Feuille d'exercices n°28 : chap. 11

Exercice 251. Pour x > 0 on pose : $S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$

- a) Montrer que S est bien définie et est de classe C^1 sur $]0, +\infty[$
- b) Préciser le sens de variation de S.
- c) Montrer que : $\forall x > 0$, $S(x+1) + S(x) = \frac{1}{x}$
- d) Déterminer un équivalent de S(x) en 0^+
- e) Déterminer un équivalent de S(x) en $+\infty$

Exercice 252. Pour x > 0 on pose : $S(x) = \sum_{n=0}^{+\infty} \prod_{k=0}^{n} \frac{1}{x+k}$

- a) Justifier que S est continue et définie sur $]0,+\infty[$
- b) Trouver une relation liant S(x) et S(x+1)
- c) Déterminer un équivalent de S(x) en 0 et en $+\infty$

Exercice 253. a) Soit 0 < a < b. Montrer que : $\int_{a}^{b} (\sum_{n=1}^{+\infty} ne^{-nt}) dt = \frac{sh(\frac{b-a}{2})}{2sh(\frac{a}{2})sh(\frac{b}{2})}$

b) Etudier l'existence de $\int_{0}^{1} (\sum_{n=1}^{+\infty} ne^{-nt}) dt$ et de $\int_{1}^{+\infty} (\sum_{n=1}^{+\infty} ne^{-nt}) dt$.

Exercice 254. On définit, pour $n \in \mathbb{N}^*$, la fonction : $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ $x \mapsto \frac{1}{n^2+2n+x^2}$

- 1°) Montrer que la série de fonction $\sum_{n\geq 1} f_n$ converge normalement sur \mathbb{R} .
- 2°) En admettant que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, calculer $\lim_{x \to 1} \sum_{n=1}^{+\infty} \frac{1}{n^2 + 2n + x^2}$

Exercice 255. (\star)

Soit [a,b] un segment de \mathbb{R} de longueur non nul. Soit $f_0 \in C^0([a,b],\mathbb{R})$.

On pose alors $\forall n \in \mathbb{N}$, $\forall x \in [a,b]$, $f_{n+1}(x) = \int_{a}^{x} f_n(t)dt$

- a) Montrer que la série de fonctions $\sum f_n$ converge normalement sur [a,b]. On note $F=\sum_{n\geq 0} f_n$
- b) Justifier l'existence et le caractère C^1 sur [a,b] de $G: x \mapsto \int_a^x F(t)dt$
- c) A l'aide d'une équation différentielle vérifiée par G, déterminer F en fonction de f_0

Exercice 256. (\star)

On pose $S(x) = \sum_{n=0}^{+\infty} \frac{x}{n(1+n^2x)}$ pour $x \in I = [0, +\infty[$

- a) Montrer S est continue sur I.
- b) Montrer que S est dérivable sur l'intérieur de I.
- c) Etudier la dérivabilité en $\inf(I)$
- d) Etudier $\lim_{x \to \sup(I)} S(x)$