
PSI* 2025-2026

A rendre le jeudi 22 janvier 2026

Devoir à la maison n°8 de Mathématiques

Code couleur :

noir exo 1 et exo 2 pour réviser, après plutôt facile, à faire par tous
bleu un peu plus dur, (où complément)

rouge assez di�cile
vert di�cile (ou 5/2 uniquement)

Exercice 0

Diagonaliser A =

(
5 3
−6 −4

)
et calculer An en fonction de n pour n ∈ Z

Exercice 1 : (e3a 2020 PC)

Soit a ∈ R et la matrice Ma =

1 a 0
0 0 1
0 1 0

.

1) Pour quelles valeurs du réel a la matrice Ma est-elle diagonalisable ?

2) Pour quelles valeurs du réel a la matrice Ma est-elle inversible ?

3) Montrer que lorsqu'elle n'est pas diagonalisable, Ma est semblable à la matrice T =

−1 0 0
0 1 1
0 0 1


Exercice 2 : (oral ccINP PSI 2025)

Soit E = R3 et u ∈ L(E).
On note B la base canonique de E. On note A la matrice de u relativement à B.
On note u∗ l'endomorphisme admettant AT comme matrice relativement à B.

1) Montrer que : ∀(x, y) ∈ E2 , < u(x), y >=< x, u∗(y) >

2) Montrer que si un sous-espace vectoriel F est stable par u, F⊥ est stable par u∗.

3) Soit A =

1 −3 3
0 1 0
0 2 2


3) a) A et AT sont-elle diagonalisable ?

3) b) Trouver les sous-espaces vectoriel stable par u.
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PROBLÈME 1 : problème 2 de ccINP PSI 2025

Inégalité et matrices de Hadamard

L'objectif de ce problème est d'établir l'inégalité de Hadamard reliant le déterminant d'une matrice et
le produit des normes euclidiennes de ses vecteurs colonnes. Nous étudierons ensuite quelques propriétés
de la famille des matrices de Hadamard qui réalisent l'égalité dans cette inégalité.

Dans tout le problème, n désigne un entier supérieur ou égal à 1 . On désigne par Mn(R) l'espace
vectoriel des matrices carrées de taille n à coe�cients réels et Mn,1(R) l'espace vectoriel des matrices
colonnes à n lignes et à coe�cients réels.
Pour tout (X, Y ) ∈ Mn,1(R)2, on note ⟨X, Y ⟩ = X⊤Y le produit scalaire canonique de X et Y .
Étant donné n nombres réels α1, . . . , αn, la matrice diagonale, dont les coe�cients diagonaux sont formés
par les réels α1, . . . , αn, est désignée par diag (α1, . . . , αn).
On note S+

n (R) l'ensemble des matrices symétriques positives à coe�cients réels et S++
n (R) l'ensemble

des matrices symétriques dé�nies positives à coe�cients réels.

Partie I - Inégalité arithmético-géométrique

Soit (λ1, . . . , λn) ∈ (R+)
n. On pose A = 1

n

∑n
i=1 λi et G = (

∏n
i=1 λi)

1
n . Dans cette partie, nous allons

montrer que G ⩽ A, avec égalité si et seulement si λ1 = λ2 = · · · = λn.
On remarque que dans le cas où λ1, . . . , λn sont tous nuls, l'égalité est immédiate. On suppose donc
dans la partie I que les λ1, . . . , λn sont non tous nuls.

Q21. Montrer que pour tout x ∈ R, exp(x) ⩾ 1 + x, avec égalité si et seulement si x = 0.

Q22. Montrer que pour tout i ∈ J1;nK :

λi

A
⩽ exp

(
λi

A
− 1

)
.

Q23. En déduire que G ⩽ A.

Q24. Montrer que G = A si et seulement si λ1 = λ2 = · · · = λn.

Partie II - Inégalité de Hadamard

L'objectif de cette partie est de démontrer que pour toute matrice M = (mi,j) ∈ Mn(R) :

| det(M)| ⩽

(
n∏

j=1

(
n∑

i=1

m2
i,j

)) 1
2

. (3)

Cette inégalité est appelée inégalité de Hadamard.
Dans les questions Q25 à Q30, on considère S = (si,j) ∈ S++

n (R).

Q25. Justi�er que S est diagonalisable dans Mn(R) et rappeler la relation qui lie det(S) et les valeurs
propres de S, puis Tr(S) et les valeurs propres de S.
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Q26. En déduire que :

(det(S))
1
n ⩽

1

n
Tr(S).

Q27. Montrer que (det(S))
1
n = 1

n
Tr(S) si et seulement s'il existe λ > 0, tel que S = λIn.

Q28. Montrer que pour tout j ∈ J1;nK, sj,j > 0.

On considère la matrice diagonale D = diag
(√

s1,1, . . . ,
√
sn,n
)
.

Q29. Montrer que la matrice D−1SD−1 a pour coe�cient général
(

si,j√
si,isj,j

)
avec (i, j) ∈ J1;n∥2. En

déduire que D−1SD−1 est symétrique dé�nie positive et que ses éléments diagonaux valent 1.

Q30. En utilisant la question Q29, montrer que :

det(S) ⩽
n∏

j=1

sj,j,

avec égalité si et seulement si S est diagonale.

Q31. Soit M ∈ Mn(R) une matrice inversible. Montrer que M⊤M ∈ S++
n (R).

Q32. Soit M ∈ Mn(R) une matrice qu'on ne suppose pas inversible. On note C1, · · · , Cn les colonnes
de M . Déduire des questions précédentes que l'inégalité (3) est valide pour M , avec égalité si
et seulement si les vecteurs colonnes C1, · · · , Cn sont orthogonaux deux à deux pour le produit
scalaire ⟨·, ·⟩.

Q33. Soit M = (mi,j) ∈ Mn(R) telle que, pour tout (i, j) ∈ J1;nK2, |mi,j| ⩽ 1. Montrer alors que :

| det(M)| ⩽ n
n
2 ,

avec égalité si et seulement pour tout (i, j) ∈ J1;nK2, |mi,j| = 1 et M⊤M = nIn.

Partie III - Matrices de Hadamard

Dans cette partie, nous étudions l'ensemble Hn des matrices de Hadamard de taille n dé�ni par :

Hn =
{
M ∈ Mn(R)/M⊤M = nIn et ∀(i, j) ∈ J1;nK2, |mi,j| = 1

}
.

Par exemple, la matrice N =

(
1 1
1 −1

)
est un élément de H2.

Notons H = {n ∈ N∗/Hn ̸= ∅}. L'ensemble H n'est pas connu actuellement. L'un des objectifs de cette
partie est de donner une condition nécessaire sur n pour que n ∈ H.

On admet que si un ensemble Hn est non vide, alors il contient au moins une matrice de Hadamard
dont la première colonne et la première ligne sont constituées uniquement de 1 .
Soit n ∈ H et soit M ∈ Hn.
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Q34. Montrer que M est inversible et déterminer M−1. A-t-on M−1 ∈ Hn ?

Q35. Montrer que la matrice dé�nie par blocs

(
M M
M −M

)
appartient à H2n. En déduire que pour

tout p ∈ N, 2p ∈ H.

On suppose désormais que n > 2 et que la première colonne et la première ligne de M ne sont
constituées que de 1 .

On note C1, · · · , Cn les colonnes de la matrice M . On a en particulier C1 =


1
1
...
1

 ∈ Mn,1(R).

Q36. En considérant ⟨C1, C2⟩, montrer que n est pair.

Q37. On note :

x = Card {i ∈ J1;nK,mi,2 = 1 et mi,3 = 1} ;
y = Card {i ∈ J1;nK,mi,2 = 1 et mi,3 = −1} ;
z = Card {i ∈ J1;nK,mi,2 = −1 et mi,3 = 1} ;
t = Card {i ∈ J1;nK,mi,2 = −1 et mi,3 = −1} .

Exprimer ⟨C1, C2⟩ , ⟨C1, C3⟩ et ⟨C2, C3⟩ en fonction de x, y, z et de t.
En déduire un système linéaire de 4 équations d'inconnues x, y, z, t.

Q38. En déduire que n est un multiple de 4 .

Nous venons de démontrer que:

� si n est une puissance de 2 , alors n appartient à H;

� si n > 2 et n n'est pas un multiple de 4 , alors n n'appartient pas à H.

Hadamard a conjecturé que n ∈ H si et seulement si n est un multiple de 4.
La question est encore ouverte aujourd'hui.

FIN
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PROBLÈME 2 : Mines-Ponts 2025 PSI-PC math I

Notations et dé�nitions.

On note C le corps des nombres complexes, N l'ensemble des entiers naturels. Pour n ∈ N∗,Mn désigne
l'algèbre des matrices carrées complexes de taille n et GLn le groupe des matrices complexes inversibles
de taille n. On rappelle que deux matrices A et B de Mn sont semblables si

∃P ∈ GLn, A = P−1BP.

Pour toute matrice A ∈ Mn le polynôme caractéristique de A est dé�ni par

χA = det (XIn − A) .

Partie 1. Polynômes réciproques.

Soit p ∈ N∗. Un polynôme P ∈ C[X] de degré p est dit réciproque lorsqu'il satisfait l'égalité

P (X) = XpP

(
1

X

)

1. Soit P ∈ C[X] de degré p. On écrit P =

p∑
k=0

akX
k, où a0, . . . ap sont des nombres complexes, et

ap ̸= 0. Montrer que P est réciproque si et seulement si pour tout entier k, 0 ≤ k ≤ p, on a l'égalité
ak = ap−k.

2. Soit P un polynôme de degré p écrit sous forme factorisée P = ap

d∏
i=1

(X − λi)
mi , où λ1, . . . , λd

sont les racines complexes distinctes de P et m1, . . . ,md leurs multiplicités.

Écrire sous forme factorisée le polynôme XpP
(

1
X

)
et démontrer que si P est réciproque alors pour

tout entier i, 1 ≤ i ≤ d, λi est non nul et 1
λi

est racine de P avec la multiplicité mi.

3. Soit Q un polynôme de degré p. On dit que Q est antiréciproque si

Q(X) = −XpQ

(
1

X

)
Montrer que si Q est antiréciproque, 1 est une racine de Q et qu'il existe un polynôme P constant
ou réciproque tel que Q = (X − 1)P .

Soit R un polynôme non constant de C[X] ayant la propriété suivante : Toute racine a de R est
non nulle et 1

a
est racine de R de même multiplicité que a.

4. Démontrer que le produit des racines de R, comptées avec multiplicités, ne peut prendre que les
valeurs 1ou− 1. On pourra remarquer que l'égalité a = 1

a
n'a lieu que pour a = 1ou− 1.

5. En déduire que R est réciproque ou antiréciproque.
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Partie 2. Le cas diagonalisable.

Soit A une matrice appartenant à GLn.

6. Soit x un nombre réel non nul. Exprimer det (xIn − A) en fonction dex, detA et det
(
1
x
In − A−1

)
.

7. On suppose dans cette question que A est semblable à son inverse. Préciser les valeurs que peut
prendre le déterminant de A, et en déduire que χA est soit réciproque, soit antiréciproque.

8. Soit B ∈ Mn une matrice diagonalisable. On suppose que le polynôme caractéristique de B est
réciproque ou antiréciproque. Démontrer que B est inversible et semblable à son inverse.

9. Montrer que la matrice B =


2 0 0 0
0 2 0 0
0 0 1

2
1

0 0 0 1
2

 n'est pas semblable à son inverse (bien que son

polynôme caractéristique (X − 2)2
(
X − 1

2

)2
soit réciproque). On pourra déterminer les espaces

propres de B et B−1 pour la valeur propre 2 .

Ainsi, hors du cas diagonalisable, le polynôme caractéristique ne su�t pas à caractériser les matrices

semblables à leur inverse. La suite du problème se propose de caractériser ces matrices par une autre

méthode.

Partie 3. Produits de matrices de symétries.

On dit qu'un endomorphisme f d'un C -espace vectoriel E est une symétrie si f ◦ f = IdE. On dit
qu'une matrice S ∈ Mn est une matrice de symétries si S2 = In.

10. Démontrer que si S1 et S2 sont deux matrices de symétrie, la matrice produit A = S1S2 est
inversible et semblable à son inverse.

11. Si une matrice A est un produit de deux matrices de symétries, en est-il de même de toute matrice
semblable à A ?

Soit B et C deux matrices de GLn. Soit A ∈ M2n la matrice dé�nie par blocs suivante :

A =

(
B 0n
0n C

)
12. Soit S1 la matrice par blocs

S1 =

(
0n P
Q 0n

)
où P,Q sont deux éléments de GLn. Déterminer les conditions reliant B,C, P,Q pour que les
matrices S1 et S2 = S1A soient des matrices de symétries.

13. En déduire que si C est semblable à B−1, alors A est un produit de deux matrices de symétries.
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Partie 4. La matrice Jn(λ).

14. Soit E un C-espace vectoriel de dimension n. Soit g un endomorphisme de E tel que gn = 0 et
gn−1 ̸= 0. Démontrer qu'il existe une base de E dans laquelle la matrice de g est la matrice N
ci-après :

N =


0 1 0 . . . 0

0 0 1
. . .

...
...

. . . . . . . . . 0
...

. . . 1
0 . . . . . . 0


Autrement dit : N = (ni,j)1≤i,j≤n avec ni,j = 1 si j = i+ 1 et ni,j = 0 sinon.

15. Pour tout λ ∈ C non nul, on pose Jn(λ) = λIn + N . Démontrer que Jn(λ) est inversible et
déterminer en fonction de N et de λ la matrice N ′ telle que Jn(λ)

−1 = 1
λ
In +N ′

16. Calculer (N ′)n et en déduire que Jn(λ)
−1 est semblable à Jn

(
1
λ

)
.

Pour tout polynôme P = P (X) ∈ Cn−1[X] on pose
s1(P ) = P (−X)
s2(P ) = P (1−X)
g(P ) = P (X + 1)− P (X)

On dé�nit ainsi trois endomorphismes de l'espace vectoriel Cn−1[X] (il n'est pas demandé de le
prouver).

17. Calculer s21, s
2
2 et exprimer s1 ◦ s2 en fonction de g et IdCn−1[X].

18. Soit P un polynôme non constant. Exprimer le degré du polynôme g(P ) en fonction du degré de
P .

19. Déduire des questions précédentes que la matrice Jn(1) est un produit de deux matrices de
symétries.

On pourrait démontrer par le même type de raisonnement, et on l'admet, que la matrice Jn(−1)
est un produit de deux matrices de symétries.

Partie 5. Une caractérisation des matrices semblables à leur
inverse.

Soit A une matrice de GLn semblable à son inverse. On admet le résultat suivant : A est semblable à
une matrice diagonale par blocs de la forme

A′ =


Jn1 (λ1) 0 · · · 0

0 Jn2 (λ2)
. . .

...
...

. . . . . . 0
0 · · · 0 Jnr (λr)


où les λi sont les valeurs propres de A (pas nécessairement distinctes) et r ainsi que les ni, 1 ≤ i ≤ r,
des entiers naturels non nuls.

De plus la matrice A′ est unique à l'ordre près des blocs.
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20. D Démontrer que A−1 est semblable à


Jn1

(
1
λ1

)
0 · · · 0

0 Jn2

(
1
λ2

) . . .
...

...
. . . . . . 0

0 · · · 0 Jnr

(
1
λr

)

.

21. En utilisant les résultats établis dans les parties précédentes, démontrer que A est un produit de
deux matrices de symétries.
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