PSI* 2025-2026

Correction du devoir a la maison de Mathématiques n°7

EXERCICE 1

10,400] — R
r o
Alors f est continue sur |0, 4o00[ et donc A pose probléme en 0 et en +o0.

a) e On pose :

e Eno 1
Par limite du cours on a : glclir(l) f(x) = 0, donc f est prolongeable par continuité en 0 et donc bff(a:)da: est
convergente.

e En +o00
% ~ ”Z—@ﬁﬂ = % e 0, on en déduit donc f(z) = o(=57)

Comme z — # est intégrable sur [1,4o00| (par Riemann) , on a, par négligeabilité, f est intégrable sur

+o00
[1,4+o00[ et donc [ f(x)dx est convergente.
1
+oo

1
o [ f(z)dz et [ f(x)dx sont convergentes donc ’A est Convergente.‘
1 0

(ln(n))2
1

b) Pour n > 1on a : 752 = (ln\%))Q e 0, on en déduit donc (Z"T(LZ))Q = 0(=373)

1 - . L 1 . (in(n))?
Comme }  —7 est une série de Riemann absolument convergente, alors, par négligeabilité, | ) | = 5> convergente.

¢) On pose Vz € C, Vn € N | a,(z) = (—1)n2ni2” ontl

871
On a, pour 2 # 0 ¢ Jan(2)| ~ & [ ~ |2 ()"
Z(%)” est alors une série géométrique de raison %
Par la régle de I’équivalent : > a,(z) convergente < |z| < 2

. .z
convergente si et seulement si

E-<1le |z <2

On en déduire que |le rayon de convergence de Z(—l)"“”(g#z%“ vaut R =2

d) Pour z € C tel que z # 0 on pose u,(z) = @Ln'),z” Alors u,(z) # 0 et

(n+1)12"+1 (2n)!
(2n+2)!  nlzn

_ (nt+1)z
~ | @n+2)(2n+1)

Un+1(2)
z

Un (

~lal 520

n——+oo

Par la régle de D’Alembert, comme 0<1, alors > u,(z) est toujours convergente et donc

le rayon de convergence de > @”—rj)!zn vaut R = +00

e) On distingue deux cas.

CAS1: |a] <1
Alors % ~ 1 donc par la régle de I'équivalent pour les séries entiéres : %z” a méme rayon de

convergence que y_ 12" qui est une série entiére du cours de rayon de convergence 1.



CAS2: |a] > 1
" N . . . N n N
Alors 2 ~ 1 donc par la régle de I'équivalent pour les séries entiéres : %z" a méme rayon de convergence
a”™ _n
que ) 2"
Par dérivation, cette série entiére a méme rayon de convergence que : »_ a"z" =Y (az)"

On reconnait une série géométrique de raison az, convergente si et seulment si |az| <1 & |z| < &

lal

Le rayon de convergence de %z" vaut alors R = ﬁ
(a #0)
: ng ZosiJa] > 1
Bilan : | Le rayon de convergence de »  ¢-5*z" vaut : R = lal -
Isial <1
On peut résumer ceci en R = Min(1, ﬁ)
EXERCICE 2
g : R — R
On pose : NN - s?x;zéo
1 stz =0
+oo 1"
On saut d’aprés le cours que : Vo € R | sin(z) = > (§;+)1),:c2”+1
n=0

too
On a donc : Ve € R* | f(x)= > (éﬁﬂ)!m%

On remarque que cette derniére formule est encore valable en 0, puisque 'on a posé g(0) =0
On a donc g qui est développable en série entiére sur R et donc g est C'*° sur R.

On a posé g de telle sorte que : f = ¢g* et donc ’ f est C* sur R| comme produit de fonctions C'oo.

EXERCICE 3

S
a) hd S(l) = Z n(n—1)
(="
n(n—1)
régle de I’équivalent.
On a donc S(1) absolument convergente et donc convergente et donc,
comme R = sup({x >0, S(z) convergente }) on a que R > 1

R (—1)"
n(n—1)

est convergente par la

~ L >0, comme Y L est une série de Riemann convergente alors > ‘
n n

e Par comparaison puissance-exponentielle |z| > 1 = Tf(_n 1_)2) x" —+> —+00
n—-+00
Comme R = sup({x >0, (TL((;Q:):U”)%N bornée }) alors : R <1

OnaRZlethldonC

b) Par définition du rayon de convergence on sait déja que S est définie sur | — R, R[ et que D C [—R, R]
Il reste a voir ce qui se passe en R et —R. On a vu au a) que S(1) était convergente donc 1 € D. De méme
—-1eD.

Bilan : |D = [-1,1]




c) S est C*° sur | — R; R[ comme série entiére.
On peut dériver terme a terme une série entiére sur son intervalle ouvert de convergence. On a alors

+oo n +o00o " +oo " +o0 )
Vo€l - R R, §(0) = (5 ) = 5 dtnen = 3 ke = 3 el
p:

~ dz =, n(n=1) =, n(n—1) =, (n=1)

On reconnait une série entiére du cours et on a alors : Vo €] — 1;1] S'(x) = In(1 + x)

En intégrant par parties, avec des fonctions dérivables, ’expression trouvée on obtient sur | — 1; 1] :
S(x) =[x+ Din(1 + )] = [(x+1)75dz = (x + 1)in(z + 1) — x4 p avec p € R
Avec lexpression ci-dessus on obtient en x =0 : S(0) = p
Avec lexpression sous forme de série entiére on obtient : S(0) =0 et on a donc =0

On a finalement : |Vz €] — 1;1[, S(z) = (x+ Din(1+2z) —

d) Sion pose: Vn >2et Vo € [-1,1] , folz) = L
ors ([l = 5w 11,0) = s ~

zin[—1,1

Comme Y =5 est absolument convergente, alors, par équivalent Y. || fu||,, est convergente, et donc 3 f,
converge normalement et donc uniformément sur [—1, 1]

Comme la convergence uniforme conserve la continuité et que les f,, sont continues, on a que :

S est constinue sur D = [—1,1]

e) @ Comme S est continue en 1, alors :
S(1) = lim S(z) = lim ((zx+ 1)in(1 +2) —z) =2In(2) — 1 =1In(4) — 1
T—1~

T—1~
+o0 n
On en déduit S(1) = > n((_nl—)l) = [n(4) — 1 et on remarque que l'expression du ¢) est valable en z = 1
=2

e De méme, S est continue en —1 et donc :

S(—1) = _}}r_riﬁ S(x) = _}%1_111)+((x +1in(l+z)—2)=0—(-1)=1

(x+1Din(l+x)—2x size|l—1,1]
1 six=—1

On a donc : | S(x) = {

EXERCICE 4 : exercice de e3A PC 2025

1) Si y est une solution de (E) alors on peut évaluer (F) en x =0, et on a :
0y"(0) + 23/ (0) — 1y(0) = 0 donc |y(0) =0

2.1)  On a déja : a9 = f(0) = 0 par la question 1).
Comme on suppose que f'(0) =1 alors a; =1

e Reste a montre la formule de récurrence.

Une série entiére est C'°° sur son intervalle ouvert de convergence et on peut la dériver terme, alors :
+o00
f'(@) = 32 nana"™!
Ve €] — R; R[, =
f"(x) = > n(n—1a,z" 2

n=0



On a alors :
f solution de F sur | — R, R|
eVoe - RR[, 22f"(x)+of(x)— (@ +2+1)f(z) =0

+o0 +oo ALy
sSVeel-R R, 22> nin—1a2" % +2 > na,z" ' — (2 +2+1) > az" =0
— n=0

+00 —+00 =0 “+00 +00 400
& Vo 6] o R’ R[ ? Z n(n - 1)anxn + Z nanx" — Z anx" — Z anxn—H - Z an$n+2 =0
n=0 n=0 n=0 n=0 n=0

Changement d’indice p = n + 1 dans ’avant derniére somme, p = n + 2 dans la derniére et p = n dans les

autres.
f solution de E sur R

+o00 +o0 +o0 +o0 +oo
S Ve el —RR[, Y. pp—1)ayz? + > paya? — > apa? — > apqa? — > apox? =0
p=0 p=0 p=0 p=1 p=2

On fait attention aux premiers termes, on tient compte de ag = 0 et a; = 1, on regroupe les termes pour
p=2
f solution de E sur R

o0
Ve el -RR, 0+0+0+a1x —ap — a1z — apx + Y [p(p — 1)ay,a? + pa, — a, — ap_12P — a,_o)2P =0

p=2
+00
eVrel-RR[, Ylplp—1) +p—1)a, —ap1 —ap2]a” =0
p=2
+o0
Ve E] - R, R[ ) Z [<p2 - 1)a}7 — Qp-1— aP—Q]xp =0
p=2

On utilise maintenant 'unicté du DSFEy avec R > 0 pour obtenir :

Vp>2, (p*—1)a, —ap-1 —a, o =0

En posant n = p et en reprenant les résultats du début de questions :
Vn>2, (n*—-1)a, —a, 1 —a, 2=0

CLQ:O

&1:1

2.2) Montrons par une récurrence double sur n € N* que : Vn > 1| |a,| < o 1)

Initialisation : a1 = 1 et 7=y 1) = 1 donc |a1| < oo 1), vraie.
(4—1ag—a; —ag=0=3as=1=ay = g et (2_11)! = é donc |ag| < ey 1), vraie.

Hérédité : On suppose |a,_1] < gy et la,_o| < o= 3)
Alors (n? — 1)a, = a1 + Gy 1mp11que par l'inégalité triangulaire : (n? — 1) |a,| < |an_1| + |an_o|
Et, avec les hypothéses de récurrences s (n?—1)]a,| < (n_12)! + (n_lg)! = (n_13)!($ +1)= (n_13)!z_:§

n—1

= (n—=1)(n+1) |an| < i

= (n+1)an| < 5= 3) =5

1 1

= || < G e

1 1 1 1
= | < e A T S
= |a,| <

S
(n—1)!

Conclusion : |Vn > 1, |a,| < —




+00 +00 _
2.3) > (nil = (flfll)! =z Z ol = rexp(x) et on sait que ¢a converge pour tout z € R d’aprés le
n=1 n=1 O
cours. "
Donc Z ,x a pour rayon de convergence +00, et, par comparaison avec I'inégalité du 2.2) : R = 400

’La fonction f est donc définie sur R‘

3.1) 2(0) = 0y(0)e® =0
Comme y est C? alors z est C?
Pour x € R, Z/(z) = y(x)e” + ay/(x)e” + zy(z)e” = (1 + z)y(x)e” + xy'(x)e” donc 2'(0) = y(0) = 0 d’apres

1)

On a donc : | 2(0) = 2/(0) =0

3.2) zest C? et Vo € R

z//(w)
=y(z)e” + (1 +2)y'(z)e” + (1 + x)y(x)e” + [y (z)e” + xy"(x)e” + xy'(x)e”]
=[xy (x) + (24 22)y'(z) + (2 + x)y(x)]e”

Alors : z2"(x) — (22 4+ 1)2/(x)
= z[zy’(x) + (24 22)y () + (24 z)y(x)]e* — 2z + D[(1 + z)y(z)e” + xy/(x)]e”
=" (ny”(x) + (22 4 22% — 222 — )y () + 2z + 2% — 22+ 1)(1 + x))y(x))

(:UQy”( )+ zy(x) + (20 + 2? — 222 — 3z — 1)y(x)>

= e (2% (2) + 2y (@) — (2 + 2+ 1y() )
= 0 car y est solution de (F)

On a donc : | 2’ est solution de (F')

3.3. 1) Soit I =R* . Alors :
(2 + )dx =2x + In(|z|) = 2z + In(x) car x > 0

(F) est une équation différentielle linéaire d’ordre 1, homogene, a coefficient continue (coefficient en ' non
nul), donc, d’aprés le cours, les solutions de (F) sur I s’écrivent : u(z) = aexp(2x +In(z) = are®® avec a € R

Les solutions sur R* s’écrivent : u(z) = aze® avec a € R

3.3.2) On a lim u(z) = lim are*

z—0t z—0t

posant u(0) = 0

= 0 donc lles fonctions sont prolongeables par continuité en 0|, en

3.4) Posons Yz € R, U(x) = cxe
Alors U est C? sur R et U'(z) = (1 + 2x)e*®

Alors : U'(z) — (2+ 2)U(x) = ¢(1 + 2x)e* —(2+ 2 )cxe*” 2“3(1—1-231:—21:—1):0

Donc : |x +— cze®® est solution de (F)) sur R*




3.5) Comme 2’ est solution de (F') sur R, alors, en admettant le résultat de ’énoncé (que 1’on sait capable,
en PSI, de démontrer) : Ja € R, 2/(z) = 4axe*
Par 1ntegrat10n par parties :
z(x) = [4@:1:— f4aﬁdac = 2aze* — ae® + 0 = a(2r — 1)e** + 0 avec § € R
Mais z(0) = 0 donc 6 = a
Finalement : |Ja € R, 2(z) = a(2x — 1)e** +a

3.6) f est une solution C* de (F) sur R, donc d’aprés ce qui précéde :
JaeR, a(2z —1)e* +a = zf(x)e®

Donc, pour z # 0, f(z) = a<(2 —2)e” + ﬁ> = CL<2€$ — 2%—*31561) = 2a <e$ — ‘mxﬂ)

Au voisinage de 0 : f(z) = 2a<1 +a+o(x) — HOT(:BZ))> =2a(l4+z—1+o(x)) = 2ax + o(x)
Comme f est C* on a aussi : f(z) = f(0) + f'(0)x + o(x), donc, par unicité du DL : 2a = f'(0) = 1 par la
question 2.)
Il reste f(x) =e* — Sh(x) pour z # 0

el’—%@) siz#0
0 six =0

On a alors : | f(x) =

EXERCICE 5 : exercice de e3A MP 2025

+oo
fEn
n!
n=0

1.) On sait d’apres le cours que : [Vx € R, e =

2.) Comme n! > 1 alors : 0 < )2 < %

On sait (d’aprés 1.) que ) fL a pour rayon de convergence +00

Donc, par comparaison : Y % a pour rayon de convergence +oo et ’f est définie sur R. ‘

3.) f est une série entiére de rayon de convergence +oo, donc ’f est de classe C'™° sur R.‘

4.) Soit [a, b] un segment de R.
Comme f est C* sur [a,b] ont peut appliquer le théoréme des accroissements finis et obtenir :

V(CC,y> S [CL?b]Q ) Je E](I,b[ ) f(CC) - f(y) = f/(l')(l' - y)
Mais f’ est continue sur [a, b] donc, par le théoréme des bornes atteintes IM > 0, Ve € [a,b] , |f'(c)] < M

Appliquer a l'inégalité ci-dessus : |f(x) — f(y)| < M |z — y|
On a donc f M lipschitzienne sur [a, b].

On a donc ’f lipschitzienne sur tout segment de ]R‘

5.) On peut dériver une Série entiére sur son intervalle ouvert de convergence. Ici, on peut donc dériver f

zn— 1
sur R et f'(z) = n.)2 Z eyl 1 R

—+00

Ma1spu1squex>0et( )<1 ona: f'(x) < Z(nnll)lzx

Bilan : |Vz >0, f'(z) <e€”




6.) Soit x et y deux réels positifs.
Toujours avec le théoréme des accroissements finis Jc € [z,y] , f(x) — f(y) = f'(c)(z —y)

En prenant la valeur absolue : |f(z) — f(y)| = |f'(¢)] | — ¥

Comme f'(c) > 0 (somme de termes positifs) et que f'(c) < e®alors : |f(z) — f(y)| < e |z — y|

Comme c € [z,y| alors e < € et on a bien : |V(z,y) € [0,+00[*, |f(z) — f(y)| < € |z — y|

7.) [ est C*° donc par la formule de Taylor-Young, pour z au voisinage de 0 : f(x) = f(0)+zf'(0) + o(z)
Mais f(0) = 5z =1et f/(0) = 1z =L donc f(z) =1+2z+o0(z) = f(z) —1=z+o(z) ~x

Donc, au voisinage de 0 : | f(z) — 1 ~ @

8.) On a Vt >0, f(t) > 1 (1 est le premier terme de la somme et les autres sont positifs)
Donc ¢ = 17 ( o est blen définie sur ]0, +oo[ et méme de clagse C'™

g est donc une primitive d’une fonction C*, donc : | g est C* sur |0, +o0[

9.) W > 0 sur |0, +oo[ , donc le signe de g dépend de la position de x par rapport a 1.

glx)>0 siz>1
Ona:|qg(z) <0 siz<l1

10.) On remarque que : Vo >0, [ %dt = In(z)
1

Donc g(x) — In(z) =

ey

t(fl(t)th_Llf %dtzlf [wroe — 1ld f T

_ 1-(@)?
On pose Vit >0 s g(t) T O)
par la question 7.), au voisinage de 0 :
_ 1-(tto()? _ 1-1-2t+o(t) _ —2tto(t) _ —2+o(1)
g(t) = GO - = go)r - T W0r T TOF i —2 (puisque f continue en 0 et f(0) = 1)
1
g est donc prolongeable par continuité en 0 et donc [ g(t)dt est convergente.

0

1

On a done g(x) — In(x) — [ g(t)dt

x—0 0

Donc g(z) — In(z) = O(1) et donc : |g(z) ~ In(x)

=0

n

> 1+t donc: |VE>0, f(t) >1+t

+o0
11.) Pourt >0: f(t) =1 —I—t+nz::2 e
——

>0



12.) De 11.) on déduit pour ¢ > 0 que : 0 < t(f(lt))Q < t(141rt)2

Comme ~ t% et que t — t% est intégrable sur [1, +00[ alors, par équivalent, ¢ —
+o0o

sur [1,4+o00| et donc lf Wdt est convergente.

——= est intégrable

(1+t) t(f( )

+o0

_ _1
On a alors : mgglmg( T) = 1f t(f(t))th

Bilan : ‘g posséde une limite lorsque x tend vers +o0

13.) On a 3(a,b,c) € R? | m =%+ % + (1+CX)2
Alors, par équivalences :
1 __a b c
X(1+x)?2 — X toxt (1+X)2
= 1 _a(X+1)2 X (1+X)+eX
X(A+x)2 — X(1+X)2
Sl=aX+1)+bX(1+X)+cX
a=1 a=1 a=1
S1=(a+b)X*+2a+b+c)X+a<<2a+b+c=0 < 2a+b+tc=0 << c=-1
a+b=0 b=-1 b=—-1

Onadonc: |virz = v — 7% — 72

14.) En intégrant 5 < t(l}rt)g entre 1 et z > 1, on a , avec 13.) :

1
t(f(2))

g() gf(%—ﬁ—(m Jat = g(x) < In(t)~In(1+1)+ 1] = g(@) < In(@)~In(1+2)+ L —0+in(2) -}

On en déduit : [Vz > 1, g(x )<ln(1+m)—|—1+—r—|—ln( ) -1

15.) @ Sur ]0,1] on a g(z) < 0 < In(2)

e Pour z > 1. Comme —£; < 1 alors In(z%4;) <0 De plus z > 1 = = < 5 donc = — £ <0

Alors I'inégalité du 14.) donne : Vo > 1 g(z) < In(2)

e Bilan : | g est majorée par In(2) sur |0, +o00[




Centrale PC 2025, Mathémétiques 2

Q1) Dans cette question g = sin. Donc g est C! et on peut appliquer le théoréme des accroissements finis et
obtenir : V(t,5) € R? | g(t) — g(s) = ¢'(u)(t — s) avec u € [s,t] ou u € [t, 5]

Comme ¢' = cos alors, |¢'(u)] < 1 et donc |g(t) — g(s)| < |t — s

Donc si |t — s| < h alors |g(t) — g(s)| < h

Comme wy(h) = sup |g(s) — g(t)| on en déduit que wgy,(h) est bien défini et que : |wgn(h) < h
ji—s|<h

Q2) a) e Si h > 0 il existe des couples (t,s) € R? tel que |t — s| < h et donc wy(h) est le sup d’une partie
non vide de R, donc w,(h) existe dans R U {+oc}.
Il reste & voir que wy(h) est fini.

e Mais g est continue sur [0,27] donc g est bornée sur [0, 27| et il existe M >0, |g(x)| < M
Comme g est 27 périodique alors Vz € R | |g(z)| < M
Par inégalité triangulaire : |g(t) — g(s)| < |g(¢)| + |g(s)| < 2M
En passant au sup, on a : wy(h) < 2M et donc w,(h) < 400 et wy(h) est donc un réel.

Bilan : [Si g € CY_ alors w,(h) est un réel bien défini.

Q2) b) e Si de plus g est C* alors avec le théoréme des accroissements finis :
l9(t) — g(s)| = |g'(w)[ [t — s|

|9'||. est bien définie car ¢’ est continue et 27 périodique (comme pour g au 2)a)),
donc si de plus [t — s| < h alors : |g(t) — g(s)| < ||d'|| . h

En passant au sup, on a donc : |Vh >0, wy(h) < ||g'|| I

e Ona: 0 <wy(h) <||¢]|, b, donc par encadrement : hhm+ wy(h) =0
—0

Q3) a) Si h < K alors {(s,t) € R?* | ||s—t| < h} C{(s,t) eR?, ||s—t| <N}
Donc, en passant au sup : wy(g) < wp(g)

On a donc : |h < KW = wip(g) < wp(g)

Q3) b) e Soit (s,t) € R? tel que |[s —t| < h+H

Comme les quantités étudiées sont symétriques en s et ¢, on peut supposer, quitte & échanger s et ¢, que
1t <s
On adonc: 0 <s—t<h+ h'et on distingue alors deux cas :

Cas1: 0<s—t<h
Alors comme 0 < s—t < hon a |g(s) — g(t)| < wy(h) et comme wy(h') >0 on a :
19(s) = g(t)] < wy(h) + wy(h')



Cas2: h<s—t<h+H
Alors, en retranchant h a I'inégalité ci-dessus : 0 < s—t—h < I’
On a alors : |g(s) — g(t)] = |g(s) —g(s — h) + g(s — h) — g(t)| et par inégalité triangulaire :
l9(s) = g(D)| < lg(s) —g(s = h)[ + [g(s — h) — g(t)|
Mais s — (s —h) = h < h donc |g(s) — g(s — h)| < wy(h) et (s —h) —t < h' (voir ci-dessus) et on donc
l9(s — h) — g()] < wy(R) et on a donc |g(s) — g(t)] < wy (k) + wy ()

e Dans tout les cas on a : [g(s) — g(t)] < wy(h) +wy(R') pour (s,t) e R?* | [s—t| <h+H

En passant au sup, on obtient donc : |w,(h + h') < wy(h) + wy(h')

Q3) ¢) e Montrons par récurrence sur n € N* que : Vn € N* | wy(nh) < nw,(h)
Initialisation : pour n = 1, le résultat est évident puisque si n = 1 alors : wy(nh) = nwy(h)

Hérédité : On suppose le résutat vrai au rang n et on le montre au rang n + 1.
On a alors : w,(nh) < nw,(h)
Mais en utilisant le b) : wy((n + 1)h) = wy(nh + h) < wz(nh) + wy(h) < nwy(h) +wy(h) = (0 + 1)wy(h)
On a bien le résultat au rang n + 1

Conclusion : |Vn € N* | wy(nh) < nwy(h)

e Si A > 0 alors par définition de la partie entieére : [A\| <A< [A]+1<A+1

On a donc : A < ([A] +1)h et avec le a) @ wy(Ah) < wy(([A] +1)h)
On utilise maintenant le b) pour avoir : wy(Ah) < (|A] + 1)w,(h)
Et comme ([A] +1) < A+ 1 alors : wy(Ah) < (A + 1)wy(h)

On a bien : [VA >0, wy(Ah) < (A =+ 1)w,(h)

T4x T+x
Q4) Soit g € C9_. Par la relation de Chasles: [ ¢ f g(t)dt + f g(t)dt + f gt
—7T+x 7ﬂ+x

On effectue le changement de variable u = ¢ + 7w dans la premiére 1ntegrale et le Changement de variable

u =t — 7 dans la derniére intégrale.
T+

On aalors: [ g(t)dt

—T+x

glu—m du+fg dt—l—fg u + m)dt

—Tr

Il
ﬂH:‘ﬁo

= [g@®)dt+ [(9(u+m) — g(u — 7))dt mais g(u + 7) — g(u — 7) = 0 car g 27 périodique
0

—T

= | g(t)dt
T+ ™
Donc : [Vge CY., [ g(t)dt= [ g(t)dt
—n+x -

10



Q5) e Soit (p,q) € T, et « € R. Alors : Vx € R :
A(p + aq)(x)
x

s

= [(p+aq)(z —t)g(t)dt

—Tr
s

= [(p(z —t) + aq(z — t))g(t)dt linéarité de intégrale

—T
s

:Jp@—ﬂﬂwﬁ+ajq@—ﬂmwﬁ
= A(p)(z) + aA(g) ()

On a donc A(p + aq) = A(p) + aA(q) et on a donc la linéarité de A.

n
e Soit p € T, on écrit p sous la forme : Vo € R, p(z) = > cpet*®

k=—n
Alors : Ap)(a) = [ pla—09(t) = | 3 aue0g(t)dt = 3 (] e Mg(t)arlet

Avec cette derniére écriture on voit que A(p) € T,,

e Finalement on a A linéaire de T, dans 7T}, et donc ’A est un endomorphisme de Tn‘

Q6) Soit t un réel n’appartenant pas a 2rxZ. Alors :
On(t) = e iy 3 cikt — o—nig Z(eit)k
k=0 k=0

Vu la condition sur ¢ : e # 1 et on peut utiliser la somme des termes d’'une suite géométrique pour avoir

(t) - —mé 1—eilntDt e%”_e("ff)“ - 67("31)” _6(7L+21)it - —2isin((n+1)%) o sin((n—i—l)%)
“n =€ T—et  — eit/2(eit/2—¢it/2) e—it/2_git/2 - “2isin(L) - sin(L)

Pour 'expression de f, il suffit d’élever a la puissance 4.

sm((n+1)§)>4

; t
Conclusion : |Si ¢t un réel n’appartenant pas a 27Z alors : ¢, (t) = snlnt D) o fu(t) = (

Q7) On peut écrire que : e”i%<pn(t) — kf: ikt
=0
Donc, en élevant au carré : e™(p,(t))* = ( i ei’ft)Q
k=0
On peut donc trouver (ay, ..., as,) € C** tel que : e™(p,(t))* = :i apeikt
=0
Et donc (¢, (1)) = kirf apetk=nt
=0

K .
qui peut se ré-indexer posant £ =k —mn en : (0,(t)2 = > ar e
l=—n

On en déduit p? € T}, On démontre de méme que : p? € Ty,

Bilan : |¢? € T, et f, € Ty,

11



Q8) Avec les expressions initiales de ¢, et de f, on voit clairement que ces deux fonctions sont C* sur R

et donc que l'intégrale f fu(t)dt est bien définie.

—Tr

Comme fn est clairement réelle, non nulle et positive (avec I'expression de Q6) on en déduit que :

ffn )dt # 0

on a alors :

Si on pose c_ —

oo cnfn(t)dt =1

Q9) fn est paire d’aprés 'expression de Q6), donc J,, est aussi paire.
On a aussi : t +— |t| J,(t) paire et donc :

Tt Tu(@)dt = 2 [ tIu(6)dt = 260 [ tfa(t)dt
e 0 0

Mais on a aussi par parité : ¢, = ———donc 2¢, = +—
20ffn(t)dt S fn(t)dt

0

et finalement | [ [¢| J,(t)dt = %
r Offn(t)dt

Q10) vt € [0, %] , sin”(t) = —cos(t) < 0 donc sin est concave.

Donc la représentation graphique de sin|jp,z] est au dessous de sa tangente en (0,0) (la droite y = ¢), et au

dessus de ses cordes, en particulier le segment y = 2¢ qui passe par (0,0) et (3,1)

On en déduit : |Vt € [0,3], 2¢ < sin(t) <t

Remarque : on peut bien str étudier des fonctions ...

13

Qll) Pour t € [0,71'] on a % € [07 %] et donc %% < sm(%) sin /2) S
3)
2

Donc, comme sin((n + 1)%) >0 Slzggz;?)a) < Wsin((n;rl)
4zntlnt)3)

gsint((n+1)3)

En élevant a la puissance 4: fo(t) <7 donc tf,(t) <m -3

En intégrant sur [0, 7] ftfn t)dt < 4f wdt

Dans lintégrale, on fait le changement de variable u = (n +1)f & ¢ = n2f:1 donc dt =

(n+hz
ftfn tdt <a* [ 5 (“deU
0 (n+1)3

(n+1)3

Et donc : ftfn dt<7r("7+1)2 i %du
0

12
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+1du et on a :



our t € |0, 7] on a 5 € |0, 5] et donc sin(z) < 5 avec
Qi2) P 0 £ €10, 3] et done sin(§) < & avec Q10
Alors % < —L _ donc 2sin((n+1)%) _ sin((n+1)L)

n n t
n(e/2) " < ) et en élevant a la puissance 4 : w < fu(t)

T 24sind((n t i
En intégrant sur [0, 7] : f%dt < ffn(t)dt
0

Dans lintégrale on fait le changement de variable v = (n+ 1) <t = n2f1 donc dt = %du et on a:

13) La question Q12) donne : —t < L 1
Q13) q Q12) T 2ni1)3 f“’féwdu
0 0
, s
Avec linégalité de Q11) : ftfn tydt < 7t ()7 f s () gy,
0

u

En multipliant ces 2 1negahtes (termes positifs) :

7Tt n (t)dt

il L 7r4(n_1)2_ﬁ<n+1>2 _ﬂ_4(n+1)3L
ff (t)dt (2n+1)3 2 T4 (2n+1)3 T 4 \2n+1/) ntl
0

[ tfa(tdt
Onan+1<2n+1donc &
Offn(t)dt

IN

TG

ENEN

1
n+l n+1

Donc en posant : a = %4 et en utilisant Q9) on a : f It Ju(t)dt < 45

Q14) On effectue dans T, ( )( ) le changement de variable u = = — t et on obtient :
T.( f In(u)g(z —u) f Jn(u)g(x — u)du
T+ —Tm+x
En reposant t = u et en utilisant la question Q4) on obtient :

@:fxﬁm@—oﬁ

e Comme f Jy(t)dt = 1 en multipliant par g(z) qui ne dépend pas de ¢ on obtient : | [ J,(¢)g(x)dt =

-7 —T

e Avec les deux expressmns precedentes
T.(g9)(x) f Jn(t)g(x —t)dt — f Ju(t)g(x)dt = [ J.(t)(g(z —t) — g(x))dt

Comme Jn(t) > 0 on a, par 1’1negahte de la moyenne :

Ta(9)(x) — g(2)| < _f In(t) [g(x —t) — g(x)| dt

13



Q15) a) Comme g est 27 périodique alors ¢’ est 27 périodique.
De plus g est C! donc ¢’ est continue et 27 périodique et on peut définir ||¢']

Comme g est C! on peut appliquer le théoréme des accroissements finis pour avoir : 30 € R |
glx —t)—g(z) =4¢'(0)((x —t) —x) = ¢'(0)(—t), donc en prenant la valeur absolue :
9(x — 1) — g(@)| < [g'(O)] [t] < |95 |l [¢]
On utilise cette inégalité avec Q14) et on a: |T,,(g9)(z) — g(z)| < f Jo (@) 1119 dt = 119] ] o f Jn(t) || dt

Avec Q13) on a alors : |T,,(g)(x) — g(z)| < Hg H°° et en passant au sup sur z € R :

allg'll o
| T(g) — 9||oo < Tt

Q15) b) En passant a la limite au a), on a par encadrements : liril I|T.(9) — gll., = 0 et donc
n—-—+0oo

(T.(g)) converge uniformément vers g sur R

Q16) a) [g(x —t) — g(2)| < w,y([t]) puisque |(z —1) — )| = |t] < [¢]
En écrivant wy(|t]) = w(n %) et en utilisant Q3) avec A = n [t| et h = = on obtient :

wy([t]) < (1 + 7 [t)wy(5)

lg(z —t) — g(z)] < w,(|t]) donne alors : | [g(z —t) — g(x)] < (14 n [t))wy(S)

™

Q16) b) D'apres Q14) : |T(g)(z) — g(2)| < [ Ju(t) lg(x — 1) — g()| dt

—T
m m

Avec le a) : [Ta(g) (@) — ()] g_f To(®) (1 + 1 [t] Jwy(L)dt < (/Jn(t)ldtJrn /Jn(t) 1t] dt )wg(%)

- s
. "
N

=1

'

47 <1 par Q13)

IN £ |
3

On a donc : [T, (g)(x) — g(x)] < (14 a)wy()

En posant b=1+aona: |On adonc : |T,(g)(z) — g(z)] < bwy(L)

Q16) ¢) En passant au sup sur « € R au b) on obtient : [|T,(g) — g||, < bw,(+)

Comme il est admit que : lim wy(X) = 0, alors, par encadrements : lim ||7,(g) — g/, = 0 et donc
n—+oo n—+oo

(T,.(g)) converge uniformément vers g sur R
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Q17) T est de degré n, donc dans C, si on ne tiens pas compte de lordre de multiplicité, T admet n
racines.
Il reste alors a montrer que 7" n’admet pas de racine double.
Le résultat est évident pour n =1car 1+ X' =14+ X !
Raisonnons par I’absurde pour n > 2: Si X est une racine de 1" d’ordre au moins 2 :
T(X)=0 o 1+X"=0 1=0
T'(X) =0 nX" 1 =0 X=0
Comme 1 # 0 alors on a une absurdité.

alors (n>2doncn—12>1)

Dans tout les cas T' n’admet pas de racine au moins double, donc ’T admet n racines simples dans C

Q18) Comme T est unitaire on déduit de Q17) et des notations introduites par I’énoncé que : T =
n

[T(X —2)

j=1
Sion dérive : 7" = > [[(X — 25)
p=1;=1
J#p

n n
En évaluant en zj, : T"(z) = > [[(2x — 25)
p=1j=1
Ji#p

Le seul terme de la somme pour lequel il n’y pas de j tel que 2z, — z; = 0 est celui pour p = k donc :

b

Vk e [1,n] , T'(z) = T (2 — 25)

(S
!

j=1
k

Q19) e Commengons par étudier E.

Xt =
D’aprés 1’égalité donnée : E(X) = Trxn X%Zk
k=1
deg={—n

Cas1: (e [0,n—1]

On fait alors tendre X vers 400 ci-dessus et on obtient : thf E(X) =0 puisque £ —n < 0
— 400

Comme FE est un polynome on en déduit que c’est le polynéme nulle (il est borné, donc constant, et comme
sa limite est nulle ...).

Cas2:¥¢=n

De méme, on fait alors tendre X vers +oo ci-dessus et on obtient : Xlim EX)=1
—+00

Pour les mémes raison E est le polynome constant égale a 1.

e En multipliant F' = %;" = XTZ = > 25+ Epar T = [[(X — 2;) on obtient :
K=1 j=1
X = 3 e [1(X = ) + B x T(X)
K=1  j=1
i#K
En évaluant en X =z, : 2f = > ux [ (zx — 2j) + ET(21)
K=1 j=1 Y
J#K =0
Donc 2z = px [ (21 — 25)
T

15



Avec Q18) : zj = T () = pnzy !

On multiplie par z; et on a : 2™ = 1, T (21) = pnzy

Mais T'(zx) = 0= 1+ 2 =0 :> 2 = —1 donc Z€+1 —n
£4+1

On en déduit donc : |Vk € [1,n] , py = =%

Q20) e Comme E est un polynome constant, on a par dérivation : F’' = é (X:i’Z)Q
On a donc F'(1) = kﬁjl (1—:%
Avec le résultat de Q19) : F'(1) =1 é (jfilp

e D’autre part : F'(X) = Xt 1(12)_?;2;)”)(71 X' ot doncen X =1 F'(1) = 2n

e Ave les deux expressions de F'(1) on a :

:%;(fﬁ; =it %Eil S €:§+%é(§f$2

Q21) a)  On remarque que : ®: P € C,[X] — XP'(X) - §P(X) — %é Zgz’;(j';)’?
est un endomorphisme de C,,[X]

Soit £ € [0, n]

n 041

B(X!) = XX _nxt 2 ”[XZ—XZ(E_E__E —r >:
x5 ng 2 n ( 0

(z—1)2

On a donc @ qui est nul sur une base, donc, par linéarité, ® est nul. On en déduit alors :

n

Y 2t
(z—1)2

= (e )

VP € C,[X], XP'(X)="2P(X)+

§IM

Q21) b) En appliquant la formule du a) avec P =1 on a :

»

n-
4

=24 = Z Gt et donc

QQ22) @ Pour P € C[X], z — |P(z)| est une application continue.
Comme {z € C|z| = 1} est le cercle unité et est donc fermé borné, alors on a un fonction continue sur un
fermée bornée, qui est donc bornée et qui atteint ses bornes.
Donc || P|| est bien définie et le sup est méme un max.

o Soit (P,Q,\) € C[X]? x C
i) ||P|| > 0 de maniére évidente.

i) [[AP[| = sup [AP(2)| = sup [A[[P(2)] = [A] sup [P(2)| = |A| | P[]

|21=1 |21=1 |21=1

ili) [|P||=0=sup |P(z)|]=0=Vze€C, |2|=1= P(2) =0
|z|=1
P est donc nul sur le cercle unité, on a un donc un polynéme qui a une infinité de racine et donc P =0

16



iv) Soit z € C tel que |z| =1

Alors [(P+ Q)(2)] = |P(2) + Q(2)| < |P(2)| + |Q(z)| par inégalité triangulaire dans C.

En utilisant la définition de ||.|| : |(P + Q)(2)| < ||P|| + ||@Q]]

On peut alors prendre le sup sur le cercle unité et on a : ||P + Q|| < [|P|| + ||Q]|
1Pl =0
AP = APl

On a donc : V(P,Q,\) € C[X]? x C,
n a donc : V(P,Q,\) [X] IIP||=0=P=0

1P+ QI < [|P[| +[|Ql

On en déduit alors que : |||.|| est une norme sur C[X]

Q23) Soit z un nombre complexe de module 1 que 'on écrit donc z=¢" avec ) € R

i0 6 16

Alors : —&£— = —£ = £ = £ 5 = e R~

(z—1)? (e—1)2 43'm2(9/2)

(ew/?(ei‘9/2—e*”¢9/2))2 et (2isin(0/2)))
Remarque : sin(0/2) # 0 car z # 1

Bilan : |Si z est nombre complexe de module 1 différent de 1 alors

(z *1)

—=— est un réel négatif.

(24) @ Commencons par remarquer que : zp +1=0= [z}| =|-1|=1=|z| =1

e Soit z un complexe de module 1 différent de 1.

5 N 2 P(zp2
D’aprés Q21) : 2P'(z) = 2P(z) + 2 Z ’;k 12 )
Comme |z| =1 alors |P’( )| = |zP'(z )| et donc, par inégalité triangulaire :
PEI <5 IPEI+E S 35

On utilise : |P(2)| < ||P|] et |P(2x2)| < ||P|| puisque |z| = |zxz| = 1 car |z| = |z =1

Alors : |P'(2)| < 2||P|| + 2 Z [Pl

zkl

n

Mais, d’apres Q23) 57 <0 donc: - |7

zkl

On aalors : [P'(2)] < §[|P|| + 277 [|Pl| = n]|P|

On a donc en passant au sup : sup || P'(z)|| < n||P||
|z|=1
z#1

Mais comme z — P’(z) est continue on a : sup ||P'(2)|| < n||P|| et donc

\Zlf

Q25) Soit Q € T, que l'on écrit q(x) = Z cpetr®
k=—n

Z e 1 :%Qpar Q21) b)

||| < n [P

2n . ) )
Changement d’indice p =n +k : q(z) = 3. ¢, /P =0 3" ¢ P2
=0

2n
Posons P = Y ¢,_, XP alors ¢(z) = e""™* P(e'™)
p=0
Comme || = 1 alors |P'(e™)| < [|P']| et |P(e™)| < || P|]

De plus |¢(z)| = |P(e™)]|, donc ||q||, = ||P||
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En dérivant ¢ : ¢'(v) = —ine™"*P(e") + e~n=1)z P! (i) donc par inégalité triangulaire :
¢ ()] < n|P(e)| + | P(e)]

Avec les résultats ci-dessus : |¢/(x)| < n||P]| + || P'||
Comme P € C,,[X] alors, d’aprés Q24) : ||P'|| < 2n||P]|.
On reporte ci-dessus : |¢'(z)| < n||P|| + 2n||P|| = 3n||P||

Bt comme [|P| = [lgll,, on a alors - |g'(x)] < 3n [lalL,

Et en passant au sup sur R : | ||¢[|, < 3n|q||

(Q26) e Si y = 0 la relation est évidente. On va la démontrer pour y > 0.
e Posons Vt > 0, ¢(t) =t* = exp(aln(t))
Alors ¢ est C! sur |0, +oo[ et Vi > 0, ¢/(t) = at* ! > 0 car @ > 0 et donc ¢ est croissante.
e Soity>0etx>y
Alors comme ¢ est croissante et que y < z alors ¢(y) < p(z) © y* <z* & 0 < 2% — y©
e Soit y > 0 . Posons maintenant : Vo >y, A(z) = (z —y)* — 2% + y*
Alors A est dérivable et Vo >y, A'(z) =a(z —y)* ' —az* ! -0 = a((x —y)t — xa_1>

Comme o — 1 < 0 alors u — u®~! est décroissante et donc, comme z —y <z ona: (r —y)* -zt >0et
donc A est croissante.
Mais A(y) = 0, donc Vz € [y, +oo[, A(z) > 0= z* —y* < (v —y)*

e En regroupant les résultats : [V(z,y) e R? , 0 <y <z =0<z2*—y* < (v —y)*

Q27) Si on passe a la valeur absolue en Q26) on a: |hq(x) — ho(y)| < |z — y|® et donc ’ he est a-holdérienne.

Q28) Pour = > 0 : ha(@)hs(©) ‘%‘ = ’xa*/j’

|2—0|"
Mais, si « > 3, ona a — 3 > 0 et donc lim MZ—FO@
T—>+00 |z—0]
et,sia< f,onaa—[<0etdonc limM:—l—oo
z—0 [z—0]

Si h, était 8 holdérienne, on aurait en prenant y = 0 : |ha(z) — ho(0)] < K |z — 0|° done
0 < hal@-hs0)

< oo < K ce qui est impossible vu que I'on a au moins une des deux limites ci-deesus.
.

On a donc : ’ha n’est pas (8 héldérienne.‘

Q29) On prend y €]0, 1[ et = €]0,1 — y] pour que tout les termes existent.
Posons alors B(z) = (z + y)in(z + y) — xin(z) — (y — 1)In(1 — y) qui est dérivable sur 0,1 — y[ avec
B'(z) =In(zx +y) + i—IZ —In(z) — 22 — 0 =In(z +y) Comme z < 1 —y alors z +y < 1 et donc B'(z) < 0.
On en déduit B décroissante.
Comme lim B(z) = yln(y) — (y — Din(1 —y) = yln(y) + (1 — y)in(l —y) <0, alors Vo €]0,1 —y[, B(y) <0
z—0 N——

/

-~

<0 <0

On a donc : |Vy €]0,1[, Yz €]0,1 —y] , (z+y)in(z+y) —zin(z) < (y — 1)in(1l —y)

Q30) e On peut écrire Q29), sous la forme Vy €]0,1[ , Vz €]0,1 —y|, k(z+y) — k(z) < —k(1 —y)
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Comme k est continue sur [0,1] (la valeur donnée en 0 permet de prolonger x +— zin(x)), alors on peut
prolonger cette formule et écrire : VY € [0,1] , VX € [0,1—y], k(X +Y) —k(X) < —k(1-Y)

e On fixe a €]0, 1[.
Soit (x,y) € [0, 1]%. On suppose de plus que 0 <z <y <1

e Onpose X =z €[0,1] et Y =y —a €]0, 1] pour avoir : y = X +Y et x = X et I'inégalité précédente
donne : k(y) —k(z) < —k(l—y+2z)=—k(l —u) avecu=y —x

e Montrons que k(y — =) < k(y) — k(x)
On pose D(y) = k(y) — k(z) — k(y — 2)
Dest Clet D(y) =k (y)—K(y—z) =1+In(y) — (1+In(y—2z)) = In(y) — In(y — ) > 0 car on prend y > x
Donc D est croissante sur |z, 1[ et D(z) = k(z) — k(z) — k(0) = 0 donc D(y) >0
et donc k(y — x) < k(y) — k(x) ou encore k(u) < k(y) — k(z) avecu =y — x

e On a alors : la double inégalité : k(u) < k(y) —k(z) < —k(1 —u) avecu =y —x
Ce qui donne :
k(y) = k(z)| < max(k(u)], [=k(1 = u)]) = maz(=k(u), =k(1 —u)) < —k(u) = k(1 - u)

e On utilise ce résultat pour majorer %

Alors |k(|x)—lT((¥y)\ < —k(1—u)—k(u) _ C(U) P— C(U,) _ —(1—w)ln(l—u)—uln(u)
T—yY — u ue
On va étudier C sur |0,1] car u =y — z €]0,1]
C' est clairement continue sur ]0, 1[. Voyons si elle est prolongeable par continuité en 0 et en 1.

En 0 :
O(U) _ —(1-u)in(l—u) + —uln(u) _ —(1—-u)(—uto(u)) + —uln(u) _ w1 + O(Ua_l) . ul_aln(u) _0> Ocar 1 —a >0
u—

u u u u

Donc C' est prolongeable par continuité en 0.

Enl:
C(u) = —U—win(—w—uln(w) __, () Done O est prolongeable par continuité en 1.

«
u u—1

C' peut donc étre prolongée en une fonction continue sur [0, 1] et on a alors une fonction continue sur un
segment. On en déduit que C est bornée, donc IM >0, Vu €]0,1[, C(u) < M

Doncsi0<zx<y<lona: W < M qui sécrit : |k(z) — k(y)| < M |z — y|*
Le résultat est évident pour x = y et est aussi vrai, par symétrie pour x > y.

On a donc V(z,y) € [0,1]2 , |k(z) — k(y)| < M |x — y|* et donc |Va €]0,1[ , k est a-héldérienne.
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Q31) e Soit f € HS
Fixons x € R.
On sait que : |f(z) — f(y)| < K|z —y|* — 0 car a €]0, 1]
Ty

On a donc f continue. Comme on savait déja que f était 27 périodique alors : f € C9_
On a donc HS. C C9.
e HS est clairement non vide, puisque la fonction nulle est dans cette enesemble.
e Soit (f,g) € (Hg)? et AER

Alors, par inégalité triangulaire :
1 +20)(@) — (7 + M)W < 1£@) = F)] + N 9(z) — o) )
< Kpla =yl + I\ Kyl — [ = (K7 + M K,) |2 — o]
On en déduit f + Ag a-hdldérienne donc f + A\g € HS,

e On a donc HS. est une partie non vide, stable par combinaison linéaire de C?9 . donc :

[e] : 0
HS_ est un sous-espace vectoriel de C5_

Q32) e On a g € C9_, donc on peut utiliser le 16b) pour trouver T,,g telle que [|T,9 — g, < bwy()
Mais d’aprés la question Q8) J,, € Ty, et donc T,,g € Ty,
On a donc d2,(9) < |lg = Thgll < bwy()

Mais g a-héldérienne donne : wy(h) < Kh* donc : 62,(9) < ||g — Thg|l < Kb-%
On en déduit donc d,,(g) = O()

na

Puisque Tb,, C Tony1 C Tonyo alors : a10(g) < ant1(g) < 62,(g) et done 6a,11(g) = O(=)

no

Finalement : |5,(g) = O(=%)

Q33) » O a 0,(f) = inf |1 = pll.

Comme on peut choisir p égale & la fonction nulle qui est bien dans 7}, alors : 0,(f) < || f]|.
e Posons Q@ ={pe T, |[f = pll < [Ifllsc}
Alors : # () est non vide puisqu’il contient la fonction nulle.
# () est bornée puisque, par la deuxiéme inégalité triangulaire et par la définition de €2 :
1Pl = 1f 1o < 2= flloe < 1l = 1Pl < 2111l
# Q est fermé car : Q = p~1([0,]|f]|..]) avec p:p € T, — ||p — f||, qui est une application continue.

o p—||f —p||, est donc une application continue qui atteint ses bornes sur 2 puisque € est une partie
fermée bornée de T,

Donc HQH ETna VPEQ, Hf_pHoo Z Hf_QnH :plenjf Hf_pHoo
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e Comme pour p & Qon a: [|p— f|| > ||f|l = 6n(f) alors on en déduit : 6,(f) = ||f — ¢ull

e Conclusion : |3, € T,, , 6,(f) = ||f — @ull

Q34) Posons ¢, = ppi1 — Pn, alors g, € Ton+1, on peut donc appliquer Q25) et obtenir :
Hp;H-l _p;zH S 3 X 2n+1 ||pn+1 _anoo

Mais ||pn+1 — Pnllo = [IPns1 — F + [ — pall,, et par inégalité triangulaire on a :
Pn+1 = Polloe < NP1 = flloo +11f = Pull

On utilise la définition de doyns1 pour avoir : ||[pn41 — pull < 209041 (f)

Mais, par hypothése : dgn+1(f) = O((2"+)°‘) = 0(27("*+) Donc il existe une constante M > 0 telle que :
Syes (f) < M0+

En reportant ci-dessus : ||pn11 — pall,, < 2M2740+)
On reporte encore dans Hp;Hl — p;LH < 3% 2 |pnst — pall

: . / _ Al < n+log—a(nt+l) _ l—a 9n(1—a)
et on obtient : Han an < 6M2"T2 6]\/[5/ 2

On a donc : [3C" >0, Hp;H _p;lH < ¢roni-)

Q35) On remarque p, = po + Igl(pk — pr—1), donc en dérivant : p/, = p| + ];(P;c — Di1)

n
Par inégalité triangulaire : ||p] || < [|ppllo + k; Hp§§ - p;_lﬂoo

On utilise alors Q34) et on a : ||p)||. < [Pyl + Do C2k-D-o)
k=1

Somme des termes d’une série géométrique de raison 217

n(l—a) n(l—a) n(l—a)
1Plloo < lPolloo + 525 = 1Pl < IIPollo + O Zr=t = 1Pl < ol + C'3=s

On a done : |[|p |l < 11Phlls + 5re=2"" "

Q36) On a : 2% > 1 puisque « €]0, 1] donc ||pj||,, < 2"~ |||l

!/

——  J9n(l-a)
21— — 11

A

Reporter en Q35) : ||ph]|., < 270 [[ph||, + gl 2709 = 2= [||po|  +

Donc : [3A >0, [|p|],, < A2n(1-o)
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Soit (z,y) € R? et n € N.
Alors f(x) — f(y) f(z) = pu(z) + pu(z) — pu(y) + pn(y) — f(y) donc par inégalité triangulaire :
|f(@) = fW) < [f(@) = pa(@)] + [Pn(2) = Pu(y)] + [Pa(y) = ()]

Par définition de [|f — pnll, on a: |f(z) = f(¥)] < 2[|f = palls + [Pn(2) = pa(y)]

olt

Q37)

Mais || = pal ., < 200 (f) < Cpb done : () — F(y)] < 20 = + [pa(@) = pu(y)

Mais |p,(z) — ( )| < w,p, (| —y|) <|p)ll. |z — y| par le théoréme des accroissements finis. Donc :
f(x) = fly )!<20 = T Pl 2 = 9l

En utilisant Q36), on obtient : | |f(x) — f(y)| < C2'7 4 A2 |1 — |

Q38) On cherche une constante K > 0 telle que : V(x,y) € R* | |f(z) — f(y)| < K |z — y|*
Comme suggéré par I’énoncé on a considérer plusiseurs cas.

casl: x =y
Alors |f(z) — f(y)] =0 < K; |z — y|” avec K; = 1 par exemple.
cas 2: |z —y| > 1

Alors |f(z) = f()l < |f @)+ [FW)] < [Ifllo + 1flloe = 211
Comme |z —y| > 1 alors |z — y|* > 1 et donc |f(x) — f(y)] < 2]|f]l |z —y|®

Ona: [f(z) = f(y)] < K|z —y|" avec Ky =2[|f][,
cas3: 0< |z —y| <1

Comme suggéré choisissons ns € N | 2n+1 <l —y| <&
(possible car (5) est décroissante et tend vers 0 en partant de 1> |z —yl)

Alors, avee Q37) : |f(2) — fy)] < 2% + 42 o —y

Mais 2" |z — y| < 1 donc |f(:c) f)] <2+ 4 =% = (2C+A)2>

ona 2(n+l)a
Mais gzer < | — y| donc serms < |z —y[" done [f(2) — f(y)| < (2C + A)2° o — y|*

K
On a donc trouvé K > 0 telle que : V(z,y) € R? | |f(z) — f(y)| < K|z — y|*

On a donc : ‘f est oz—héldérienne.‘
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