Chapitre 9 : Exemples d'exercices corrigés

Enoncé, Exercice 9.1

Montrer que $A = \{(x,y) \in \mathbb{R}^2, 1 < (x+y)^2 + xy\}$ est un ouvert.

Correction

On pose f l'application définie sur \mathbb{R}^2 par $f(x,y) = (x+y)^2 + xy - 1$. f est continue sur \mathbb{R}^2 et $A = f^{-1}(]0; +\infty[)$. Comme l'image réciproque d'un ouvert par une application continue est un ouvert alors A est un ouvert.

Enoncé, Exercice 9.2

On note A l'ensemble des matrices de $M_n(\mathbb{R})$ dont la trace vaut 1. Montrer que A est un convexe fermé.

Correction

 $A=tr^{-1}(\{1\})$ et tr est continue sur $M_n(\mathbb{R})$. Comme l'image réciproque d'un fermé par une application continue est un fermé alors A est un fermé.

Soit $M, N \in A$ et $\lambda \in [0, 1]$, alors $tr(\lambda M + (1 - \lambda)N) = \lambda tr(M) + (1 - \lambda)tr(N) = \lambda + 1 - \lambda = 1$ puisque tr(M) = tr(N) = 1. Donc $\lambda M + (1 - \lambda)N \in A$.

On a : $\forall M, N \in A$, $\forall \lambda \in [0,1]$, $\lambda M + (1-\lambda)N \in A$ donc A est convexe.

A est un convexe fermé.

Enoncé, Exercice 9.3 (\star)

Soit
$$E=C^0([0,1].$$
 On pose $\forall f\in E$, $\varphi(f)=f(1)$ et $\Phi(f)=\int\limits_{[0;1]}f$

On considère les deux normes (admis) sur E définies par $\forall f \in E$, $N_{\infty}(f) = \sup_{[0;1]} |f(t)|$ et $N(f) = \int_{0}^{1} |f(t)| dt$

 φ et Φ sont-elles continues de (E, N_{∞}) dans \mathbb{R} ?

 φ et Φ sont-elles continues de (E, N) dans \mathbb{R} ?

Correction

• : On remarque que : $\forall f \in E : |\varphi(f)| = |f(1)| \le N_{\infty}(f)$

Alors $\forall f, g \in E$ par linéarité : $|\varphi(f) - \varphi(g)| \le N_{\infty}(f - g)$ donc φ est 1-lipschitzienne sur E et donc φ est continue de (E, N_{∞}) dans \mathbb{R} .

- : ona : $\forall f \in E$, $|\Phi(f)| \leq N_{\infty}(f)$ • est linéaire et $\forall f,g \in E$, $|\Phi(f) - \Phi(g)| \leq N_{\infty}(f-g)$ donc • est 1-lipschitzienne et donc • est continue de (E,N_{∞}) dans \mathbb{R} .
- : Considérons pour $n \in \mathbb{N}$ les fonctions $f_n : t \in [0,1] \mapsto t^n$. Alors $N(f_n) = \int\limits_0^1 t^n dt = \frac{1}{n+1}$ Donc, pour la norme N on a $f_n \underset{n \to +\infty}{\longrightarrow} 0_E$ mais $\varphi(f_n) = 1 \neq \varphi(0_E)$. Donc φ n'est pas continue en 0_E et donc pas continue sur (E,N)
- : On a, par l'inégalité de la moyenne : $\forall f \in E$, $|\Phi(f)| \leq N(f)$ et comme Φ est linéaire, $\forall f,g \in E$, $|\Phi(f)-\Phi(g)| \leq N(f-g)$, donc Φ 1-lipschitzienne et ona : Φ continue sur (E,N)

Enoncé, Exercice 9.4

Etudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in[0;\pi]$ et $\forall n\in\mathbb{N}$, $u_{n+1}=sin(u_n)$

Correction

Posons $f: [0, +\infty[\longrightarrow \mathbb{R} \\ t \mapsto t - sin(t)]$

Alors f est C^{∞} et $f'(t) = 1 - \cos(t) \ge 0$ donc f est croissante.

Comme f(0) = 0 alors $\forall t \geq 0$ on a $f(t) \geq 0 \Leftrightarrow sin(t) \leq t$

Par une récurrence simple, on montre que $\forall n \in \mathbb{N} \ u_n \in [0, \pi]$ (puisque $[0, 1] \subset [0, \pi]$)

Alors $f(u_n) \ge 0 \Rightarrow sin(u_n) \le u_n \Rightarrow u_{n+1} \le u_n$

La suite (u_n) est donc décroissante, minorée par 0, donc convergente.

Notons ℓ sa limite, alors, en passant à la limite, par continuité $u_{n+1} = sin(u_n) \Rightarrow \ell = sin(\ell) \Leftrightarrow f(\ell) = \ell$ L'étude de f permet de montrer que $\lambda = 0$

Bilan : (u_n) est décroissante et $\lim_{n \to +\infty} u_n = 0$