
CPGE PSI* 2023/2024 Informatique
Lycée La Fayette Nathalie Planche

Devoir à la maison no2
Distribué le jeudi 21 décembre 2023, à rendre le jeudi 11 janvier 2023

- Extrait d’une épreuve de concours -

N.B. : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d’énoncé, il le signalera sur sa copie et devra
poursuivre sa composition en expliquant les raisons des initiatives qu’il a été amené à prendre.

Le sujet est composé de quatre parties, pouvant être traitées indépendamment.

1

Gestion de Tests dans une entreprise

Une entreprise d’e-commerce vend des meubles tous identifiés par une référence et par
un QR code 1. Tous les clients sont identifiés par leur numéro de sécurité sociale. Tous les
achats s’effectuent à l’aide d’un numéro de carte de crédit. Cette entreprise met en œuvre
différents tests afin d’éviter les erreurs de numéros de sécurité sociale, de numéros de carte
de crédit ou de QR codes.

Partie I - Tests de code de sécurité sociale

En France, le numéro de sécurité sociale correspond au numéro d’inscription au répertoire
national d’identification des personnes physiques (RNIPP). Il est formé du numéro d’inscrip-
tion (NIR) à 13 chiffres et d’une clé de contrôle à 2 chiffres. Le NIR, créé à partir de l’état
civil, est composé de la façon suivante :

- Sexe (1er chiffre) ;
- Année de naissance (les deux chiffres suivants) ;
- Mois de naissance (les deux chiffres suivants) ;
- Lieu de naissance (les cinq chiffres ou caractères suivants - 2 chiffres 2 du code du

département de naissance, suivis de 3 chiffres du code commune officiel de l’Insee 3) ;
- Numéro d’ordre permettant de distinguer les personnes nées au même lieu à la même

période (les 3 chiffres suivants).
Les deux derniers chiffres, compris entre 01 et 97, permettent de déterminer la clé, appelée
aussi "clé de contrôle", qui permettra de contrôler l’exactitude du numéro de sécurité sociale.

Pour obtenir cette clé, on détermine tout d’abord, le reste de la division par 97 du nombre
formé par les 13 premiers chiffres. La clé correspond au résultat de ce nombre retranché de
97.

Exemple : soit le numéro de sécurité sociale à 13 chiffres : "2 91 01 75 018 002". Le reste de
la division de 2910175018002 par 97 est égal à 29. La clé est constituée du résultat : 97-29
= 68. Le numéro de sécurité sociale complet est donc : "2 91 01 75 018 002 68".

Dans cette partie, le numéro de sécurité sociale de 13 chiffres est une chaîne de carac-
tères composée uniquement de chiffres avec des espaces de séparation entre les différents
éléments constituant ce numéro. On ne prendra pas en compte le cas de la Corse.

Ne pas oublier qu’il est toujours possible de transformer un nombre entier en une chaîne de
caractères composées de chiffres (fonction str) et réciproquement (fonction int), (annexe 3).

Q1. Écrire la fonction num_secu qui, à partir de la chaîne de caractères d’un numéro de
sécurité sociale, donne le numéro sous la forme d’un entier. Le programme devra
parcourir la chaîne de caractères représentant le numéro de sécurité sociale en sup-
primant les caractères d’espacement, puis la transformer en un nombre entier. Cette
fonction a un paramètre de type string et retourne une valeur de type int.

1. Un QR code (Quick Response code) désigne un type de code-barres en deux dimensions, lequel se
compose de modules noirs disposés dans un carré à fond blanc (voir figure 1).

2. Pour simplifier le problème, nous supposons que les deux départements corses 2A et 2B sont représen-
tés par le code 20 comme avant 1976.

3. Institut national de la statistique et des études économiques.

2/14

Gestion de Tests dans une entreprise

Une entreprise d’e-commerce vend des meubles tous identifiés par une référence et par
un QR code 1. Tous les clients sont identifiés par leur numéro de sécurité sociale. Tous les
achats s’effectuent à l’aide d’un numéro de carte de crédit. Cette entreprise met en œuvre
différents tests afin d’éviter les erreurs de numéros de sécurité sociale, de numéros de carte
de crédit ou de QR codes.

Partie I - Tests de code de sécurité sociale

En France, le numéro de sécurité sociale correspond au numéro d’inscription au répertoire
national d’identification des personnes physiques (RNIPP). Il est formé du numéro d’inscrip-
tion (NIR) à 13 chiffres et d’une clé de contrôle à 2 chiffres. Le NIR, créé à partir de l’état
civil, est composé de la façon suivante :

- Sexe (1er chiffre) ;
- Année de naissance (les deux chiffres suivants) ;
- Mois de naissance (les deux chiffres suivants) ;
- Lieu de naissance (les cinq chiffres ou caractères suivants - 2 chiffres 2 du code du

département de naissance, suivis de 3 chiffres du code commune officiel de l’Insee 3) ;
- Numéro d’ordre permettant de distinguer les personnes nées au même lieu à la même

période (les 3 chiffres suivants).
Les deux derniers chiffres, compris entre 01 et 97, permettent de déterminer la clé, appelée
aussi "clé de contrôle", qui permettra de contrôler l’exactitude du numéro de sécurité sociale.

Pour obtenir cette clé, on détermine tout d’abord, le reste de la division par 97 du nombre
formé par les 13 premiers chiffres. La clé correspond au résultat de ce nombre retranché de
97.

Exemple : soit le numéro de sécurité sociale à 13 chiffres : "2 91 01 75 018 002". Le reste de
la division de 2910175018002 par 97 est égal à 29. La clé est constituée du résultat : 97-29
= 68. Le numéro de sécurité sociale complet est donc : "2 91 01 75 018 002 68".

Dans cette partie, le numéro de sécurité sociale de 13 chiffres est une chaîne de carac-
tères composée uniquement de chiffres avec des espaces de séparation entre les différents
éléments constituant ce numéro. On ne prendra pas en compte le cas de la Corse.

Ne pas oublier qu’il est toujours possible de transformer un nombre entier en une chaîne de
caractères composées de chiffres (fonction str) et réciproquement (fonction int), (annexe 3).

Q1. Écrire la fonction num_secu qui, à partir de la chaîne de caractères d’un numéro de
sécurité sociale, donne le numéro sous la forme d’un entier. Le programme devra
parcourir la chaîne de caractères représentant le numéro de sécurité sociale en sup-
primant les caractères d’espacement, puis la transformer en un nombre entier. Cette
fonction a un paramètre de type string et retourne une valeur de type int.

1. Un QR code (Quick Response code) désigne un type de code-barres en deux dimensions, lequel se
compose de modules noirs disposés dans un carré à fond blanc (voir figure 1).

2. Pour simplifier le problème, nous supposons que les deux départements corses 2A et 2B sont représen-
tés par le code 20 comme avant 1976.

3. Institut national de la statistique et des études économiques.

2/14

Exemple :
>>> num_secu("2 91 01 75 018 002")
2910175018002

Q2. Écrire la fonction clef qui détermine la valeur de la clé d’un numéro de sécurité sociale.
Cette fonction a un paramètre de type int et retourne un élément de type int.

Exemple :
>>>clef(2910175018002)
68

Q3. Écrire la fonction num_secu_complet qui détermine le numéro complet de sécurité
sociale. Cette fonction a un paramètre de type int et retourne un élément de type int.

Exemple :
>>>num_secu_complet(2910175018002)
291017501800268

Q4. Écrire la fonction test_num_secu qui détermine si un numéro de sécurité sociale est
correct. Cette fonction a un paramètre de type string et retourne un élément de type
bool.

Exemples :
>>>test_num_secu(’2 91 01 75 018 002 68’)
True
>>>test_num_secu(’2 91 01 75 018 002 93’)
False

Partie II - Test de numéro de carte de crédit

Pour savoir si un numéro de carte de crédit est valide, on utilise très souvent l’algorithme
de Luhn 4. Comme pour le numéro de sécurité sociale, il y a une clé appelée somme de
contrôle (checksum en anglais) qui fait partie du numéro d’une carte de crédit. Ce numéro
est un entier composé de 16 chiffres. Le dernier chiffre est la clé qui permet de contrôler
l’exactitude du numéro.

Le principe de l’algorithme de Luhn est le suivant. On commence toujours par le chiffre se
trouvant le plus à droite. Ce chiffre sera le premier élément de la liste dites des "indices
impairs". Puis on complète cette liste en prenant un chiffre sur deux du numéro de carte
bancaire, toujours en le lisant de la droite vers la gauche.

Pour la liste des chiffres "d’indices pairs", on commence par le deuxième chiffre le plus à
droite du numéro de la carte de crédit, on se déplace de la droite vers la gauche comme pour
la liste précédente et on construit la liste, en prenant un chiffre sur deux. Pour les nombres
de cette liste des indices pairs, on double tous les chiffres. Si un nombre est supérieur à
9, on réalise la somme des deux chiffres qui le composent (exemple si on obtient 16, on
additionne 1 et 6 pour avoir 7). Par conséquent, tous les nombres des deux listes sont

4. L’algorithme de Luhn, ou code de Luhn, ou encore formule de Luhn est aussi connu comme l’algorithme
"modulo 10".

3/14

composés uniquement de chiffres compris entre 0 et 9. On calcule alors la somme totale
des chiffres de ces deux listes. Si cette somme est un multiple de 10, alors le numéro de la
carte de crédit est valide.

Exemple : soit 4762 un nombre (on se limite à 4 chiffres mais le raisonnement est identique
pour un nombre à 16 chiffres). Appliquons-lui la formule de Luhn. On commence par le
chiffre 2, celui se trouvant le plus à droite. Le nombre 4762 se transforme en deux listes
correspondant aux indices impairs et pairs soit [2, 7] et [6, 4]. Puis en deux autres listes,
la liste des indices impairs inchangés [2, 7] et la liste des indices pairs doublés [12, 8].
La somme des éléments de ces deux listes est égale à 20 car la liste des indices pairs
[12, 8] se réduit en la liste [3, 8] du fait de la sommation des chiffres constituant le nombre
12. La somme des éléments des deux listes obtenues [2, 7] et [3, 8] est bien égale à 20. Ce
résultat est un multiple de 10, le nombre 4762 est donc correct au sens de l’algorithme de
Luhn.

On aurait pu raisonner sur une seule liste et obtenir le même résultat. 4762 se transforme
en la liste [8, 7, 12, 2] puis en la liste [8, 7, 3, 2] après réduction. La somme des chiffres
8+7+3+2 est égale à 20.

Q5. Écrire une fonction num_en_liste qui transforme un nombre entier en une liste de
chiffres. Cette fonction a un paramètre de type int et retourne un élément de type list.

Exemple :
num_en_liste(4532015112830465)
[4, 5, 3, 2, 0, 1, 5, 1, 1, 2, 8, 3, 0, 4, 6, 5]

Q6. Écrire une fonction tuple_pairs_impairs qui détermine un tuple représentant la liste
des chiffres d’indice pair et la liste des chiffres d’indice impair d’un numéro de carte
de crédit. Le chiffre le plus à droite de ce numéro est considéré comme le premier
chiffre d’indice impair. Cette fonction a un paramètre de type int et retourne un tuple
composé de deux éléments de type list.

Exemple :
tuple_pairs_impairs(4532015112830465)
([6, 0, 8, 1, 5, 0, 3, 4], [5, 4, 3, 2, 1, 1, 2, 5])

Q7. Écrire une fonction cree_dico qui, à partir d’un numéro de carte de crédit, crée un
dictionnaire avec deux clés nommées ’pair ’ et ’impair ’. La clé ’pair ’ est constituée de
la liste des nombres d’indice pairs du numéro de la carte de crédit et la clé ’impair ’ de
la liste des nombres d’indice impairs.

Exemple :
>>> cree_dico(4532015112830465)
{’pair’: [6, 0, 8, 1, 5, 0, 3, 4], ’impair’: [5, 4, 3, 2, 1, 1, 2, 5]}

Q8. Écrire une fonction traitement_nb_pairs qui multiplie par 2 tous les chiffres de la liste
associée à la clé ’pair ’. Si un chiffre est supérieur à 9, il faut réaliser la somme des
deux chiffres qui le composent. Cette fonction a un paramètre de type dictionnaire et
retourne un dictionnaire.
Remarque : la partie correspondant à la clé ’impair ’ n’est pas modifiée par le traite-
ment de cette fonction.

4/14

Exemple :
>>> un_dico=cree_dico(4532015112830465)
>>> traitement_nb_pairs(un_dico)
{’pair’: [3, 0, 7, 2, 1, 0, 6, 8], ’impair’: [5, 4, 3, 2, 1, 1, 2, 5]}

Q9. Écrire une fonction test_num_carte_credit qui utilise l’algorithme de Luhn pour savoir
si un numéro de carte de crédit est correct. Vous devez utiliser la fonction traite-
ment_nb_pair pour sa réalisation. Cette fonction a un paramètre de type int et re-
tourne une valeur de type bool.

Exemple :
>>> test_num_carte_credit(4532015112830465)
True

Partie III - Tests de QR code

Les QR codes ont été inventés en 1994, par Masahiro Hara, un ingénieur de l’entreprise
japonaise Denso-Wave. Cette invention a permis d’assurer le référencement des pièces dé-
tachées dans les usines Toyota. Les QR codes sont constitués essentiellement de pixels
noirs et blancs codés dans le format RGB (annexe 1). Cependant, il existe des QR codes
bicolores mais avec un jeu de couleurs très contrastées. Les QR codes peuvent être partiel-
lement raturés ou déchirés car un de leurs avantages est qu’ils peuvent accepter un certain
taux d’erreurs, entre 7 % et 30 % suivant la version du QR code. Il existe 40 versions
qui peuvent stocker entre 10 et 7089 caractères numériques. Nous nous restreignons ici
à la version 1 qui utilise une matrice de 21*21 pixels pour sa représentation.

En fait sur la figure 1 , l ’image d u Q R c ode c orrespond à u ne m atrice d e 4 20*420 pixels
(programme P1), alors que la matrice initiale d’un QR code de version 1 ne compte que
21*21 pixels. Pour qu’un QR code soit plus visible, on a créé la notion de module qui corres-
pond à un bloc de pixels identiques pour représenter un pixel du QR code initial. C’est un mé-
canisme de zoom pour que le QR code soit visible. Un module a une taille de 20*20 pixels.
Chaque module représente globalement une valeur binaire : 1 pour le blanc et 0 pour le
noir. Attention : ne pas confondre la taille d’un QR code (ici, 420*420) avec la taille d’un
module (ici, 20*20) [la valeur 420 correspond à 21*20]. Enfin, un QR code est constitué de
différents éléments : des motifs de positionnement (3 blocs de 7×7 pixels), des motifs de
synchronisation (6 zones blanches de séparation et 11 pixels de couleur blanc et noir), des
motifs de format d’information et une zone comprenant les données utilisateurs avec des
motifs de correction (figure 2).

Dans la suite de cette partie, nous n’utiliserons que les QR codes de version 1.

5/14

composés uniquement de chiffres compris entre 0 et 9. On calcule alors la somme totale
des chiffres de ces deux listes. Si cette somme est un multiple de 10, alors le numéro de la
carte de crédit est valide.

Exemple : soit 4762 un nombre (on se limite à 4 chiffres mais le raisonnement est identique
pour un nombre à 16 chiffres). Appliquons-lui la formule de Luhn. On commence par le
chiffre 2, celui se trouvant le plus à droite. Le nombre 4762 se transforme en deux listes
correspondant aux indices impairs et pairs soit [2, 7] et [6, 4]. Puis en deux autres listes,
la liste des indices impairs inchangés [2, 7] et la liste des indices pairs doublés [12, 8].
La somme des éléments de ces deux listes est égale à 20 car la liste des indices pairs
[12, 8] se réduit en la liste [3, 8] du fait de la sommation des chiffres constituant le nombre
12. La somme des éléments des deux listes obtenues [2, 7] et [3, 8] est bien égale à 20. Ce
résultat est un multiple de 10, le nombre 4762 est donc correct au sens de l’algorithme de
Luhn.

On aurait pu raisonner sur une seule liste et obtenir le même résultat. 4762 se transforme
en la liste [8, 7, 12, 2] puis en la liste [8, 7, 3, 2] après réduction. La somme des chiffres
8+7+3+2 est égale à 20.

Q5. Écrire une fonction num_en_liste qui transforme un nombre entier en une liste de
chiffres. Cette fonction a un paramètre de type int et retourne un élément de type list.

Exemple :
num_en_liste(4532015112830465)
[4, 5, 3, 2, 0, 1, 5, 1, 1, 2, 8, 3, 0, 4, 6, 5]

Q6. Écrire une fonction tuple_pairs_impairs qui détermine un tuple représentant la liste
des chiffres d’indice pair et la liste des chiffres d’indice impair d’un numéro de carte
de crédit. Le chiffre le plus à droite de ce numéro est considéré comme le premier
chiffre d’indice impair. Cette fonction a un paramètre de type int et retourne un tuple
composé de deux éléments de type list.

Exemple :
tuple_pairs_impairs(4532015112830465)
([6, 0, 8, 1, 5, 0, 3, 4], [5, 4, 3, 2, 1, 1, 2, 5])

Q7. Écrire une fonction cree_dico qui, à partir d’un numéro de carte de crédit, crée un
dictionnaire avec deux clés nommées ’pair ’ et ’impair ’. La clé ’pair ’ est constituée de
la liste des nombres d’indice pairs du numéro de la carte de crédit et la clé ’impair ’ de
la liste des nombres d’indice impairs.

Exemple :
>>> cree_dico(4532015112830465)
{’pair’: [6, 0, 8, 1, 5, 0, 3, 4], ’impair’: [5, 4, 3, 2, 1, 1, 2, 5]}

Q8. Écrire une fonction traitement_nb_pairs qui multiplie par 2 tous les chiffres de la liste
associée à la clé ’pair ’. Si un chiffre est supérieur à 9, il faut réaliser la somme des
deux chiffres qui le composent. Cette fonction a un paramètre de type dictionnaire et
retourne un dictionnaire.
Remarque : la partie correspondant à la clé ’impair ’ n’est pas modifiée par le traite-
ment de cette fonction.

4/14

Figure 1 - QR code version 1

Figure 2 - Organisation d’un QR code

Q10. Écrire une fonction init qui réalise l’initialisation d’une liste de dimension n où chaque
élément est également une liste de dimension n. Cette liste de listes représente ainsi
une matrice de taille n x n . Cette fonction a un paramètre de type int et retourne une
liste de listes qui représente un QR code initialisé avec des valeurs 0.

Exemple :
>>> init(4)
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

6/14

On donne le programme P1 suivant : (annexe 1 pour la description du module Gestion_QRCode).

1 from Gestion_QRCode import *
2
3 img=open("./Image/ccinp.png")..........# Lecture de l'image
4 img.show()...# Affichage de l'image (figure 1)
5 largeur,hauteur=img.size...................# La taille de l'image (largeur, hauteur)
6 position = (largeur,hauteur)# Résultat : (420, 420)

P1

Q11. Écrire la fonction charge_valeur qui a pour but de réduire les données de l’image
dans une liste de listes de dimension 21*21. Attention : l’image correspondant à un
QR code représente une liste de listes de dimension 420*420 dont on veut réduire
tous les blocs constitués de 20*20 pixels à un seul pixel pour avoir à partir de l’image
une liste de listes de dimension 21*21. Ne pas oublier que tous les pixels d’un bloc
sont identiques. Cette fonction a un paramètre de type image et retourne une liste de
listes de triplets (couleur des pixels).
Indication : utiliser la fonction getpixel du module Python Gestion_QRCode (voir sa
définition dans l’annexe 1).

On prend comme bloc de positionnement celui représenté dans la figure 3.

Figure 3 - Bloc de positionnement

Q12. Écrire une fonction cree_bloc qui crée un bloc de positionnement. Cette fonction, qui
n’a pas de paramètre, retourne une liste de listes de dimension 7*7.

Exemple :
>>> cree_bloc()

[[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]]

7/14

Figure 1 - QR code version 1

Figure 2 - Organisation d’un QR code

Q10. Écrire une fonction init qui réalise l’initialisation d’une liste de dimension n où chaque
élément est également une liste de dimension n. Cette liste de listes représente ainsi
une matrice de taille n x n . Cette fonction a un paramètre de type int et retourne une
liste de listes qui représente un QR code initialisé avec des valeurs 0.

Exemple :
>>> init(4)
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

6/14

Q13. Écrire une fonction test_bloc qui teste si un bloc de positionnement (rappel : il y en
a trois) est bien représenté pixel par pixel dans un QR code. Cette fonction a 3 pa-
ramètres : les coordonnées x et y donnant la position du début d’un bloc de position-
nement d’un QR code (toujours les coordonnées du pixel le plus haut et à gauche)
et la liste de listes de dimension 21*21 associée au même QR code. Cette fonction
retourne un booléen.
Remarque : on cherche à tester si un bloc de positionnement d’un QR code n’a pas
subi une modification. Les coordonnées du pixel le plus haut et à gauche pour le
premier bloc sont égales à (0,0), pour le second bloc à (0,14) et pour le troisième bloc
à (14,0).

Exemples :
>>> test_bloc(0,0, mat1)
True
>>> test_bloc(1,3, mat1)
False

Q14. On considère qu’un QR code est bien positionné lorsque ses 3 blocs de contrôle sont
effectivement présents en haut à gauche, en haut à droite et en bas à gauche (comme
sur la figure 1). Écrire une fonction test_QRcode qui permet de tester si un QR code
est bien positionné. Cette fonction a pour paramètre une matrice de dimension 21*21
et retourne un booléen.

Exemple :
>>> test_QRcode(mat1)
True

Lors de la lecture d’un QR code par un appareil dédié (scanner, caméra ou autre) le pro-
cessus de lecture permet de placer un QR code dans l’une des quatre positions possibles,
comme illustré dans la figure 4. Cela dépend bien évidemment de l’orientation du QR code
lors de sa lecture.

On se propose de faire tourner un QR Code par rotation successive de 90° afin qu’il puisse
se trouver dans la bonne position comme celui de la figure 1.

Figure 4 - Les 4 positions possibles lors de la lecture d’un QR code

Q15.

Écrire une procédure 5 tourHoraire qui réalise une rotation de 90°, dans le sens des aiguilles
d’une montre, des 4 éléments du QR code. La fonction a trois paramètres, les coordonnées
x et y d’un élément de la liste de listes et une liste de listes de dimension 21*21.

5. Une procédure est une fonction qui retourne la valeur None mais cette valeur n’est pas destinée à être
utilisée ou à être capturée.

8/14

Q13. Écrire une fonction test_bloc qui teste si un bloc de positionnement (rappel : il y en
a trois) est bien représenté pixel par pixel dans un QR code. Cette fonction a 3 pa-
ramètres : les coordonnées x et y donnant la position du début d’un bloc de position-
nement d’un QR code (toujours les coordonnées du pixel le plus haut et à gauche)
et la liste de listes de dimension 21*21 associée au même QR code. Cette fonction
retourne un booléen.
Remarque : on cherche à tester si un bloc de positionnement d’un QR code n’a pas
subi une modification. Les coordonnées du pixel le plus haut et à gauche pour le
premier bloc sont égales à (0,0), pour le second bloc à (0,14) et pour le troisième bloc
à (14,0).

Exemples :
>>> test_bloc(0,0, mat1)
True
>>> test_bloc(1,3, mat1)
False

Q14. On considère qu’un QR code est bien positionné lorsque ses 3 blocs de contrôle sont
effectivement présents en haut à gauche, en haut à droite et en bas à gauche (comme
sur la figure 1). Écrire une fonction test_QRcode qui permet de tester si un QR code
est bien positionné. Cette fonction a pour paramètre une matrice de dimension 21*21
et retourne un booléen.

Exemple :
>>> test_QRcode(mat1)
True

Lors de la lecture d’un QR code par un appareil dédié (scanner, caméra ou autre) le pro-
cessus de lecture permet de placer un QR code dans l’une des quatre positions possibles,
comme illustré dans la figure 4. Cela dépend bien évidemment de l’orientation du QR code
lors de sa lecture.

On se propose de faire tourner un QR Code par rotation successive de 90° afin qu’il puisse
se trouver dans la bonne position comme celui de la figure 1.

Figure 4 - Les 4 positions possibles lors de la lecture d’un QR code

Q15.

Écrire une procédure 5 tourHoraire qui réalise une rotation de 90°, dans le sens des aiguilles
d’une montre, des 4 éléments du QR code. La fonction a trois paramètres, les coordonnées
x et y d’un élément de la liste de listes et une liste de listes de dimension 21*21.

5. Une procédure est une fonction qui retourne la valeur None mais cette valeur n’est pas destinée à être
utilisée ou à être capturée.

8/14

Exemple :
>>> tourHoraire(0,1, mat1)

On se limite à un exemple d’une liste de listes de dimension 4*4 pour expliquer le fonction-
nement, mais ce serait la même chose pour une liste de listes de dimension 21*21. Si on
prend les 4 éléments (b, h, o, i) de la liste de listes table 1 de la figure 5, b doit se trouver,
après une rotation de 90°, à la place de l’élément h, l’élément h à la place de l’élément o,
l’élément o à la place de l’élément i et l’élément i à la place de l’élément b. Le résultat de la
transformation est illustré dans la table 2 de la figure 5. Le mécanisme doit s’exécuter de la
même manière sur les autres éléments de la table 2. Le résultat de la transformation finale
est illustré dans la table 3 de la figure 5.

Figure 5 - Simple rotation

Q16. Écrire la procédure rotationHoraire qui réalise la rotation de 90° d’un QR code. Cette
procédure a un seul paramètre, une liste de listes de dimension 21*21.
Par exemple, dans la figure 4 cette fonction réalisera la première rotation de 90° du
QR code.

Q17. Connaissant les 4 positions possibles lors de la lecture d’un QR code par un appareil
dédié, écrire la procédure QRcode_posi qui positionne correctement un QR code.
Cette procédure a un seul paramètre, une liste de listes de dimension 21*21.
Indication : utiliser les fonctions rotationHoraire et test_QRcode .

Partie IV - Gestion réseau

Cette entreprise possède de nombreux magasins dans le monde entier. Des serveurs ont
été placés dans tous les pays et sont nommés par des lettres.

Les différentes informations envoyées dans le réseau circulent de serveur en serveur. Les
serveurs sont représentés par des nœuds, figure 6, et plusieurs routes sont possibles entre
chacun d’eux. Le poids associé aux arêtes correspond à la valeur du temps de transmission
entre deux nœuds du graphe multiplié par un facteur correctif. L’entreprise souhaite optimiser
les temps de transmission entre deux nœuds du réseau en utilisant l’algorithme de Dijkstra.

L’algorithme de Dijkstra permet de déterminer les plus courts chemins à partir d’un sommet
unique s ∈ S vers les autres sommets d’un graphe pondéré orienté ou non G = (S , A), avec
S un ensemble de sommets et A un ensemble d’arêtes qui sont des paires de sommets.
Toutes les arêtes de G sont de poids positif.

9/14

