PST* 2025-2026

A rendre le jeudi 22 janvier 2026

Devoir & la maison n°8 de Mathématiques

noir exo 1 et exo 2 pour réviser, aprés plutot facile, a faire par tous
bleu un peu plus dur, (ou complément)

rouge assez difficile
vert difficile (ou 5/2 uniquement)

Code couleur :

Exercice 0

bt

Diagonaliser A = (—6

_3 4) et calculer A" en fonction de n pour n € Z

Exercice 1 : (e3a 2020 PC)

1 a

Soit a € R et la matrice M, = [0 0
0 1

1

5 O = O

1) Pour quelles valeurs du réel a la matrice M, est-elle diagonalisable ?

2) Pour quelles valeurs du réel a la matrice M, est-elle inversible ?

3) Montrer que lorsqu’elle n’est pas diagonalisable, M, est semblable & la matrice T =

O = O
—_ = O

Exercice 2 : (oral ccINP PSI 2025)

Soit F =R? et u € L(F).
On note B la base canonique de E. On note A la matrice de u relativement a B.
On note u* 'endomorphisme admettant A7 comme matrice relativement & B.

1) Montrer que : V(z,y) € E? |, <u(z),y >=< z,u*(y) >

2) Montrer que si un sous-espace vectoriel I’ est stable par u, F'= est stable par u*.

1 -3 3
3)Soit A= [0 1 0
0 2 2

3) a) A et AT sont-elle diagonalisable ?

3) b) Trouver les sous-espaces vectoriel stable par .



PROBLEME 1 : probléme 2 de ccINP PSI 2025
Inégalité et matrices de Hadamard

L’objectif de ce probléme est d’établir 'inégalité de Hadamard reliant le déterminant d’une matrice et
le produit des normes euclidiennes de ses vecteurs colonnes. Nous étudierons ensuite quelques propriétés
de la famille des matrices de Hadamard qui réalisent 1’égalité dans cette inégalité.

Dans tout le probléme, n désigne un entier supérieur ou égal & 1 . On désigne par M, (R) I'espace
vectoriel des matrices carrées de taille n a coefficients réels et M,, ; (R) I'espace vectoriel des matrices
colonnes a n lignes et a coefficients réels.

Pour tout (X,Y) € M,,1(R)? on note (X,Y) = XY le produit scalaire canonique de X et Y.

Etant donné n nombres réels oy, . . . , a,,, la matrice diagonale, dont les coefficients diagonaux sont formés
par les réels aq, ..., a,, est désignée par diag (aq, ..., ay,).

On note S;F(R) l'ensemble des matrices symétriques positives a coefficients réels et ST+ (R) 'ensemble
des matrices symétriques définies positives a coeflicients réels.

Partie I - Inégalité arithmético-géométrique

Soit (A1,...,An) € (RT)". On pose A =L15" X et G=([], /\i)%. Dans cette partie, nous allons

montrer que G < A, avec égalité si et seulement si \; = Ay = --- = \,.
On remarque que dans le cas ou Aq,...,\, sont tous nuls, 'égalité est immédiate. On suppose donc
dans la partie I que les A, ..., A, sont non tous nuls.

Q21. Montrer que pour tout x € R,exp(z) > 1 + z, avec égalité si et seulement si z = 0.

Q22. Montrer que pour tout i € [1;n] :

Q23. En déduire que G < A.
Q24. Montrer que G = A si et seulement si Ay = Ay = -+ = \,,.

Partie II - Inégalité de Hadamard

L’objectif de cette partie est de démontrer que pour toute matrice M = (m; ;) € M,(R) :

2

| det(M)] < (H (Z m§7j>> . (3)

j:
Cette inégalité est appelée inégalité de Hadamard.
Dans les questions Q25 a Q30, on considére S = (s, ;) € ST (R).

Q25. Justifier que S est diagonalisable dans M, (R) et rappeler la relation qui lie det(.S) et les valeurs
propres de S, puis Tr(S) et les valeurs propres de S.
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Q26. En déduire que :

(det(S))% < %Tr(S).

Q27. Montrer que (det(S))w = LTr(S) si et seulement s'il existe A > 0, tel que S = \J,.

Q28. Montrer que pour tout j € [1;n],s;; > 0.
On considére la matrice diagonale D = diag (, RTINS /Sn,n)-

Q29. Montrer que la matrice D™1SD™! a pour coefficient général (%) avec (i,7) € [1;n|*>. En

déduire que D~1SD! est symétrique définie positive et que ses éléments diagonaux valent 1.
Q30. En utilisant la question Q29, montrer que :

n

det(S) é H SjJ',

Jj=1

avec égalité si et seulement si S est diagonale.
Q31. Soit M € M,,(R) une matrice inversible. Montrer que M "M € S (R).

Q32. Soit M € M, (R) une matrice qu’on ne suppose pas inversible. On note Cy,--- ,C, les colonnes
de M. Déduire des questions précédentes que I'inégalité (3) est valide pour M, avec égalité si
et seulement si les vecteurs colonnes (1, --- , (), sont orthogonaux deux & deux pour le produit
scalaire (-, ).

Q33. Soit M = (m; ;) € M,(R) telle que, pour tout (i,7) € [1;n]?, |m; ;| < 1. Montrer alors que :

| det(M)] < n2,

avec égalité si et seulement pour tout (i,7) € [1;n]?, |mi;| =1 et MTM = nl,.

Partie II1 - Matrices de Hadamard

Dans cette partie, nous étudions I’ensemble H,, des matrices de Hadamard de taille n défini par :

H, = {M € M,(R)/M"M = nl, et V(i,j) € [1;n]?, |m;;| = 1}.

1 1
1 -1
Notons H = {n € N*/H,, # 0}. L’ensemble H n’est pas connu actuellement. L'un des objectifs de cette
partie est de donner une condition nécessaire sur n pour que n € H.

On admet que si un ensemble H,, est non vide, alors il contient au moins une matrice de Hadamard
dont la premiére colonne et la premiére ligne sont constituées uniquement de 1 .
Soit n € H et soit M € H,,.

Par exemple, la matrice N = est un élément de Ho.



Q34. Montrer que M est inversible et déterminer M. A-t-on M~ € H,, ?

Q35. Montrer que la matrice définie par blocs < M

M M ) appartient a Hs,. En déduire que pour
tout p e N,2P € H.

On suppose désormais que n > 2 et que la premiére colonne et la premiére ligne de M ne sont
constituées que de 1 .
1

On note C1, - -+, C, les colonnes de la matrice M. On a en particulier C = X e M,1(R).

)

Q36. En considérant (C7, Cs), montrer que n est pair.

Q37. On note :

z = Card{i € [1;n],mi2=1et my3=1};

y = Card{i € [1;n],m;a =1et my3 =—1};
z = Card{i € [1;n],m;o = —1et m;z3=1};

t = Card{i € [1;n],mi2 = —1et my3 = —1}.

Exprimer (C}, Cy) , (Cy, C3) et (Cy, C3) en fonction de x,y, z et de t.
En déduire un systéme linéaire de 4 équations d’inconnues z,v, 2, t.
Q38. En déduire que n est un multiple de 4 .
Nous venons de démontrer que:

e si n est une puissance de 2 , alors n appartient a H;

e sin > 2 et n n’est pas un multiple de 4 , alors n n’appartient pas & H.

Hadamard a conjecturé que n € H si et seulement si n est un multiple de 4.
La question est encore ouverte aujourd’hui.

FIN



PROBLEME 2 : Mines-Ponts 2025 PSI-PC math I

Notations et définitions.

On note C le corps des nombres complexes, N ’ensemble des entiers naturels. Pour n € N*, M,, désigne
lalgébre des matrices carrées complexes de taille n et GL,, le groupe des matrices complexes inversibles
de taille n. On rappelle que deux matrices A et B de M,, sont semblables si

P GL,, A=P 'BP
Pour toute matrice A € M, le polynome caractéristique de A est défini par

xa =det (X1, —A).

Partie 1. Polyndémes réciproques.

Soit p € N*. Un polynéme P € C[X] de degré p est dit réciproque lorsqu’il satisfait 1’égalité

P(X) = XPP <%)

p
1. Soit P € C[X] de degré p. On écrit P = Zaka, ol ag, . ..a, sont des nombres complexes, et

k=0
a, 7 0. Montrer que P est réciproque si et seulement si pour tout entier k,0 < k < p, on a I’égalité

ar = Qp—k-

d
2. Soit P un polynéme de degré p écrit sous forme factorisée P = apH (X = X)™, ot Ag,..., \g
i=1
sont les racines complexes distinctes de P et my, ..., my leurs multiplicités.

Ecrire sous forme factorisée le polynéme X? P (%) et démontrer que si P est réciproque alors pour
tout entier 7,1 <17 < d, \; est non nul et /\i est racine de P avec la multiplicité m;.

3. Soit () un polynome de degré p. On dit que @) est antiréciproque si

Q(X) = —X7Q (%)

Montrer que si () est antiréciproque, 1 est une racine de () et qu’il existe un polynéme P constant
ou réciproque tel que @ = (X — 1)P.

Soit R un polynoéme non constant de C[X] ayant la propriété suivante : Toute racine a de R est
non nulle et % est racine de R de méme multiplicité que a.

4. Démontrer que le produit des racines de R, comptées avec multiplicités, ne peut prendre que les
valeurs lou — 1. On pourra remarquer que ’égalité a = é n’a lieu que pour a = lou — 1.

5. En déduire que R est réciproque ou antiréciproque.



Partie 2. Le cas diagonalisable.

Soit A une matrice appartenant a GL,,.

6.

Soit 2 un nombre réel non nul. Exprimer det (21, — A) en fonction dez, det A et det (11, — A™").

7. On suppose dans cette question que A est semblable & son inverse. Préciser les valeurs que peut

prendre le déterminant de A, et en déduire que x4 est soit réciproque, soit antiréciproque.

Soit B € M,, une matrice diagonalisable. On suppose que le polyndéme caractéristique de B est
réciproque ou antiréciproque. Démontrer que B est inversible et semblable a son inverse.

20 0 0
. 02 00 , . . .
Montrer que la matrice B = 00 ! 1 n’est pas semblable & son inverse (bien que son
2
0 00 %

[\

polynéme caractéristique (X — 2)? (X — %) soit réciproque). On pourra déterminer les espaces

propres de B et B~! pour la valeur propre 2 .

Ainsi, hors du cas diagonalisable, le polynome caractéristique ne suffit pas o caractériser les matrices
semblables a leur inverse. La suite du probléme se propose de caractériser ces matrices par une autre
méthode.

Partie 3. Produits de matrices de symétries.

On dit qu'un endomorphisme f d'un C -espace vectoriel E est une symétrie si fo f = Idg. On dit
qu’une matrice S € M,, est une matrice de symétries si S? = I,,.

10.

11.

12.

13.

Démontrer que si S; et Sy sont deux matrices de symétrie, la matrice produit A = 5155 est
inversible et semblable & son inverse.

Si une matrice A est un produit de deux matrices de symétries, en est-il de méme de toute matrice

semblable & A ?
Soit B et C deux matrices de GL,,. Soit A € My, la matrice définie par blocs suivante :

B 0,
1= (o ¢)

0, P
Sl:(@ on)

ou P, () sont deux éléments de GL,. Déterminer les conditions reliant B, C, P, pour que les
matrices S7 et S; = S1A soient des matrices de symétries.

Soit S; la matrice par blocs

En déduire que si C est semblable & B!, alors A est un produit de deux matrices de symétries.



Partie 4. La matrice J,()\).

14. Soit E un C-espace vectoriel de dimension n. Soit g un endomorphisme de E tel que ¢g" = 0 et
g™ 1 # 0. Démontrer qu’il existe une base de £ dans laquelle la matrice de g est la matrice N

ci-apres :
0 1 0 0
0 0 1
N = 0
: o1
0 ... ... 0

Autrement dit : N = (n; ;) avec n;; = 1si j =17+ 1 et n;; = 0 sinon.

1<i,j<n

15. Pour tout A € C non nul, on pose J,(A\) = A, + N. Démontrer que J,()\) est inversible et
déterminer en fonction de N et de A la matrice N’ telle que J,(A\)™' = 1, + N’

16. Calculer (N')" et en déduire que J,(A)~! est semblable a J, (3).
Pour tout polynéme P = P(X) € C,,_1[X] on pose

51(P) = P(=X)
s5(P) = P(1 - X)
g(P) = P(X +1) — P(X)

On définit ainsi trois endomorphismes de I'espace vectoriel C,,_1[X] (il n’est pas demandé de le
prouver).

17. Calculer s2, s2 et exprimer s; o s, en fonction de g et Idc, . ix1.
15 °2 n—1[X]

18. Soit P un polynéme non constant. Exprimer le degré du polynome g(P) en fonction du degré de
P.

19. Déduire des questions précédentes que la matrice J,(1) est un produit de deux matrices de
symétries.

On pourrait démontrer par le méme type de raisonnement, et on 'admet, que la matrice J,(—1)
est un produit de deux matrices de symétries.

Partie 5. Une caractérisation des matrices semblables & leur
inverse.

Soit A une matrice de GL,, semblable & son inverse. On admet le résultat suivant : A est semblable a
une matrice diagonale par blocs de la forme

Ty (A1) 0 e 0
A = 0 JnQ <>‘2) . '
: - 0

0 e 0 Jn (A)

ou les \; sont les valeurs propres de A (pas nécessairement distinctes) et r ainsi que les n;, 1 < i < r,
des entiers naturels non nuls.
De plus la matrice A’ est unique a 'ordre prés des blocs.
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0 ()
20. D Démontrer que A~! est semblable & 2
. . 0

0 e 0 Jn, (%)
21. En utilisant les résultats établis dans les parties précédentes, démontrer que A est un produit de
deux matrices de symétries.



