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Chapitre 10 : Suites de fonctions

Dans ce chapitre I désigne un intervalle de R de longueur non nulle et les applications considérées sont de I
dans K avec K = R ou K = C.

1 Modes de convergence d'une suite de fonctions

1.1 Convergence simple

1.1.1 Dé�nition

Dé�nition. Soit (fn)n∈N une suite de fonction de I dans K et f une fonction de I dans K
.

Alors on dit que la suite de fonctions (fn)n∈N converge simplement vers la fonction f
si et seulement si ∀t ∈ I , lim

n→+∞
fn(t) = f(t)

Remarque. Autrement dit : ∀t ∈ I , ∀ϵ > 0 , ∃n0 ∈ N , ∀n ∈ N , n ≥ n0 ⇒ |f(t)− fn(t)| ≤ ϵ

1.1.2 Exemples

Exemple 1 :
fn : [0; 1] −→ R

t 7→ tn
converge simplement vers

f : [0; 1] −→ R

t 7→

{
0 si 0 ≤ t < 1

1 si t = 1

Exemple 2 :

fn : [0; +∞[ −→ R

t 7→

{
(1− t2

n )n si 0 ≤ t ≤
√
n

0 si t >
√
n

converge simplement sur [0,+∞[ vers
f : [0; +∞[ −→ R

t 7→ e−t2

Exemple 3 :
fn : [0; 1] −→ R

x 7→ x+n
n+4nx2

converge simplement vers
f : [0; 1] −→ R

x 7→ 1
1+4x2

1.2 Convergence uniforme

1.2.1 Dé�nition

On dit que la suite de fonctions (fn : I → K)n∈N converge uniformément vers la fonction f : I → K
si et seulement si ∀ϵ > 0 , ∃n0 ∈ N , ∀n ∈ N , n ≥ n0 ⇒ ∀t ∈ I , |f(t)− fn(t)| ≤ ϵ

Remarque. Attention, l'ordre des quanti�cateurs n'est pas le même que pour la convergence simple.

1.2.2 Interprétation topologique

Rappel : On note B(I,K) l'ensemble des applications bornées de I dans K et on pose, pour tout f ∈ B(I,K) :
||f ||I,∞ = sup

t∈I
|f(t)| ce qui dé�nit une norme sur B(I,K).

On a alors :

Théorème . La suite de fonctions (fn : I → K)n∈N converge uniformément vers la fonction f : I → K
si et seulement si lim

n→+∞
||f − fn||I,∞ = 0

Remarques. ||f − fn||I,∞ n'est pas forcément dé�nie pour toute les valeurs de n car f − fn n'est pas forcément
bornée sur I.
Par contre cette valeur est dé�nie pour n "assez grand".
Détails voir preuve ci-dessous.

preuve :
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1.2.3 Une petite propriété

Lemme. Si (fn)n∈N est une suite de fonction bornées de I dans K convergeant uniformément vers une fonction f
de I dans K. Alors : f est bornée.

preuve :

1.3 CU ⇒ CS

Théorème . Soit (fn)n∈N une suite de fonction de I dans K et f une fonction de I dans K
.

Alors (fn)n∈N converge uniformément vers f sur I ⇒ (fn)n∈N converge simplement vers f sur I

Remarques. Autrement dit, la convergence uniforme entraîne la convergence simple. (CU ⇒ CS)
La réciproque est évidement fausse (voir exemple)
En pratique, on montre d'abord la CS, car pour montrer la CU, il est bon de connaître f !!!

On peut noter ceci : fn
CU−→

n→+∞
f ⇒ fn

CS−→
n→+∞

f

preuve :

1.4 Exemples

Exemple 1 :
fn : [0; 1] −→ R

t 7→ tn

Converge simplement mais pas uniformément sur [0, 1], converge uniformément sur [0, a] avec 0 < a < 1 et ne
converge pas uniformément sur [0, 1[ (faire fn(1− 1

n ))

Exemple 2 :
fn : [0; 1] −→ R

x 7→ x+n
n+4nx2

Converge uniformément sur R

Exemple 3 :
fn : ]0; 1] −→ R

t 7→ 1
t +

1
n

Convergence uniforme sur ]0, 1] mais les normes in�nies de f et des fn n'existe pas ...

Exemple 4 :

fn : [0; +∞[ −→ R

x 7→

{
n2x si x ∈ [0, 1

n [
1
x si x ∈ [ 1n ,+∞[

convergence simple, convergence uniforme sur [a; +∞[ mais pas CU sur ]0,+∞[ (prendre fn(
1
n3 ) ...)

Exemple 5 :
fn : R −→ R

x 7→ Min(n, x2

n )

C.U. vers fonction nulle sur tout [−A,A], mais pas CU sur R.

1.5 Point méthode

Pour montrer la convergence uniforme on majore |f(x)− fn(x)| en éliminant les x mais en gardant du n pour que
çà tende vers 0.
Une étude de x 7→ f(x)− fn(x) sur I pour calculer ||f − fn||I,∞ peut être utile...
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2 Continuité

2.1 Continuité en un point

Théorème . Soit I un intervalle de R de longueur non nulle et soit a ∈ I.
Soit (fn : I −→ K)n∈N une suite de fonctions et f : I −→ K Alors :{

chaque fn est continue en a

(fn) converge uniformément vers f sur I
⇒ f est continue en a

preuve :

2.2 Continuité global

2.2.1 Premier théorème

Théorème . Soit I un intervalle de R de longueur non nulle et soit a ∈ I.
Soit (fn : I −→ K)n∈N une suite de fonctions et f : I −→ K Alors :{

chaque fn est continue sur I

(fn) converge uniformément vers f sur I
⇒ f est continue sur I

preuve :

2.2.2 Corollaire important

Corollaire. Soit I un intervalle de R de longueur non nulle et soit a ∈ I.
Soit (fn : I −→ K)n∈N une suite de fonctions et f : I −→ K Alors :{

chaque fn est continue sur I

(fn) converge uniformément vers f sur tout segment inclus dans I
⇒ f est continue sur I

preuve :

2.2.3 Exemple

Exemple 1 :
fn : [0; 1] −→ R

t 7→ tn

Exemple 2 :

fn : R −→ R

t 7→

{
1
t +

1
n si t ̸= 0

0 si t = 0

C.U. sur R mais discontinuité en 0 car les fn ne sont pas continue en 0

Exemple 3 :
fn : [0; 1] −→ R

t 7→ exp(
n∑

k=1

cos(
√
2kx)

k2 )

Alors fn CS sur R, CU sur R (utiliser le reste et exp lipschitizienne sur [a, b] ...)
et on a f continue sur R ...
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3 Intégration et dérivation

3.1 Intégration sur un segment

3.1.1 Théorème

Théorème . Soit [a; b] un segment de R, (fn) une suite d'application de [a; b] dans K et f une application de [a; b]
dans K. Alors :{
chaque fn est continue sur [a; b]

(fn) converge uniformément vers f sur [a; b]
⇒ lim

n→∞

b∫
a

fn(t)dt =
b∫
a

f(t)dt

Remarque. Autrement dit, la CU donne : lim
n→∞

b∫
a

fn(t)dt =
b∫
a

lim
n→∞

fn(t)dt

preuve :

3.1.2 Exemples

Exemple. 1
fn : [0; 1] −→ R

t 7→ n2(1− t)tn

C.S. vers fct nulle mais pas d'interversion ... donc pas de C.U. ...

Exemple. 2
fn : [0; 1] −→ R

t 7→ (1− t
n )

n

3.2 Dérivabilité

Théorème . Soit I un intervalle de R de longueur non nulle.
Soit (fn : I −→ K)n∈N une suite de fonctions, soit f une fonction de I dans K Alors :
chaque fn est de classe C1 sur I

(fn) converge simplement vers f sur I

(f ′
n) converge uniformément vers une fonction g sur I

⇒

{
f est de classe C1 sur I

f ′ = g

Remarques. En pratique, la convergence uniforme sur tout segment de I est su�sante.
Autrement dit : lim

n→+∞
d
dxfn(t) =

d
dx lim

n→+∞
fn(t)

Comme on le verra dans la preuve on a aussi (fn) converge uniformément vers f sur tout segment de I (pas dans
le théorème du programme, mais utile dans la preuve du théorème suivant)

preuve :

Exemple. 1
fn : R −→ R

t 7→ sin(nt)√
n

C.U. sur R, mais les f ′
n ne converge même pas !!!

Exemple. 2
fn : [0; 1] −→ R

t 7→
n∑

k=1

cos(kx)
k5

3.3 Extension aux suites de fonctions de classe Ck

Théorème . Soit I un intervalle de R de longueur non nulle et k ∈ N∗

Soit (fn : I −→ K)n∈N une suite de fonctions. Alors :
chaque fn est de classe Ck sur I

∀i ∈ J0; k − 1K , (f
(i)
n ) converge simplement sur I

(f
(k)
n ) converge uniformément sur tout segment de I

⇒

{
la limite simple de (fn), notée f est de classe Ck sur I

∀i ∈ J0; kK , ∀x ∈ I , f (i)(x) = lim
n→+∞

f
(i)
n (x)

preuve :

Exemple. suite de l'exemple précédent
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Compléments

preuve du 1.2.2. : interprétation topologique de la convergence uniforme

� (fn : I → K)n∈N converge uniformément vers la fonction f : I → K
donc ∀ϵ > 0 , ∃n0 ∈ N , ∀n ∈ N , n ≥ n0 ⇒ ∀t ∈ I , |f(t)− fn(t)| ≤ ϵ

Si on prend ϵ = 1 ci-dessus alors : ∃n0 ∈ N , ∀n ∈ N , n ≥ n0 ⇒ ∀t ∈ I , |f(t)− fn(t)| ≤ 1

On a donc, pour n ≥ n0, fn − f est bornée et on peut poser : ||f − fn||I∞

� On peut donc interpréter la CU de la manière suivante :
∀ϵ > 0 , ∃N ≥ n0 , ∀n ∈ N , n ≥ N ⇒ ∀t ∈ I , ||f − fn||I∞ ≤ ϵ

Autrement dit, par retour à la dé�nition de limite : lim
n→+∞

||f − fn||I∞ = 0

preuve du 1.3. : CU ⇒ CS

Si on reprend les notations de la preuve de 1.2.2. et que l'on �xe t.
On a pour t �xé et n ≥ n0 , |fn(t)− f(t)| ≤ ||f − fn||I∞ −→

n→+∞
0

Donc lim
n→+∞

fn(t) = f(t)

Comme ceci est vrai pour tout t ∈ I alors (fn) converge simplement vers f sur I.

preuve du 2.1. : Transfert de continuité en un point

Soit ϵ > 0.
Comme lim

n→+∞
||f − fn||I∞ = 0 alors ∃N ∈ N , ||f − fN ||I∞ ≤ ϵ

3

Par hypothèse fN est continue en a donc ∃η > 0 , ∀x ∈ I , |x− a| ≤ η ⇒ |fN (t)− fN (a)| ≤ ϵ
3

On a alors pour t ∈ I tel que |t− a| ≤ η :
|f(t)− f(a)|

= |f(t)− fN (t) + fN (t)− fN (a) + fN (a)− f(a)| inégalité triangulaire
≤ |f(t)− fN (t)|+ |fN (t)− fN (a)|+ |fN (a)− f(a)|
≤ ||f − fN ||I∞ + |fN (t)− f(a)|+ ||f − fN ||I∞
≤ ϵ

3 + ϵ
3 + ϵ

3 = ϵ

On a donc : ∀ϵ > 0 , ∃η > 0 , |x− a| ≤ η ⇒ |f(t)− f(a)| ≤ ϵ
Ce qui est la dé�nition de f est continue en a.

preuve du 3.1. : CU et intégration sur un segment

� Déjà les fn sont continue et il y a convergence uniforme, donc f est continue et de ce fait est intégrable sur [a, b]

�

∣∣∣∣∣ b∫
a

fn(t)dt−
b∫
a

f(t)dt

∣∣∣∣∣ ≤ b∫
a

|fn(t)− f(t)| dt par inégalité triangulaire

≤
b∫
a

|fn − f |∞ dt par dé�nition de la norme in�nie

≤ (b− a) |fn − f |∞ −→
n+∞

0

On a donc lim
n→+∞

b∫
a

fn(t)dt =
b∫
a

f(t)dt
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preuve du 3.2. : CS et CU et dérivabilité

� Les fn sont C1. On �xe a ∈ I et on a : ∀x ∈ I , fn(x) = fn(a) +
x∫
a

f ′
n(t)dt

� [a, x] ⊂ I donc (f ′
n) converge uniformément vers g

On peut donc appliquer 3.1. pour obtenir : lim
n→+∞

x∫
a

f ′
n(t)dt =

x∫
a

g(t)dt

� En utilisant le résultat précédent et en utilisant aussi la convergence simple de (fn), on obtient, en passant à

la limite dans fn(x) = fn(a) +
x∫
a

f ′
n(t)dt : f(x) = f(a) +

x∫
a

g(t)dt

� Comme les f ′
n sont continues et que la convergence est uniforme alors g est continue.

On a donc x 7→
x∫
a

g(t)dt qui est la primive d'une fonction continue et qui est donc C1.

On en déduit f est C1

En dérivant f(x) = f(a) +
x∫
a

g(t)dt, on obtient alors : f ′(x) = g(x) et donc g = f ′
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