ est libre.

Alors, comme de plus : $u^p(t) = 0_E$, $u^2(y) = 0_E$, $u^{p-1}(t) \neq 0_E$ et $u(y) = x \neq 0_E$, on peut appliquer le a) et on a la famille $(x, u(x), t, u(t), \ldots, u^{p-1}(t))$ qui est libre.

Mais cette famille contient p+2 vecteurs et $p+2 \ge n+1$ puisque $p \ge n-1$.

Une famille de strictement plus de n vecteurs ne peut pas être libre en dimension n, on a donc une absurdité. On en déduit que $(u^{p-1}(t), u(y))$ est liée et donc que $x = u(y) \in Im(u^{p-1})$

Pour tout $x \in ker(u) \cap Im(u)$ on a $x \in Im(u^{p-1})$, on a donc l'inclusion: $ker(u) \cap Im(u) \subset Im(u^{p-1})$

- \bullet On a donc, par double inclusion : $\boxed{ker(u)\cap Im(u)=Im(u^{p-1})}$
- \bullet Raisonnons encore par l'absurde et supposons que $dim(Im(u^{p-1})) \geq 2$

On a alors une famille $(X,Y) \in Im(u^{p-1})^2$ qui est libre.

On écrit $X = u^{p-1}(x)$ et $Y = u^{p-1}(y)$. On peut alors appliquer le a) et on a une famille libre de p+p vecteurs. Mais $p \ge 2$ et $p \ge n-1$ donc $p+p \ge (n-1)+2=n+1>n$ et on a une absurdité comme précédement.

On a donc : $dim(Im(u^{p-1}) < 2$ et comme $u^{p-1} \neq 0_{L(E)}$ alors $dim(Im(u^{p-1}) = 1)$

Problème 2

1°) a) Après calculs on a : $(AB)^2 = AB$ et donc C = AB est bien une matrice de projection.

1°) b)
$$rg(AB) = rg(\begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix})$$
 Comme la troisième colonne est la somme des deux premières alors

$$rg(AB) = rg(\begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}) = rg(\begin{pmatrix} 0 & -1 \\ -1 & 0 \\ 1 & 1 \end{pmatrix})$$

Les deux colonnes étant libre on a : rg(AB) = 2

1°) c) Par le théorème du rang
$$dim(ker(AB))=3-rg(AB)=3-2=1$$
 et comme $C_1+C_2-C_3=0$

alors
$$ker(AB) = Vect(e_1)$$
 avec $e_1 = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$

Les deux premières colonnes de AB étant libre et rg(AB) = 2 elles forment une base de Im(AB)

On a donc
$$Im(AB) = Vect(\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix})$$

2°) a) Soit
$$x \in Im(u \circ v)$$
 alors $\exists z \in E$, $x = (u \circ v)(z) = u(v(z))$ Mais $x = u(v(z)) \Rightarrow x \in Im(u)$

On a bien
$$x \in Im(u \circ v) \Rightarrow x \in Im(u)$$
 et donc $Im(u \circ v) \subset Im(u)$

On en déduit
$$dim(Im(u \circ v)) \leq dim(Im(u))$$
 et donc $rg(u \circ v) \leq rg(u)$

2°) b)
$$rg(u \circ v) = dim((u(v(E))) = dim(u(Im(v)))$$

En appliquant le théorème du rang à la restriction de u à Im(v) on a $dim(u(Im(v)) \leq dim(Im(v))$

Finalement
$$rg(u \circ v) \leq rg(v)$$

2°) c) En combinant les résultats du a) et du b) on a :
$$\boxed{rg(u \circ v) \leq \min(rg(u), rg(v))}$$

3°)
$$(AB)^2 = AB \Rightarrow ABAB = AB$$
 et comme AB est de rang 2 alors : $rg(ABAB) = 2$ En utilisant le 2°) $2 = rg(ABAB) = rg(A(BAB)) \le rg(BAB) = rg((BA)B) \le rg(BA)$ Donc $2 \le rg(BA)$. Comme, de plus $BA \in M_2(\mathbb{R}) \Rightarrow rg(BA) \le 2$

On en déduit donc que
$$\boxed{rg(BA)=2}$$

Remarque : dans ce 3°) on a utilisé le 2°) même si on avait pas d'endomorphisme, en effet le résultat du 2°) est généralisable avec $v \in L(E, F)$ et $u \in L(F, G)$ ou E, F et G sont trois espace vectoriel de dimension finie.

4°) $BA \in M_2(\mathbb{R})$ et rg(BA) = 2 donc BA est inversible

Comme ABAB = AB en multipliant à gauche par B on obtient : BABAB = BAB

Comme BA est inversible on peut multiplier à gauche par $(BA)^{-1}$ et on obtient : BAB = B

On multiplie alors à droite par A pour avoir BABA = BA, que l'on multiplie à droite par $(BA)^{-1}$ pour obtenir le résultat voulu, à savoir : $BA = I_2$

Problème 3 : Beceas 2024

1)
$$H_{2n} - H_n = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=n+1}^{2n} \frac{1}{k}$$

mais
$$k \le 2n \Rightarrow \frac{1}{k} \ge \frac{1}{2n}$$
 donc $H_{2n} - H_n \ge \sum_{k=n+1}^{2n} \frac{1}{2n} \ge n \frac{1}{2n} = \frac{1}{2}$

On a donc :
$$\forall n \geq 1$$
, $H_{2n} - H_n \geq \frac{1}{2}$

2)a) Posons :
$$\forall x \in]0,1]$$
 , $\varphi(x) = \frac{\ln(1+x)-x}{x^2}$

2)a) Posons : $\forall x \in]0,1]$, $\varphi(x) = \frac{\ln(1+x)-x}{x^2}$ Alors φ est continue sur]0,1] et pour x au voisinage de 0, on a :

$$\varphi(x) = \frac{\ln(1+x) - x}{x^2} = \frac{x - \frac{x^2}{2} + o(x^2) - x}{x^2} = \frac{-1}{2} + o(1)$$

 $\varphi(x) = \frac{\ln(1+x)-x}{x^2} = \frac{x-\frac{x^2}{2}+o(x^2)-x}{x^2} = \frac{-1}{2}+o(1)$ Donc en posant : $\varphi(0) = \frac{-1}{2}$ on peut prolonger φ en une fonction continue sur [0,1]

Comme une fonction continue sur un segment est bornée, alors : $\exists C \in \mathbb{R}$, $\forall x \in [0,1]$, $|\varphi(x)| \leq C$

En particulier, pour
$$n \in \mathbb{N}^*$$
, on a $x = \frac{1}{n} \in]0,1]$ donc : $\left| \varphi(\frac{1}{n}) \right| \leq C$ et donc $\left| \frac{\ln(1+\frac{1}{n})-\frac{1}{n}}{\frac{1}{n^2}} \right| \leq C$

On en déduit :
$$\exists C \in \mathbb{R} , \ \forall n \in \mathbb{N}^*, \ \left| ln(1+\frac{1}{n}) - \frac{1}{n} \right| \leq \frac{C}{n^2}$$

2)b) • Avec l'inégalité du a), comme $\sum \frac{1}{n^2}$ est une série convergente, on en déduit, par règle de comparaison que : $\sum \left(ln(1+\frac{1}{n})-\frac{1}{n})\right)$ est absolument convergente donc convergente.

On a donc :
$$\sum \left(ln(1+\frac{1}{n})-\frac{1}{n})\right)$$
 est convergente.

• On peut alors poser :
$$\sum_{n=1}^{+\infty} \left(ln(1+\tfrac{1}{n}) - \tfrac{1}{n}) \right) = -\gamma \text{ et on a alors : } \sum_{k=1}^{n} \left(ln(1+\tfrac{1}{k}) - \tfrac{1}{k}) \right) = -\gamma + o(1)$$

Mais
$$\sum_{k=1}^{n} \left(ln(1+\frac{1}{k}) - \frac{1}{k}) \right)$$

$$=\sum_{k=1}^{n}ln(\frac{k+1}{k})-\sum_{k=1}^{n}\frac{1}{k}$$

$$= \sum_{k=1}^{n} (ln(k+1) - ln(k)) - H_n$$

$$= \ln(n+1) - H_n$$

$$=ln(n)-H_n+ln(\frac{n+1}{n})$$

$$= \ln(n) - H_n + o(1)$$

On a donc :
$$ln(n) - H_n + o(1) = -\gamma + o(1)$$
 et donc : $H_n = ln(n) + \gamma + o(1)$ quand $n \to +\infty$

3)
$$t\mapsto ln(t)e^{-t}$$
 est continue sur $]0,+\infty[$ donc $\int\limits_0^{+\infty}ln(t)e^{-t}dt$ pose problème en 0 et en $+\infty$

• En 0 on a : $ln(t)e^{-t} \sim ln(t)$ et d'après le cours, $t \mapsto ln(t)$ est intégrable sur [0,1]Donc par règle de l'équivalent $t \mapsto ln(t)e^{-t}$ est intégrable sur [0,1]

• En
$$+\infty$$

$$t^2(\ln(t)e^{-t}) \xrightarrow[t \to +\infty]{} 0$$
 par comparaison, ln, puissance, exp

On en déduit $ln(t)e^{-t}=o(\frac{1}{t^2})$ au voisinage de $+\infty$.

Mais, comme $t\mapsto \frac{1}{t^2}$ est intégrable sur $[1,+\infty[$, alors, par négligeabilité, $t\mapsto ln(t)e^{-t}$ est intégrable sur $[1,+\infty[$

• En regroupant les deux résultats ci-dessus : $t \mapsto ln(t)e^{-t}$ est intégrable sur $]0, +\infty[$

et donc
$$\int_{0}^{+\infty} ln(t)e^{-t}dt$$
 est convergente.

4)a) On pose : $\forall u > -1$, a(u) = u - ln(1+u)

Alors a est C^{∞} sur $]-1,+\infty[$ et $a'(u)=1-\frac{1}{1+u}=\frac{u}{1+u}$

,	. ,	1 + u	17	u		
	u	-1		0		$+\infty$
	a'(u)		-	0	+	
:		$+\infty$				$+\infty$
	$\mid a(u) \mid$		×		7	
				0		

On a donc le tableau de variation

On en déduit : $\forall u > -1$, $a(u) \ge 0$ et donc $\boxed{\forall u > -1$, $ln(1+u) \le u}$

4)b) Soit $n \in \geq 2$ et $t \in [0, n[$, alors $\frac{-t}{n} > -1$ et on peut lui applique le a).

On en déduit : $ln(1 - \frac{t}{n}) \le \frac{-t}{n}$

Comme $n \geq 2$ alors on peut multiplier cette inégalité par n-1>0 ce qui donne :

 $(n-1)ln(1-\frac{t}{n}) \leq (n-1)\frac{-t}{n} = -t + \frac{t}{n}$ Mais comme $t \in [0,n]$ alors $\frac{t}{n} \leq 1$ et donc $(n-1)ln(1-\frac{t}{n}) \leq -t+1$

Comme l'exp est croissante on peut composer cette inégalité par $exp : exp((n-1)ln(1-\frac{t}{n})) \le exp(1-t)$

Et donc : $(1 - \frac{t}{n})^{n-1} \le ee^{-t}$

On a : $\left[\forall n \geq 2 , (1 - \frac{t}{n})^{n-1} \leq ee^{-t} \right]$

$$f_n : [0, +\infty[\longrightarrow \mathbb{R}]$$

5) On pose :
$$\forall n \in \mathbb{N}^*$$
:
$$t \longmapsto \begin{cases} 0, +\infty[\longrightarrow \mathbb{R} \\ 0 & \text{si } t > n \\ ln(t)(1 - \frac{t}{n})^{n-1} & \text{si } t \in [0, n] \end{cases}$$

Si on fixe $t \in \mathbb{R}^+$ alors, à partir d'un certain rang : $f_n(t) = \ln(t)(1 - \frac{t}{n})^{n-1} = \exp((n-1)\ln(1 - \frac{t}{n}))$ mais $(n-1)\ln(1 - \frac{t}{n}) \sim n \frac{-t}{n} = -t$, donc par composition de limite : $f_n(t) \xrightarrow[n \to +\infty]{} \ln(t)e^{-t}$

La suite de fonction (f_n) converge donc simplement vers $t \mapsto ln(t)e^{-t}$ sur $[0, +\infty[$

De plus, comme $t \mapsto eln(t)e^{-t}$ est intégrable sur $[0, +\infty[$ (comme en question 3) alors, on a l'hypothèse de domination.

On peut donc appliquer le théorème de convergence dominée et on a : $\lim_{n\to+\infty}\int_0^{+\infty}f_n(t)dt=\int_0^{+\infty}\lim_{n\to+\infty}f_n(t)dt$

et donc $\left| \overline{\lim_{n \to +\infty} \int_{0}^{n} ln(t) (1 - \frac{t}{n})^{n-1} dt} = \int_{0}^{+\infty} ln(t) e^{-t} dt \right|$

6) On fait le changement de variable C^1 bijectif $u=\frac{t}{n}$ dans la première intégrale (qui est bien convergente) et on obtient : $\int_{0}^{n} ln(t)(1-\frac{t}{n})^{n-1}dt$

$$= \int_{0}^{1} \ln(nu)(1-u)^{n-1}(ndu)$$

$$= n \int_{0}^{1} [ln(n) + ln(u)](1-u)^{n-1} du$$

 $=n\int_{1}^{1}ln(n)du+n\int_{1}^{1}ln(u)(1-u)^{n-1}du$ on effectue maintenant une IPP dans l'intégrale

$$= ln(n) + \left[ln(u)[(1-u)^n - 1]\right]_0^1 - \int_0^1 \frac{(1-u)^n - 1}{u} du$$

On a pris comme primitive de $n(1-u)^{n-1}$ la fonction $(1-u)^n-1$, ce qui nous permet d'annuler le crochet, qui est donc convergeant, et d'affirmer la convergence de l'intégrale.

En résumé et en reprenant l'étape intermédiaire, on a :

$$\int_{0}^{n} \ln(t)(1-\frac{t}{n})^{n-1}dt = \ln(n) + n \int_{0}^{1} \ln(u)(1-u)^{n-1}du = \ln(n) + \int_{0}^{1} \frac{(1-u)^{n-1}}{u}du$$

7) On écrit : $\frac{(1-u)^n-1}{u} = \frac{(1-u)^n-1}{1-(1-u)} = -\sum_{k=0}^{n-1} (1-u)^k$ (somme des termes d'une suite géométrique de raison 1-u)

Donc
$$\int_{0}^{1} \frac{(1-u)^{n}-1}{u} du = \int_{0}^{1} \left(-\sum_{k=0}^{n-1} (1-u)^{k}\right) du = -\sum_{k=0}^{n-1} \int_{0}^{1} (1-u)^{k} du = -\sum_{k=0}^{n-1} \frac{1}{k+1} = -H_{n}$$

En reprenant le 6) :
$$\int_{0}^{n} ln(t)(1-\frac{t}{n})^{n-1}dt = ln(n) - H_{n}$$

En faisant tendre n vers $+\infty$, par définition de γ et convergence de l'intégrale, on a :

$$(1) \Leftrightarrow \int_{0}^{+\infty} ln(t)e^{-t}dt = -\gamma$$

8) • Pour s > 1, $\zeta(s)$ est une série de Riemann et on sait qu'elle converge.

 ζ est bien définie sur]1, + ∞ [

• Soit $k \ge 1$. Comme s > 1 alors $t \mapsto \frac{1}{t^s}$ est décroissante sur [k, k+1] on obtient : $\frac{1}{(k+1)^s} \le \frac{1}{t^s} \le \frac{1}{k^s}$

En intégrant sur
$$[k,k+1]$$
 : $\frac{1}{(k+1)^s} \leq \int\limits_{k}^{k+1} \frac{1}{t^s} dt \leq \frac{1}{k^s}$

En sommant de k=1 à $N\geq 1$ on a, par la relation de Chasles : $\sum_{k=1}^{N}\frac{1}{(k+1)^s}\leq \int\limits_{1}^{N+1}\frac{1}{t^s}dt\leq \sum_{k=1}^{N}\frac{1}{k^s}$

$$\sum_{k=1}^{N} \frac{1}{(k+1)^s} \le \int_{1}^{N+1} \frac{1}{t^s} dt \le \sum_{k=1}^{N} \frac{1}{k^s}$$

Les trois membres ont une limite, donc en faisant $N \to +\infty$:

$$\zeta(s) - 1 \le \int_{1}^{+\infty} \frac{1}{t^s} dt \le \zeta(s)$$

En réordonnant :
$$\int_{1}^{+\infty} \frac{1}{t^s} dt \le \zeta(s) \le \int_{1}^{+\infty} \frac{1}{t^s} dt + 1$$

$$\bullet \int_{1}^{+\infty} \frac{1}{t^{s}} dt = \left[\frac{-1}{(s-1)t^{s-1}} \right]_{1}^{+\infty} = \frac{1}{s-1}$$
Donc $\frac{1}{s-1} \le \zeta(s) \le \frac{1}{s-1} + 1$

$$\Rightarrow 1 \le \frac{\zeta(s)}{\frac{1}{s-1}} \le 1 + s - 1 = s$$

Donc, par encadrement, lorsque $s \to 1^+$ on a : $\lim_{s \to 1^+} \frac{\zeta(s)}{\frac{1}{s-1}} = 1$ et donc $\zeta(s) \sim \frac{1}{s \to 1^+} = 1$

9)a)
$$n\left(\frac{1}{n^s} - \frac{1}{(n+1)^s}\right)$$

= $\frac{n}{n^s}\left(1 - \left(\frac{n}{n+1}\right)^s\right) = \frac{1}{n^{s-1}}\left(1 - \left(1 - \frac{1}{n+1}\right)^s\right) = \frac{1}{n^{s-1}}\left(1 - \left(1 - \frac{s}{n+1} + o\left(\frac{1}{n+1}\right)\right)\right) = \frac{1}{n^{s-1}}\left(\frac{s}{n+1} + o\left(\frac{1}{n+1}\right)\right) \sim \frac{1}{n^{s-1}}\frac{s}{n+1} \sim \frac{s}{n^s}$

Mais comme s>1 alors $\sum \frac{s}{n^s}$ est une série de Riemann convergente, à termes positifs, donc, par équivalent

$$\sum n\left(\frac{1}{n^s} - \frac{1}{(n+1)^s}\right)$$
 est convergente

$$9)b) \sum_{n=1}^{N} n\left(\frac{1}{n^{s}} - \frac{1}{(n+1)^{s}}\right)$$

$$= \sum_{n=1}^{N} \left(n\frac{1}{n^{s}} - n\frac{1}{(n+1)^{s}}\right)$$

$$= \sum_{n=1}^{N} \left(n\frac{1}{n^{s}} - (n+1-1)\frac{1}{(n+1)^{s}}\right)$$

$$= \sum_{n=1}^{N} \left(n\frac{1}{n^{s}} - (n+1)\frac{1}{(n+1)^{s}}\right) + \sum_{n=1}^{N} \frac{1}{(n+1)^{s}}$$

$$= \sum_{n=1}^{N} \left(\frac{1}{n^{s-1}} - \frac{1}{(n+1)^{s-1}}\right) + \sum_{n=1}^{N} \frac{1}{(n+1)^{s}}$$

$$= 1 - \frac{1}{(N+1)^{s-1}} + \sum_{n=1}^{N} \frac{1}{(n+1)^{s}}$$

$$= -\frac{1}{(N+1)^{s-1}} + \sum_{n=0}^{N} \frac{1}{(n+1)^{s}}$$

$$= -\frac{1}{(N+1)^{s-1}} + \sum_{n=1}^{N+1} \frac{1}{n^{s}} \xrightarrow[N \to +\infty]{} \zeta(s)$$

On a montrer :
$$\sum_{n=1}^{+\infty} n\left(\frac{1}{n^s} - \frac{1}{(n+1)^s}\right) = \zeta(s)$$

9)c)
$$\forall t \in [1, +\infty[, \lfloor t \rfloor \le t \Rightarrow 0 \le \frac{\lfloor t \rfloor}{t^{s+1}} \le \frac{t}{t^{s+1}} = \frac{1}{t^s}]$$

9)c) $\forall t \in [1, +\infty[$, $\lfloor t \rfloor \leq t \Rightarrow 0 \leq \frac{\lfloor t \rfloor}{t^{s+1}} \leq \frac{t}{t^{s+1}} = \frac{1}{t^s}$ Comme s > 1, on a $t \mapsto \frac{1}{t^s}$ intégrable sur $[1, +\infty[$ et donc, par comparaison, $t \mapsto \frac{\lfloor t \rfloor}{t^{s+1}}$ est intégrable sur $[1, +\infty[$ et $s\int_{1}^{+\infty} \frac{\lfloor t \rfloor}{t^{s+1}} dt$ est convergente.

Alors, par la relation de Chasles:

$$s \int_{1}^{+\infty} \frac{\lfloor t \rfloor}{t^{s+1}} dt$$

$$= \sum_{k=1}^{+\infty} \int_{k}^{k+1} \frac{sk}{t^{s+1}} dt$$

$$= \sum_{k=1}^{+\infty} k \left[-\frac{1}{t^{s}} \right]_{k}^{k+1}$$

$$= \sum_{k=1}^{+\infty} k \left(\frac{1}{(k+1)^{s}} - \frac{1}{k^{s}} \right) \text{ on utilise } 9 \text{ b} \text{)}$$

$$= \zeta(s)$$

On a donc bien :
$$\zeta(s) = s \int_{1}^{+\infty} \frac{\lfloor t \rfloor}{t^{s+1}} dt$$

10) Soit
$$N \geq 2$$
, par la relation de Chasles :

$$\int_{1}^{N} \frac{\lfloor t \rfloor - t}{t^2} dt$$

$$N-1 \ n+1$$

$$=\sum_{n=1}^{N-1}\int_{0}^{n+1}\frac{\lfloor t\rfloor -t}{t^2}dt$$

$$= \sum_{n=1}^{N-1} \int_{-\pi}^{n+1} \frac{n-t}{t^2} dt$$

$$=\sum_{n=1}^{N-1} \left[\frac{-n}{t} - \ln(t)\right]_n^{n+1} = \sum_{n=1}^{N-1} \left(\left(1 - \frac{n}{n+1}\right) - \ln(n+1) + \ln(n)\right) = \sum_{n=1}^{N-1} \left(\frac{1}{n+1} - \ln(n+1) + \ln(n)\right) = H_N - 1 - \ln(N)$$

On a bien :
$$\int_{1}^{N} \frac{|t|-t}{t^2} dt == H_N - 1 - \ln(N)$$

En faisant tendre
$$N \to +\infty$$
 on a :
$$\int_{1}^{+\infty} \frac{\lfloor t \rfloor - t}{t^2} dt = \gamma - 1$$

11) •• Comme les deux intégrales convergent on peut écrire :

$$s \int_{1}^{+\infty} \frac{\lfloor t \rfloor - t}{t^{s+1}} dt$$

$$= s \int_{1}^{+\infty} \frac{\lfloor t \rfloor}{t^{s+1}} dt - s \int_{1}^{+\infty} \frac{t}{t^{s+1}} dt \text{ on utilise le 9)c}$$

$$= \zeta(s) - \int_{1}^{+\infty} \frac{s}{t^{s}} d = \zeta(s) - \left[\frac{-s}{(s-1)t^{s-1}} \right]_{1}^{+\infty} = \zeta(s) - \frac{s}{s-1}$$

• Soit $\forall s \in [\frac{1}{2}, +\infty[$

Alors: $\forall t \in [1, +\infty[$, $0 \le F(s, t) \frac{t - \lfloor t \rfloor}{t^{s+1}} \le \frac{1}{t^{s+1}} \le \frac{1}{t^{3/2}}$ Or $t \mapsto \frac{1}{t^{3/2}}$ est intégrable sur $[1, +\infty[$, donc par comparaison: $t \mapsto F(s, t)$ est intégrable sur $[1, +\infty[$

On a donc :
$$\begin{cases} \forall t \in [1,+\infty[\ , \ s \mapsto F(s,t) \text{ est continue sur } [\frac{1}{2},+\infty[\\ \forall s \in [\frac{1}{2},+\infty[\ , \ t \mapsto F(s,t) \text{ est continue par morceaux sur } [1,+\infty[\\ \forall (s,t) \in [\frac{1}{2},+\infty[\times[1,+\infty[\ , \ |F(s,t)| \leq \frac{1}{t^{3/2}} \text{ avec } t \mapsto \frac{1}{t^{3/2}} \text{ intégrable sur } [1,+\infty[\\ \text{On peut donc appliquer le théorème de continuité pour les intégrales à paramètres et on en déduit :} \end{cases}$$

$$f: s \mapsto \int_{1}^{+\infty} F(s,t)dt = \int_{1}^{+\infty} \frac{t - \lfloor t \rfloor}{t^{s+1}} dt$$
 continue sur $\left[\frac{1}{2}, +\infty\right[$

•
$$1 \in [\frac{1}{2}, +\infty[$$
 donc f est continue en 1 et on déduit : $f(1) = \lim_{s \to 1} f(s) \Leftrightarrow \lim_{s \to 1} \int_{1}^{+\infty} \frac{\lfloor t \rfloor - t}{t^{s+1}} dt = \int_{1}^{+\infty} \frac{\lfloor t \rfloor - t}{t^2} dt$

• On a vu en début de question que :
$$\zeta(s) - \frac{s}{s-1} = s \int_{1}^{+\infty} \frac{\lfloor t \rfloor - t}{t^{s+1}} dt$$
 et donc que : $\Leftrightarrow \zeta(s) = \frac{s}{s-1} + sf(s)$

Avec la continuité de f, on a, pour $s \to 1^+$:

$$\zeta(s) = \frac{s-1+1}{s-1} + s(f(1)+o(1)) = 1 + \frac{1}{s-1} + (1+o(1))(f(1)+o(1)) = 1 + \frac{1}{s-1} + f(1) + o(1)$$
Mais d'après la question 10) : $f(1) = \gamma - 1$ donc $\zeta(s) = 1 + \frac{1}{s-1} + \gamma - 1 + o(1) = \frac{1}{s-1} + \gamma + o(1)$

On a donc :

 | lorssque
$$s \to 1^+$$
 , $\zeta(s) == \frac{1}{s-1} + \gamma + o(1)$