
PSI* 2025-2026

Correction du devoir à la maison de Mathématiques n°7

EXERCICE 1

a) � On pose :
f : ]0,+∞[ −→ R

x 7−→ xln(x)
1+x3

Alors f est continue sur ]0,+∞[ et donc A pose problème en 0 et en +∞.

� En 0

Par limite du cours on a : lim
x→0

f(x) = 0, donc f est prolongeable par continuité en 0 et donc
1∫
0

f(x)dx est

convergente.

� En +∞
f(x)

1

x3/2

∼ xln(x)
x3 x3/2 = ln(x)√

x
−→

x→+∞
0, on en déduit donc f(x) = o( 1

x3/2 )

Comme x 7→ 1
x3/2 est intégrable sur [1,+∞[ (par Riemann) , on a, par négligeabilité, f est intégrable sur

[1,+∞[ et donc
+∞∫
1

f(x)dx est convergente.

�

+∞∫
1

f(x)dx et
1∫
0

f(x)dx sont convergentes donc A est convergente.

b) Pour n > 1 on a :
(ln(n))2

n2
1

n3/2

= (ln(n))2√
n

−→
n→+∞

0, on en déduit donc (ln(n))2

n2 = o( 1
n3/2 )

Comme
∑

1
n3/2 est une série de Riemann absolument convergente, alors, par négligeabilité,

∑ (ln(n))2

n2 convergente.

c) On pose ∀z ∈ C , ∀n ∈ N , an(z) = (−1)n sin(n)+2n

8n
z2n+1

On a, pour z ̸= 0 : |an(z)| ∼ 2n

8n
|z|2n+1 ∼ |z| ( |z|

2

4
)n∑

( |z|
2

4
)n est alors une série géométrique de raison |z|2

4
convergente si et seulement si |z|2

4
< 1 ⇔ |z| < 2

Par la règle de l'équivalent :
∑

an(z) convergente ⇔ |z| < 2

On en déduire que le rayon de convergence de
∑

(−1)n sin(n)+2n

8n
z2n+1 vaut R = 2

d) Pour z ∈ C tel que z ̸= 0 on pose un(z) =
n!

(2n)!
zn. Alors un(z) ̸= 0 et∣∣∣un+1(z)

un(z)

∣∣∣ = ∣∣∣ (n+1)!zn+1

(2n+2)!
(2n)!
n!zn

∣∣∣ = ∣∣∣ (n+1)z
(2n+2)(2n+1)

∣∣∣ ∼ ∣∣ z
4n

∣∣ −→
n→+∞

0

Par la règle de D'Alembert, comme 0<1, alors
∑

un(z) est toujours convergente et donc

le rayon de convergence de
∑

n!
(2n)!

zn vaut R = +∞

e) On distingue deux cas.

CAS 1 : |a| ≤ 1
Alors an+n

n+1
∼ 1 donc par la règle de l'équivalent pour les séries entières :

∑
an+n
n+1

zn a même rayon de
convergence que

∑
1zn qui est une série entière du cours de rayon de convergence 1.
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CAS 2 : |a| > 1
Alors an

n
∼ 1 donc par la règle de l'équivalent pour les séries entières :

∑
an+n
n+1

zn a même rayon de convergence

que
∑

an

n
zn.

Par dérivation, cette série entière a même rayon de convergence que :
∑

anzn =
∑

(az)n

On reconnaît une série géométrique de raison az, convergente si et seulment si |az| < 1 ⇔ |z| < 1
|a|

Le rayon de convergence de
∑

an+n
n+1

zn vaut alors R = 1
|a|

(a ̸= 0)

Bilan : Le rayon de convergence de
∑

an+n
n+1

zn vaut : R =

{
1
|a| si |a| > 1

1 si |a| ≤ 1

On peut résumer ceci en R = Min(1, 1
|a|)

EXERCICE 2

On pose :

g : R −→ R

x 7−→

{
sin(x)

x
si x ̸= 0

1 si x = 0

On saut d'après le cours que : ∀x ∈ R , sin(x) =
+∞∑
n=0

(−1)n

(2n+1)!
x2n+1

On a donc : ∀x ∈ R∗ , f(x) =
+∞∑
n=0

(−1)n

(2n+1)!
x2n

On remarque que cette dernière formule est encore valable en 0, puisque l'on a posé g(0) = 0
On a donc g qui est développable en série entière sur R et donc g est C∞ sur R.

On a posé g de telle sorte que : f = g2 et donc f est C∞ sur R comme produit de fonctions C∞.

EXERCICE 3

a) � S(1) =
+∞∑
n=2

(−1)n

n(n−1)∣∣∣ (−1)n

n(n−1)

∣∣∣ ∼ 1
n2 > 0, comme

∑
1
n2 est une série de Riemann convergente alors

∑∣∣∣ (−1)n

n(n−1)

∣∣∣ est convergente par la
règle de l'équivalent.
On a donc S(1) absolument convergente et donc convergente et donc,
comme R = sup({x ≥ 0 , S(x) convergente }) on a que R ≥ 1

� Par comparaison puissance-exponentielle |x| > 1 ⇒
∣∣∣ (−1)n

n(n−1)
xn

∣∣∣ −→
n→+∞

+∞

Comme R = sup({x ≥ 0 , ( (−1)n

n(n−1)
xn)n∈N bornée }) alors : R ≤ 1

On a R ≥ 1 et R ≤ 1 donc R = 1

b) Par dé�nition du rayon de convergence on sait déjà que S est dé�nie sur ]−R,R[ et que D ⊂ [−R,R]
Il reste à voir ce qui se passe en R et −R. On a vu au a) que S(1) était convergente donc 1 ∈ D. De même
−1 ∈ D.

Bilan : D = [−1, 1]
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c) S est C∞ sur ]−R;R[ comme série entière.
On peut dériver terme à terme une série entière sur son intervalle ouvert de convergence. On a alors

∀x ∈]−R;R[ , S ′(x) = d
dx
(
+∞∑
n=2

(−1)n

n(n−1)
xn) =

+∞∑
n=2

d
dx
( (−1)n

n(n−1)
xn) =

+∞∑
n=2

(−1)n

(n−1)
xn−1 = −

+∞∑
p=1

(−1)p

p
xp

On reconnaît une série entière du cours et on a alors : ∀x ∈]− 1; 1[ S ′(x) = ln(1 + x)

En intégrant par parties, avec des fonctions dérivables, l'expression trouvée on obtient sur ]− 1; 1[ :
S(x) = [(x+ 1)ln(1 + x)]−

∫
(x+ 1) 1

x+1
dx = (x+ 1)ln(x+ 1)− x+ µ avec µ ∈ R

Avec l'expression ci-dessus on obtient en x = 0 : S(0) = µ
Avec l'expression sous forme de série entière on obtient : S(0) = 0 et on a donc µ = 0

On a �nalement : ∀x ∈]− 1; 1[ , S(x) = (x+ 1)ln(1 + x)− x

d) Si on pose : ∀n ≥ 2 et ∀x ∈ [−1, 1] , fn(x) =
(−1)n

n(n−1)

Alors ||fn||∞ = sup
xin[−1,1]

|fn(x)| = 1
n(n−1)

∼ 1
n2

Comme
∑

1
n2 est absolument convergente, alors, par équivalent

∑
||fn||∞ est convergente, et donc

∑
fn

converge normalement et donc uniformément sur [−1, 1]

Comme la convergence uniforme conserve la continuité et que les fn sont continues, on a que :

S est constinue sur D = [−1, 1]

e) � Comme S est continue en 1, alors :
S(1) = lim

x→1−
S(x) = lim

x→1−
((x+ 1)ln(1 + x)− x) = 2ln(2)− 1 = ln(4)− 1

On en déduit S(1) =
+∞∑
n=2

(−1)n

n(n−1)
= ln(4)− 1 et on remarque que l'expression du c) est valable en x = 1

� De même, S est continue en −1 et donc :
S(−1) = lim

x→(−1)+
S(x) = lim

x→(−1)+
((x+ 1)ln(1 + x)− x) = 0− (−1) = 1

On a donc : S(x) =

{
(x+ 1)ln(1 + x)− x si x ∈]− 1, 1]

1 si x = −1

EXERCICE 4 : exercice de e3A PC 2025

1) Si y est une solution de (E) alors on peut évaluer (E) en x = 0, et on a :

0y′′(0) + xy′(0)− 1y(0) = 0 donc y(0) = 0

2.1) � On a déjà : a0 = f(0) = 0 par la question 1).
Comme on suppose que f ′(0) = 1 alors a1 = 1

� Reste à montre la formule de récurrence.

Une série entière est C∞ sur son intervalle ouvert de convergence et on peut la dériver terme, alors :

∀x ∈]−R;R[ ,


f ′(x) =

+∞∑
n=0

nanx
n−1

f ′′(x) =
+∞∑
n=0

n(n− 1)anx
n−2
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On a alors :
f solution de E sur ]−R,R[

⇔ ∀x ∈]−R,R[ , x2f ′′(x) + xf ′(x)− (x2 + x+ 1)f(x) = 0

⇔ ∀x ∈]−R,R[ , x2
+∞∑
n=0

n(n− 1)anx
n−2 + x

+∞∑
n=0

nanx
n−1 − (x2 + x+ 1)

+∞∑
n=0

anx
n = 0

⇔ ∀x ∈]−R,R[ ,
+∞∑
n=0

n(n− 1)anx
n +

+∞∑
n=0

nanx
n −

+∞∑
n=0

anx
n −

+∞∑
n=0

anx
n+1 −

+∞∑
n=0

anx
n+2 = 0

Changement d'indice p = n+ 1 dans l'avant dernière somme, p = n+ 2 dans la dernière et p = n dans les
autres.

f solution de E sur R

⇔ ∀x ∈]−R,R[ ,
+∞∑
p=0

p(p− 1)apx
p +

+∞∑
p=0

papx
p −

+∞∑
p=0

apx
p −

+∞∑
p=1

ap−1x
p −

+∞∑
p=2

ap−2x
p = 0

On fait attention aux premiers termes, on tient compte de a0 = 0 et a1 = 1, on regroupe les termes pour
p ≥ 2

f solution de E sur R

⇔ ∀x ∈]−R,R[ , 0 + 0 + 0 + a1x− a0 − a1x− a0x+
+∞∑
p=2

[p(p− 1)apx
p + pap − ap − ap−1x

p − ap−2]x
p = 0

⇔ ∀x ∈]−R,R[ ,
+∞∑
p=2

[(p(p− 1) + p− 1)ap − ap−1 − ap−2]x
p = 0

⇔ ∀x ∈]−R,R[ ,
+∞∑
p=2

[(p2 − 1)ap − ap−1 − ap−2]x
p = 0

On utilise maintenant l'unicté du DSE0 avec R > 0 pour obtenir :
∀p ≥ 2 , (p2 − 1)ap − ap−1 − ap−2 = 0
En posant n = p et en reprenant les résultats du début de questions :

∀n ≥ 2 , (n2 − 1)an − an−1 − an−2 = 0

a0 = 0

a1 = 1

2.2) Montrons par une récurrence double sur n ∈ N∗ que : ∀n ≥ 1 , |an| ≤ 1
(n−1)!

Initialisation : a1 = 1 et 1
(1−1)!

= 1 donc |a1| ≤ 1
(1−1)!

vraie.

(4− 1)a2 − a1 − a0 = 0 ⇒ 3a2 = 1 ⇒ a2 =
1
3
et 1

(2−1)!
= 1

2
donc |a2| ≤ 1

(2−1)!
vraie.

Hérédité : On suppose |an−1| ≤ 1
(n−2)!

et |an−2| ≤ 1
(n−3)!

Alors (n2 − 1)an = an−1 + an−2 implique, par l'inégalité triangulaire : (n2 − 1) |an| ≤ |an−1|+ |an−2|
Et, avec les hypothèses de récurrences : (n2 − 1) |an| ≤ 1

(n−2)!
+ 1

(n−3)!
= 1

(n−3)!
( 1
n−2

+ 1) = 1
(n−3)!

n−1
n−2

⇒ (n− 1)(n+ 1) |an| ≤ 1
(n−3)!

n−1
n−2

⇒ (n+ 1) |an| ≤ 1
(n−3)!

1
n−2

⇒ |an| ≤ 1
(n−3)!

1
(n−2)(n+1)

⇒ |an| ≤ 1
(n−3)!

1
(n−2)(n−1)

car 1
n+1

≤ 1
n−1

⇒ |an| ≤ 1
(n−1)!

Conclusion : ∀n ≥ 1 , |an| ≤ 1
(n−1)!
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2.3)
+∞∑
n=1

1
(n−1)!

xn =
+∞∑
n=1

xn−1

(n−1)!
= x

+∞∑
p=0

xp

p!
= xexp(x) et on sait que çà converge pour tout x ∈ R d'après le

cours.

Donc
+∞∑
n=1

1
(n−1)!

xn a pour rayon de convergence +∞, et, par comparaison avec l'inégalité du 2.2) : R = +∞

La fonction f est donc dé�nie sur R.

3.1) z(0) = 0y(0)e0 = 0
Comme y est C2 alors z est C2

Pour x ∈ R , z′(x) = y(x)ex + xy′(x)ex + xy(x)ex = (1 + x)y(x)ex + xy′(x)ex donc z′(0) = y(0) = 0 d'après
1.)

On a donc : z(0) = z′(0) = 0

3.2) z est C2 et ∀x ∈ R
z′′(x)

= y(x)ex + (1 + x)y′(x)ex + (1 + x)y(x)ex + [y′(x)ex + xy′′(x)ex + xy′(x)ex]
= [xy′′(x) + (2 + 2x)y′(x) + (2 + x)y(x)]ex

Alors : xz′′(x)− (2x+ 1)z′(x)
= x[xy′′(x) + (2 + 2x)y′(x) + (2 + x)y(x)]ex − (2x+ 1)[(1 + x)y(x)ex + xy′(x)]ex

= ex
(
x2y′′(x) + (2x+ 2x2 − 2x2 − x)y′(x) + (2x+ x2 − (2x+ 1)(1 + x))y(x)

)
= ex

(
x2y′′(x) + xy′(x) + (2x+ x2 − 2x2 − 3x− 1)y(x)

)
= ex

(
x2y′′(x) + xy′(x)− (x2 + x+ 1)y(x)

)
= 0 car y est solution de (E)

On a donc : z′ est solution de (F )

3.3.1) Soit I = R∗
+. Alors :∫

(2 +
1

x
)dx = 2x+ ln(|x|) = 2x+ ln(x) car x > 0

(F ) est une équation di�érentielle linéaire d'ordre 1, homogène, à coe�cient continue (coe�cient en u′ non
nul), donc, d'après le cours, les solutions de (F ) sur I s'écrivent : u(x) = aexp(2x+ ln(x) = axe2x avec a ∈ R

Les solutions sur R∗
+ s'écrivent : u(x) = axe2x avec a ∈ R

3.3.2) On a lim
x→0+

u(x) = lim
x→0+

axe2x = 0 donc les fonctions sont prolongeables par continuité en 0 , en

posant u(0) = 0

3.4) Posons ∀x ∈ R, U(x) = cxe2x

Alors U est C2 sur R et U ′(x) = c(1 + 2x)e2x.

Alors : U ′(x)− (2 + 1
x
)U(x) = c(1 + 2x)e2x − (2 + 1

x
)cxe2x = ce2x

(
1 + 2x− 2x− 1

)
= 0

Donc : x 7→ cxe2x est solution de (F ) sur R∗
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3.5) Comme z′ est solution de (F ) sur R, alors, en admettant le résultat de l'énoncé (que l'on sait capable,
en PSI, de démontrer) : ∃a ∈ R , z′(x) = 4axe2x

Par intégration par parties :
z(x) = [4ax e2x

2
]−

∫
4a e2x

2
dx = 2axe2x − ae2x + θ = a(2x− 1)e2x + θ avec θ ∈ R

Mais z(0) = 0 donc θ = a

Finalement : ∃a ∈ R , z(x) = a(2x− 1)e2x + a

3.6) f est une solution C2 de (E) sur R, donc d'après ce qui précède :
∃a ∈ R , a(2x− 1)e2x + a = xf(x)ex

Donc, pour x ̸= 0 , f(x) = a
(
(2− 1

x
)ex + 1

xex

)
= a

(
2ex − 2 1

x
ex−ex

2

)
= 2a

(
ex − sh(x)

x

)
Au voisinage de 0 : f(x) = 2a

(
1 + x+ o(x)− x+o(x2)

x

)
= 2a(1 + x− 1 + o(x)) = 2ax+ o(x)

Comme f est C∞ on a aussi : f(x) = f(0) + f ′(0)x + o(x), donc, par unicité du DL : 2a = f ′(0) = 1 par la
question 2.)

Il reste f(x) = ex − sh(x)
x

pour x ̸= 0

On a alors : f(x) =

{
ex − sh(x)

x
si x ̸= 0

0 si x = 0

EXERCICE 5 : exercice de e3A MP 2025

1.) On sait d'après le cours que : ∀x ∈ R , ex =
+∞∑
n=0

xn

n!

2.) Comme n! ≥ 1 alors : 0 ≤ 1
(n!)2

≤ 1
n!

On sait (d'après 1.) que
∑

xn

n!
a pour rayon de convergence +∞

Donc, par comparaison :
∑

xn

(n!)2
a pour rayon de convergence +∞ et f est dé�nie sur R.

3.) f est une série entière de rayon de convergence +∞, donc f est de classe C∞ sur R.

4.) Soit [a, b] un segment de R.
Comme f est C∞ sur [a, b] ont peut appliquer le théorème des accroissements �nis et obtenir :
∀(x, y) ∈ [a, b]2 , ∃c ∈]a, b[ , f(x)− f(y) = f ′(x)(x− y)

Mais f ′ est continue sur [a, b] donc, par le théorème des bornes atteintes ∃M > 0 , ∀c ∈ [a, b] , |f ′(c)| ≤ M

Appliquer à l'inégalité ci-dessus : |f(x)− f(y)| ≤ M |x− y|
On a donc f M lipschitzienne sur [a, b].

On a donc f lipschitzienne sur tout segment de R

5.) On peut dériver une série entière sur son intervalle ouvert de convergence. Ici, on peut donc dériver f

sur R et f ′(x) =
+∞∑
n=1

nxn−1

(n!)2
=

+∞∑
n=1

1
(n−1)!

xn−1

n!

Mais, puisque x ≥ 0 et 1
(n−1)!

≤ 1, on a : f ′(x) ≤
+∞∑
n=1

xn−1

(n−1)!
= ex

Bilan : ∀x ≥ 0 , f ′(x) ≤ ex
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6.) Soit x et y deux réels positifs.
Toujours avec le théorème des accroissements �nis ∃c ∈ [x, y] , f(x)− f(y) = f ′(c)(x− y)

En prenant la valeur absolue : |f(x)− f(y)| = |f ′(c)| |x− y|

Comme f ′(c) ≥ 0 (somme de termes positifs) et que f ′(c) ≤ ec alors : |f(x)− f(y)| ≤ ec |x− y|

Comme c ∈ [x, y] alors ec ≤ ez et on a bien : ∀(x, y) ∈ [0,+∞[2 , |f(x)− f(y)| ≤ ez |x− y|

7.) f est C∞ donc par la formule de Taylor-Young, pour x au voisinage de 0 : f(x) = f(0)+xf ′(0)+ o(x)
Mais f(0) = 1

0!2
= 1 et f ′(0) = 1

1!2
= 1 donc f(x) = 1 + x+ o(x) ⇒ f(x)− 1 = x+ o(x) ∼ x

Donc, au voisinage de 0 : f(x)− 1 ∼
x=0

x

8.) On a ∀t > 0 , f(t) ≥ 1 (1 est le premier terme de la somme et les autres sont positifs)
Donc t 7→ 1

t(f(t))2
est bien dé�nie sur ]0,+∞[ et même de classe C∞

g est donc une primitive d'une fonction C∞, donc : g est C∞ sur ]0,+∞[

9.) 1
t(f(t))2

≥ 0 sur ]0,+∞[ , donc le signe de g dépend de la position de x par rapport à 1.

On a :


g(x) > 0 si x > 1

g(x) < 0 si x < 1

g(1) = 0

10.) On remarque que : ∀x > 0 ,
x∫
1

1
t
dt = ln(x)

Donc g(x)− ln(x) =
x∫
1

1
t(f(t)2

dt−
x∫
1

1
t
dt =

x∫
1

[ 1
t(f(t))2

− 1
t
]dt =

x∫
1

1−(f(t))2

t(f(t))2
dt

On pose ∀t > 0 , g(t) = 1−(f(t))2

t(f(t))2

par la question 7.), au voisinage de 0 :

g(t) = 1−(1+t+o(t))2

t(f(t))2
= 1−1−2t+o(t)

t(f(t))2
= −2t+o(t)

t(f(t))2
= −2+o(1)

(f(t))2
−→
t→0

−2 (puisque f continue en 0 et f(0) = 1)

g est donc prolongeable par continuité en 0 et donc
1∫
0

g(t)dt est convergente.

On a donc g(x)− ln(x) −→
x→0

1∫
0

g(t)dt

Donc g(x)− ln(x) = O(1) et donc : g(x) ∼
x=0

ln(x)

11.) Pour t > 0 : f(t) = 1 + t+
+∞∑
n=2

tn

(n!)2︸ ︷︷ ︸
>0

> 1 + t, donc : ∀t > 0 , f(t) > 1 + t
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12.) De 11.) on déduit pour t > 0 que : 0 ≤ 1
t(f(t))2

≤ 1
t(1+t)2

Comme 1
t(1+t)2

∼ 1
t3
et que t 7→ 1

t3
est intégrable sur [1,+∞[ alors, par équivalent, t 7→ 1

t(f(t))2
est intégrable

sur [1,+∞[ et donc
+∞∫
1

1
t(f(t))2

dt est convergente.

On a alors : lim
x→+∞

g(x) =
+∞∫
1

1
t(f(t))2

dt

Bilan : g possède une limite lorsque x tend vers +∞

13.) On a ∃(a, b, c) ∈ R3 , 1
X(1+X)2

= a
X
+ b

1+X
+ c

(1+X)2

Alors, par équivalences :
1

X(1+X)2
= a

X
+ b

1+X
+ c

(1+X)2

⇔ 1
X(1+X)2

= a(X+1)2+bX(1+X)+cX
X(1+X)2

⇔ 1 = a(X + 1)2 + bX(1 +X) + cX

⇔ 1 = (a+ b)X2 + (2a+ b+ c)X + a ⇔


a = 1

2a+ b+ c = 0

a+ b = 0

⇔


a = 1

2a+ b+ c = 0

b = −1

⇔


a = 1

c = −1

b = −1

On a donc : 1
X(1+X)2

= 1
X
− 1

1+X
− 1

(1+X)2

14.) En intégrant 1
t(f(t))2

≤ 1
t(1+t)2

entre 1 et x > 1, on a , avec 13.) :

g(x) ≤
x∫
1

(
1
t
− 1

1+t
− 1

(1+t)2

)
dt⇒ g(x) ≤ [ln(t)−ln(1+t)+ 1

1+t
]x1 ⇒ g(x) ≤ ln(x)−ln(1+x)+ 1

1+x
−0+ln(2)− 1

2

On en déduit : ∀x > 1 , g(x) ≤ ln
(

x
1+x

)
+ 1

1+x
+ ln(2)− 1

2

15.) � Sur ]0, 1] on a g(x) ≤ 0 ≤ ln(2)

� Pour x > 1. Comme x
x+1

< 1 alors ln( x
x+1

) < 0 De plus x > 1 ⇒ 1
1+x

< 1
2
donc 1

1+x
− 1

2
< 0

Alors l'inégalité du 14.) donne : ∀x > 1 g(x) ≤ ln(2)

� Bilan : g est majorée par ln(2) sur ]0,+∞[
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Q1) Dans cette question g = sin. Donc g est C1 et on peut appliquer le théorème des accroissements �nis et
obtenir : ∀(t, s) ∈ R2 , g(t)− g(s) = g′(u)(t− s) avec u ∈ [s, t] ou u ∈ [t, s]
Comme g′ = cos alors, |g′(u)| ≤ 1 et donc |g(t)− g(s)| ≤ |t− s|
Donc si |t− s| ≤ h alors |g(t)− g(s)| ≤ h

Comme ωg(h) = sup
|t−s|≤h

|g(s)− g(t)| on en déduit que wsin(h) est bien dé�ni et que : ωsin(h) ≤ h

Q2) a) � Si h > 0 il existe des couples (t, s) ∈ R2 tel que |t− s| ≤ h et donc ωg(h) est le sup d'une partie
non vide de R, donc ωg(h) existe dans R ∪ {+∞}.
Il reste à voir que ωg(h) est �ni.

� Mais g est continue sur [0, 2π] donc g est bornée sur [0, 2π] et il existe ∃M > 0 , |g(x)| ≤ M
Comme g est 2π périodique alors ∀x ∈ R , |g(x)| ≤ M
Par inégalité triangulaire : |g(t)− g(s)| ≤ |g(t)|+ |g(s)| ≤ 2M
En passant au sup, on a : ωg(h) ≤ 2M et donc ωg(h) < +∞ et ωg(h) est donc un réel.

Bilan : Si g ∈ C0
2π alors ωg(h) est un réel bien dé�ni.

Q2) b) � Si de plus g est C1 alors avec le théorème des accroissements �nis :
|g(t)− g(s)| = |g′(u)| |t− s|

||g′||∞ est bien dé�nie car g′ est continue et 2π périodique (comme pour g au 2)a)),
donc si de plus |t− s| ≤ h alors : |g(t)− g(s)| ≤ ||g′||∞ h

En passant au sup, on a donc : ∀h > 0 , ωg(h) ≤ ||g′||∞ h

� On a : 0 ≤ ωg(h) ≤ ||g′||∞ h, donc par encadrement : lim
h→0+

ωg(h) = 0

Q3) a) Si h ≤ h′ alors {(s, t) ∈ R2 , , |s− t| ≤ h} ⊂ {(s, t) ∈ R2 , , |s− t| ≤ h′}
Donc, en passant au sup : ωh(g) ≤ ωh′(g)

On a donc : h ≤ h′ ⇒ ωh(g) ≤ ωh′(g)

Q3) b) � Soit (s, t) ∈ R2 tel que |s− t| ≤ h+ h′

Comme les quantités étudiées sont symétriques en s et t, on peut supposer, quitte à échanger s et t, que
: t ≤ s
On a donc : 0 ≤ s− t ≤ h+ h′ et on distingue alors deux cas :

Cas 1 : 0 ≤ s− t ≤ h
Alors comme 0 ≤ s− t ≤ h on a |g(s)− g(t)| ≤ ωg(h) et comme ωg(h

′) ≥ 0 on a :
|g(s)− g(t)| ≤ ωg(h) + ωg(h

′)

9



Cas 2 : h < s− t ≤ h+ h′

Alors, en retranchant h à l'inégalité ci-dessus : 0 < s− t− h ≤ h′

On a alors : |g(s)− g(t)| = |g(s)− g(s− h) + g(s− h)− g(t)| et par inégalité triangulaire :
|g(s)− g(t)| ≤ |g(s)− g(s− h)|+ |g(s− h)− g(t)|
Mais s − (s − h) = h ≤ h donc |g(s)− g(s− h)| ≤ wg(h) et (s − h) − t ≤ h′ (voir ci-dessus) et on donc
|g(s− h)− g(t)| ≤ ωg(h

′) et on a donc |g(s)− g(t)| ≤ ωg(h) + ωg(h
′)

� Dans tout les cas on a : |g(s)− g(t)| ≤ ωg(h) + ωg(h
′) pour (s, t) ∈ R2 , |s− t| ≤ h+ h′

En passant au sup, on obtient donc : ωg(h+ h′) ≤ ωg(h) + ωg(h
′)

Q3) c) � Montrons par récurrence sur n ∈ N∗ que : ∀n ∈ N∗ , ωg(nh) ≤ nωg(h)

Initialisation : pour n = 1, le résultat est évident puisque si n = 1 alors : ωg(nh) = nωg(h)

Hérédité : On suppose le résutat vrai au rang n et on le montre au rang n+ 1.
On a alors : ωg(nh) ≤ nωg(h)
Mais en utilisant le b) : ωg((n+ 1)h) = ωg(nh+ h) ≤ ωg(nh) + ωg(h) ≤ nωg(h) + ωg(h) = (n+ 1)ωg(h)
On a bien le résultat au rang n+ 1

Conclusion : ∀n ∈ N∗ , ωg(nh) ≤ nωg(h)

� Si λ > 0 alors par dé�nition de la partie entière : ⌊λ⌋ ≤ λ ≤ ⌊λ⌋+ 1 ≤ λ+ 1

On a donc : λh ≤ (⌊λ⌋+ 1)h et avec le a) : ωg(λh) ≤ ωg((⌊λ⌋+ 1)h)
On utilise maintenant le b) pour avoir : ωg(λh) ≤ (⌊λ⌋+ 1)ωg(h)
Et comme (⌊λ⌋+ 1) ≤ λ+ 1 alors : ωg(λh) ≤ (λ+ 1)ωg(h)

On a bien : ∀λ > 0 , ωg(λh) ≤ (λ+ 1)ωg(h)

Q4) Soit g ∈ C0
2π. Par la relation de Chasles :

π+x∫
−π+x

g(t)dt =
−π∫

−π+x

g(t)dt+
π∫

−π

g(t)dt+
π+x∫
π

g(t)dt

On e�ectue le changement de variable u = t + π dans la première intégrale et le changement de variable
u = t− π dans la dernière intégrale.

On a alors :
π+x∫

−π+x

g(t)dt

=
0∫
x

g(u− π)du+
π∫

−π

g(t)dt+
x∫
0

g(u+ π)dt

=
π∫

−π

g(t)dt+
x∫
0

(g(u+ π)− g(u− π))dt mais g(u+ π)− g(u− π) = 0 car g 2π périodique

=
π∫

−π

g(t)dt

Donc : ∀g ∈ C0
2π ,

π+x∫
−π+x

g(t)dt =
π∫

−π

g(t)dt

10



Q5) � Soit (p, q) ∈ Tn et α ∈ R. Alors : ∀x ∈ R :
∆(p+ αq)(x)

=
π∫

−π

(p+ αq)(x− t)g(t)dt

=
π∫

−π

(p(x− t) + αq(x− t))g(t)dt linéarité de l'intégrale

=
π∫

−π

p(x− t)g(t)dt+ α
π∫

−π

q(x− t))g(t)dt

= ∆(p)(x) + α∆(q)(x)

On a donc ∆(p+ αq) = ∆(p) + α∆(q) et on a donc la linéarité de ∆.

� Soit p ∈ Tn, on écrit p sous la forme : ∀x ∈ R , p(x) =
n∑

k=−n

cke
ikx

Alors : ∆(p)(x) =
π∫

−π

p(x− t)g(t) =
π∫

−π

n∑
k=−n

cke
ik(x−t)g(t)dt =

n∑
k=−n

[
π∫

−π

cke
−iktg(t)dt]eikx

Avec cette dernière écriture on voit que ∆(p) ∈ Tn

� Finalement on a ∆ linéaire de Tn dans Tn et donc ∆ est un endomorphisme de Tn

Q6) Soit t un réel n'appartenant pas à 2πZ. Alors :
φn(t) = e−ni t

2

n∑
k=0

eikt = e−ni t
2

n∑
k=0

(eit)k

Vu la condition sur t : eit ̸= 1 et on peut utiliser la somme des termes d'une suite géométrique pour avoir

: φn(t) = e−ni t
2
1−ei(n+1)t

1−eit
= e

−nit
2 −e

(n+2)it
2

eit/2(e−it/2−eit/2)
= e

−(n+1)it
2 −e

(n+1)it
2

e−it/2−eit/2
=

−2isin((n+1) t
2
)

−2isin( t
2
)

=
sin((n+1) t

2
)

sin( t
2
)

Pour l'expression de fn il su�t d'élever à la puissance 4.

Conclusion : Si t un réel n'appartenant pas à 2πZ alors : φn(t) =
sin((n+1) t

2
)

sin( t
2
)

et fn(t) =
(

sin((n+1) t
2
)

sin( t
2
)

)4

Q7) On peut écrire que : eni
t
2φn(t) =

n∑
k=0

eikt

Donc, en élevant au carré : eint(φn(t))
2 =

( n∑
k=0

eikt
)2

On peut donc trouver (a0, . . . , a2n) ∈ C2n+1 tel que : eint(φn(t))
2 =

2n∑
k=0

ake
ikt

Et donc (φn(t))
2 =

2n∑
k=0

ake
i(k−n)t

qui peut se ré-indexer posant ℓ = k − n en : (φn(t))
2 =

ℓ∑
ℓ=−n

aℓ+ne
iℓt

On en déduit φ2
n ∈ Tn On démontre de même que : φ4

n ∈ T2n

Bilan : φ2
n ∈ Tn et fn ∈ T2n
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Q8) Avec les expressions initiales de φn et de fn on voit clairement que ces deux fonctions sont C∞ sur R

et donc que l'intégrale
π∫

−π

fn(t)dt est bien dé�nie.

Comme fn est clairement réelle, non nulle et positive (avec l'expression de Q6) on en déduit que :
π∫

−π

fn(t)dt ̸= 0

Si on pose c=
1

π∫
−π

fn(t)dt
on a alors :

π∫
−π

cnfn(t)dt = 1

Q9) fn est paire d'après l'expression de Q6), donc Jn est aussi paire.
On a aussi : t 7→ |t| Jn(t) paire et donc :

π∫
−π

|t| Jn(t)dt = 2
π∫
0

tJn(t)dt = 2cn
π∫
0

tfn(t)dt

Mais on a aussi par parité : cn = 1

2
π∫
0

fn(t)dt
donc 2cn = 1

π∫
0

fn(t)dt

et �nalement
π∫

−π

|t| Jn(t)dt =
π∫
0

tfn(t)dt

π∫
0

fn(t)dt

Q10) ∀t ∈ [0, π
2
] , sin′′(t) = −cos(t) ≤ 0 donc sin est concave.

Donc la représentation graphique de sin|[0,π
2
] est au dessous de sa tangente en (0, 0) (la droite y = t), et au

dessus de ses cordes, en particulier le segment y = 2
π
t qui passe par (0, 0) et (π

2
, 1)

On en déduit : ∀t ∈ [0, π
2
] , 2

π
t ≤ sin(t) ≤ t

Remarque : on peut bien sûr étudier des fonctions ...

Q11) Pour t ∈ [0, π] on a t
2
∈ [0, π

2
] et donc 2

π
t
2
≤ sin( t

2
) ⇒ 1

sin(t/2)
≤ π

t

Donc, comme sin((n+ 1) t
2
) ≥ 0 :

sin((n+1) t
2
)

sin(t/2)
≤ π

sin((n+1) t
2
)

t

En élevant à la puissance 4 : fn(t) ≤ π4 sin
4((n+1) t

2
)

t4
donc tfn(t) ≤ π4 sin

4((n+1) t
2
)

t3

En intégrant sur [0, π] :
π∫
0

tfn(t)dt ≤ π4
π∫
0

sin4((n+1) t
2
)

t3
dt

Dans l'intégrale, on fait le changement de variable u = (n+ 1) t
2
⇔ t = 2u

n+1
donc dt = 2

n+1
du et on a :

π∫
0

tfn(t)dt ≤ π4
(n+1)π

2∫
0

sin4(u)
23

(n+1)3
u3

2
n+1

du

Et donc :
π∫
0

tfn(t)dt ≤ π4
(
n+1
2

)2 (n+1)π
2∫

0

sin4(u)
u3 du
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Q12) Pour t ∈ [0, π] on a t
2
∈ [0, π

2
] et donc sin( t

2
) ≤ t

2
avec Q10)

Alors 2
t
≤ 1

sin(t/2)
donc

2sin((n+1) t
2
)

t
≤ sin((n+1) t

2
)

sin(t/2)
et en élevant à la puissance 4 :

24sin4((n+1) t
2
)

t4
≤ fn(t)

En intégrant sur [0, π] :
π∫
0

24sin4((n+1) t
2
)

t4
dt ≤

π∫
0

fn(t)dt

Dans l'intégrale on fait le changement de variable u = (n+ 1) t
2
⇔ t = 2u

n+1
donc dt = 2

n+1
du et on a :

π∫
0

24sin4(u)
24

(n+1)4
u4

2
n+1

du ≤
π∫
0

fn(t)dt

Et donc : 2(n+ 1)3
π∫
0

sin4(u)
u3 du ≤

π∫
0

fn(t)dt

Q13) La question Q12) donne : 1
π∫
0

fn(t)dt
≤ 1

(2n+1)3
1

π∫
0

sin4(u)

u3
du

Avec l'inégalité de Q11) :
π∫
0

tfn(t)dt ≤ π4
(
n+1
2

)2 (n+1)π
2∫

0

sin4(u)
u3 du

En multipliant ces 2 inégalités (termes positifs) :
π∫
0

tfn(t)dt

π∫
0

fn(t)dt
≤ 1

(2n+1)3
π4
(
n+1
2

)2
= π4

4
(n+1)2

(2n+1)3
= π4

4

(
n+1
2n+1

)3 1
n+1

On a n+ 1 ≤ 2n+ 1 donc

π∫
0

tfn(t)dt

π∫
0

fn(t)dt
≤ π4

4

(
2n+1
2n+1

)3 1
n+1

= π4

4
1

n+1

Donc en posant : a = π4

4
et en utilisant Q9) on a :

π∫
−π

|t| Jn(t)dt ≤ a
n+1

Q14) � On e�ectue dans Tn(g)(x) le changement de variable u = x− t et on obtient :

Tn(g)(x) =
−π+x∫
π+x

Jn(u)g(x− u)(−du) =
π+x∫

−π+x

Jn(u)g(x− u)du

En reposant t = u et en utilisant la question Q4) on obtient :

Tn(g)(x) =
π∫

−π

Jn(t)g(x− t)dt

� Comme
π∫

−π

Jn(t)dt = 1 en multipliant par g(x) qui ne dépend pas de t on obtient :
π∫

−π

Jn(t)g(x)dt = g(x)

� Avec les deux expressions précédentes :

Tn(g)(x)− g(x) =
π∫

−π

Jn(t)g(x− t)dt−
π∫

−π

Jn(t)g(x)dt =
π∫

−π

Jn(t)
(
g(x− t)− g(x)

)
dt

Comme Jn(t) ≥ 0 on a, par l'inégalité de la moyenne :

|Tn(g)(x)− g(x)| ≤
π∫

−π

Jn(t) |g(x− t)− g(x)| dt
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Q15) a) Comme g est 2π périodique alors g′ est 2π périodique.
De plus g est C1 donc g′ est continue et 2π périodique et on peut dé�nir ||g′||∞

Comme g est C1 on peut appliquer le théorème des accroissements �nis pour avoir : ∃θ ∈ R ,
g(x− t)− g(x) = g′(θ)((x− t)− x) = g′(θ)(−t), donc en prenant la valeur absolue :
|g(x− t)− g(x)| ≤ |g′(θ)| |t| ≤ ||g′∞|| |t|

On utilise cette inégalité avec Q14) et on a : |Tn(g)(x)− g(x)| ≤
π∫

−π

Jn(t) |t| ||g′||∞ dt = ||g′||∞
π∫

−π

Jn(t) |t| dt

Avec Q13) on a alors : |Tn(g)(x)− g(x)| ≤ a||g′||∞
n+1

et en passant au sup sur x ∈ R :

||Tn(g)− g||∞ ≤ a||g′||∞
n+1

Q15) b) En passant à la limite au a), on a par encadrements : lim
n→+∞

||Tn(g)− g||∞ = 0 et donc

(Tn(g)) converge uniformément vers g sur R

Q16) a) |g(x− t)− g(x)| ≤ ωg(|t|) puisque |(x− t)− x)| = |t| ≤ |t|
En écrivant ωg(|t|) = ω(n |t|

n
) et en utilisant Q3) avec λ = n |t| et h = 1

n
on obtient :

ωg(|t|) ≤ (1 + n |t|)ωg(
1
n
)

|g(x− t)− g(x)| ≤ ωg(|t|) donne alors : |g(x− t)− g(x)| ≤ (1 + n |t|)ωg(
1
n
)

Q16) b) D'après Q14) : |Tn(g)(x)− g(x)| ≤
π∫

−π

Jn(t) |g(x− t)− g(x)| dt

Avec le a) : |Tn(g)(x)− g(x)| ≤
π∫

−π

Jn(t)
(
1 + n |t|

)
ωg(

1
n
)dt ≤

( π∫
−π

Jn(t)1dt︸ ︷︷ ︸
=1

+n

π∫
−π

Jn(t) |t| dt︸ ︷︷ ︸
≤ a

n+1
≤1 par Q13)

)
ωg(

1
n
)

On a donc : |Tn(g)(x)− g(x)| ≤ (1 + a)ωg(
1
n
)

En posant b = 1 + a on a : On a donc : |Tn(g)(x)− g(x)| ≤ bωg(
1
n
)

Q16) c) En passant au sup sur x ∈ R au b) on obtient : ||Tn(g)− g||∞ ≤ bωg(
1
n
)

Comme il est admit que : lim
n→+∞

ωg(
1
n
) = 0, alors, par encadrements : lim

n→+∞
||Tn(g)− g||∞ = 0 et donc

(Tn(g)) converge uniformément vers g sur R
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Q17) T est de degré n, donc dans C, si on ne tiens pas compte de l'ordre de multiplicité, T admet n
racines.
Il reste alors a montrer que T n'admet pas de racine double.
Le résultat est évident pour n = 1 car 1 +X1 = 1 +X !!!
Raisonnons par l'absurde pour n ≥ 2: Si X est une racine de T d'ordre au moins 2 :

alors

{
T (X) = 0

T ′(X) = 0
⇔

{
1 +Xn = 0

nXn−1 = 0
⇔

{
1 = 0

X = 0
(n ≥ 2 donc n− 1 ≥ 1)

Comme 1 ̸= 0 alors on a une absurdité.

Dans tout les cas T n'admet pas de racine au moins double, donc T admet n racines simples dans C

Q18) Comme T est unitaire on déduit de Q17) et des notations introduites par l'énoncé que : T =
n∏

j=1

(X − zj)

Si on dérive : T ′ =
n∑

p=1

n∏
j=1
j ̸=p

(X − zj)

En évaluant en zk : T ′(zk) =
n∑

p=1

n∏
j=1
j ̸=p

(zk − zj)

Le seul terme de la somme pour lequel il n'y pas de j tel que zk − zj = 0 est celui pour p = k donc :

∀k ∈ J1, nK , T ′(zk) =
n∏

j=1
j ̸=k

(zk − zj)

Q19) � Commençons par étudier E.

D'après l'égalité donnée : E(X) =
Xℓ

1 +Xn︸ ︷︷ ︸
deg=ℓ−n

−
n∑

k=1

µk

X−zk

Cas 1 : ℓ ∈ J0, n− 1K
On fait alors tendre X vers +∞ ci-dessus et on obtient : lim

X→+∞
E(X) = 0 puisque ℓ− n < 0

Comme E est un polynôme on en déduit que c'est le polynôme nulle (il est borné, donc constant, et comme
sa limite est nulle ...).

Cas 2 : ℓ = n
De même, on fait alors tendre X vers +∞ ci-dessus et on obtient : lim

X→+∞
E(X) = 1

Pour les mêmes raison E est le polynôme constant égale à 1.

� En multipliant F = Xℓ

1+Xn = Xℓ

T
=

n∑
K=1

µK

X−zK
+ E par T =

n∏
j=1

(X − zj) on obtient :

Xℓ =
n∑

K=1

µK

n∏
j=1
j ̸=K

(X − zj) + E × T (X)

En évaluant en X = zk : zℓk =
n∑

K=1

µK

n∏
j=1
j ̸=K

(zk − zj) + E T (zk)︸ ︷︷ ︸
=0

Donc zℓk = µk

n∏
j=1
j ̸=k

(zk − zj)
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Avec Q18) : zℓk = µkT
′(zk) = µknz

n−1
k

On multiplie par zk et on a : zℓ+1
k = µkT

′(zk) = µknz
n
k

Mais T (zk) = 0 ⇒ 1 + znk = 0 ⇒ znk = −1 donc zℓ+1
k = −µkn

On en déduit donc : ∀k ∈ J1, nK , µk =
−zℓ+1

k

n

Q20) � Comme E est un polynôme constant, on a par dérivation : F ′ =
n∑

k=1

−µk

(X−zk)2

On a donc F ′(1) =
n∑

k=1

−µk

(1−zk)2

Avec le résultat de Q19) : F ′(1) = 1
n

n∑
k=1

zkℓ+1

(zk−1)2

� D'autre part : F ′(X) = ℓXℓ−1(1+Xn)−nXn−1Xℓ

(1+Xn)2
et donc en X = 1 : F ′(1) = 2ℓ−n

4

� Ave les deux expressions de F ′(1) on a :

2ℓ−n
4

= 1
n

n∑
k=1

zkℓ+1

(zk−1)2
⇒ ℓ

2
= n

4
+ 1

n

n∑
k=1

zℓ+1
k

(zk−1)2
⇒ ℓ = n

2
+ 2

n

n∑
k=1

zkℓ+1

(zk−1)2

Q21) a) � On remarque que : Φ : P ∈ Cn[X] 7→ XP ′(X)− n
2
P (X)− 2

n

n∑
k=1

zkP (zkX)
(zk−1)2

est un endomorphisme de Cn[X]

Soit ℓ ∈ J0, nK

Φ(Xℓ) = XℓXℓ−1 − n
2
Xℓ − 2

n

n∑
k=1

zkz
ℓ
kX

ℓ

(zk−1)2
= Xℓ

(
ℓ− n

2
− 2

n

n∑
k=1

zℓ+1
k

(zk − 1)2

)
︸ ︷︷ ︸

=0 d'après Q20)

= 0

On a donc Φ qui est nul sur une base, donc, par linéarité, Φ est nul. On en déduit alors :

∀P ∈ Cn[X] , XP ′(X) = n
2
P (X) + 2

n

n∑
k=1

zkP (zkX)
(zk−1)2

Q21) b) En appliquant la formule du a) avec P = 1 on a :

0 = n
2
+ 2

n

n∑
k=1

zk
(zk−1)2

et donc
n∑

k=1

zk
(zk−1)2

= −n2

4

Q22) � Pour P ∈ C[X], z 7→ |P (z)| est une application continue.
Comme {z ∈ C |z| = 1} est le cercle unité et est donc fermé borné, alors on a un fonction continue sur un
fermée bornée, qui est donc bornée et qui atteint ses bornes.
Donc ||P || est bien dé�nie et le sup est même un max.

� Soit (P,Q, λ) ∈ C[X]2 × C

i) ||P || ≥ 0 de manière évidente.

ii) ||λP || = sup
|z|=1

|λP (z)| = sup
|z|=1

|λ| |P (z)| = |λ| sup
|z|=1

|P (z)| = |λ| ||P ||

iii) ||P || = 0 ⇒ sup
|z|=1

|P (z)| = 0 ⇒ ∀z ∈ C , |z| = 1 ⇒ P (z) = 0

P est donc nul sur le cercle unité, on a un donc un polynôme qui a une in�nité de racine et donc P = 0
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iv) Soit z ∈ C tel que |z| = 1
Alors |(P +Q)(z)| = |P (z) +Q(z)| ≤ |P (z)|+ |Q(z)| par inégalité triangulaire dans C.
En utilisant la dé�nition de ||.|| : |(P +Q)(z)| ≤ ||P ||+ ||Q||
On peut alors prendre le sup sur le cercle unité et on a : ||P +Q|| ≤ ||P ||+ ||Q||

On a donc : ∀(P,Q, λ) ∈ C[X]2 × C ,


||P || ≥ 0

||λP || = |λ| ||P ||
||P || = 0 ⇒ P = 0

||P +Q|| ≤ ||P ||+ ||Q||

On en déduit alors que : ||.|| est une norme sur C[X]

Q23) Soit z un nombre complexe de module 1 que l'on écrit donc z = eiθ avec θ ∈ R
Alors : z

(z−1)2
= eiθ

(eiθ−1)2
= eiθ(

eiθ/2(eiθ/2−e−iθ/2)
)2 = eiθ

eiθ
(
2isin(θ/2))

)2 = −1
4sin2(θ/2)

∈ R−

Remarque : sin(θ/2) ̸= 0 car z ̸= 1

Bilan : Si z est nombre complexe de module 1 di�érent de 1 alors z
(z−1)2

est un réel négatif.

Q24) � Commençons par remarquer que : znk + 1 = 0 ⇒ |znk | = |−1| = 1 ⇒ |zk| = 1

� Soit z un complexe de module 1 di�érent de 1.

D'après Q21) : zP ′(z) = n
2
P (z) + 2

n

n∑
k=1

zkP (zkz)
(zk−1)2

Comme |z| = 1 alors |P ′(z)| = |zP ′(z)| et donc, par inégalité triangulaire :
|P ′(z)| ≤ n

2
|P (z)|+ 2

n

n∑
k=1

∣∣∣ zkP (zkz)
(zk−1)2

∣∣∣
On utilise : |P (z)| ≤ ||P || et |P (zkz)| ≤ ||P || puisque |z| = |zkz| = 1 car |z| = |zk| = 1

Alors : |P ′(z)| ≤ n
2
||P ||+ 2

n

n∑
k=1

∣∣∣ zk
(zk−1)2

∣∣∣ ||P ||

Mais, d'après Q23) zk
(zk−1)2

< 0 donc :
n∑

k=1

∣∣∣ zk
(zk−1)2

∣∣∣ = n∑
k=1

−zk
(zk−1)2

= n2

4
par Q21) b)

On a alors : |P ′(z)| ≤ n
2
||P ||+ 2

n
n2

4
||P || = n ||P ||

On a donc en passant au sup : sup
|z|=1
z ̸=1

||P ′(z)|| ≤ n ||P ||

Mais comme z 7→ P ′(z) est continue on a : sup
|z|=1

||P ′(z)|| ≤ n ||P || et donc ||P ′|| ≤ n ||P ||

Q25) Soit Q ∈ Tn que l'on écrit q(x) =
n∑

k=−n

cke
ikx

Changement d'indice p = n+ k : q(x) =
2n∑
p=0

cp−ne
i(p−n)x = e−inx

2n∑
p=0

cp−ne
ipx

Posons P =
2n∑
p=0

cp−nX
p alors q(x) = e−inxP (eix)

Comme |eix| = 1 alors |P ′(eix)| ≤ ||P ′|| et |P (eix)| ≤ ||P ||

De plus |q(x)| = |P (eix)|, donc ||q||∞ = ||P ||
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En dérivant q : q′(x) = −ine−inxP (eix) + e−i(n−1)xP ′(eix) donc par inégalité triangulaire :
|q′(x)| ≤ n |P (eix)|+ |P ′(eix)|

Avec les résultats ci-dessus : |q′(x)| ≤ n ||P ||+ ||P ′||

Comme P ∈ C2n[X] alors, d'après Q24) : ||P ′|| ≤ 2n ||P ||.

On reporte ci-dessus : |q′(x)| ≤ n ||P ||+ 2n ||P || = 3n ||P ||

Et comme ||P || = ||q||∞ on a alors : |q′(x)| ≤ 3n ||q||∞

Et en passant au sup sur R : ||q′||∞ ≤ 3n ||q||∞

Q26) � Si y = 0 la relation est évidente. On va la démontrer pour y > 0.
� Posons ∀t > 0 , φ(t) = tα = exp(αln(t))
Alors φ est C1 sur ]0,+∞[ et ∀t > 0 , φ′(t) = αtα−1 > 0 car α > 0 et donc φ est croissante.
� Soit y > 0 et x ≥ y
Alors comme φ est croissante et que y ≤ x alors φ(y) ≤ φ(x) ⇔ yα ≤ xα ⇔ 0 ≤ xα − yα

� Soit y > 0 . Posons maintenant : ∀x ≥ y , A(x) = (x− y)α − xα + yα

Alors A est dérivable et ∀x ≥ y , A′(x) = α(x− y)α−1 − αxα−1 − 0 = α
(
(x− y)α−1 − xα−1

)
Comme α− 1 < 0 alors u 7→ uα−1 est décroissante et donc, comme x− y ≤ x on a : (x− y)α−1 − xα−1 ≥ 0 et
donc A est croissante.
Mais A(y) = 0, donc ∀x ∈ [y,+∞[ , A(x) ≥ 0 ⇔ xα − yα ≤ (x− y)α

� En regroupant les résultats : ∀(x, y) ∈ R2 , 0 < y ≤ x ⇒ 0 ≤ xα − yα ≤ (x− y)α

Q27) Si on passe à la valeur absolue en Q26) on a : |hα(x)− hα(y)| ≤ |x− y|α et donc hα est α-höldérienne.

Q28) Pour x > 0 :
hα(x)−hβ(0)

|x−0|β =
∣∣xα

xβ

∣∣ = ∣∣xα−β
∣∣

Mais, si α > β, on a α− β > 0 et donc lim
x→+∞

hα(x)−hβ(0)

|x−0|β = +∞

et, si α < β, on a α− β < 0 et donc lim
x→0

hα(x)−hβ(0)

|x−0|β = +∞

Si hα était β höldérienne, on aurait en prenant y = 0 : |hα(x)− hα(0)| ≤ K |x− 0|β donc

0 ≤ hα(x)−hβ(0)

|x−0|β ≤ K ce qui est impossible vu que l'on a au moins une des deux limites ci-deesus.

On a donc : hα n'est pas β höldérienne.

Q29) On prend y ∈]0, 1[ et x ∈]0, 1− y] pour que tout les termes existent.
Posons alors B(x) = (x + y)ln(x + y) − xln(x) − (y − 1)ln(1 − y) qui est dérivable sur ]0, 1 − y[ avec
B′(x) = ln(x + y) + x+y

x+y
− ln(x)− x 1

x
− 0 = ln(x + y) Comme x < 1− y alors x + y < 1 et donc B′(x) < 0.

On en déduit B décroissante.
Comme lim

x→0
B(x) = yln(y)− (y− 1)ln(1− y) = yln(y)︸ ︷︷ ︸

<0

+(1− y)ln(1− y)︸ ︷︷ ︸
≤0

≤ 0, alors ∀x ∈]0, 1− y[ , B(y) ≤ 0

On a donc : ∀y ∈]0, 1[ , ∀x ∈]0, 1− y] , (x+ y)ln(x+ y)− xln(x) ≤ (y − 1)ln(1− y)

Q30) � On peut écrire Q29), sous la forme ∀y ∈]0, 1[ , ∀x ∈]0, 1− y] , k(x+ y)− k(x) ≤ −k(1− y)
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Comme k est continue sur [0, 1] (la valeur donnée en 0 permet de prolonger x 7→ xln(x)), alors on peut
prolonger cette formule et écrire : ∀Y ∈ [0, 1] , ∀X ∈ [0, 1− y] , k(X + Y )− k(X) ≤ −k(1− Y )

� On �xe α ∈]0, 1[.
Soit (x, y) ∈ [0, 1]2. On suppose de plus que 0 ≤ x < y ≤ 1

� On pose X = x ∈ [0, 1] et Y = y − x ∈]0, 1[ pour avoir : y = X + Y et x = X et l'inégalité précédente
donne : k(y)− k(x) ≤ −k(1− y + x) = −k(1− u) avec u = y − x

� Montrons que k(y − x) ≤ k(y)− k(x)
On pose D(y) = k(y)− k(x)− k(y − x)
D est C1 et D(y) = k′(y)− k′(y−x) = 1+ ln(y)− (1+ ln(y−x)) = ln(y)− ln(y−x) > 0 car on prend y > x
Donc D est croissante sur ]x, 1[ et D(x) = k(x)− k(x)− k(0) = 0 donc D(y) ≥ 0
et donc k(y − x) ≤ k(y)− k(x) ou encore k(u) ≤ k(y)− k(x) avec u = y − x

� On a alors : la double inégalité : k(u) ≤ k(y)− k(x) ≤ −k(1− u) avec u = y − x
Ce qui donne :
|k(y)− k(x)| ≤ max(|k(u)| , |−k(1− u)|) = max(−k(u),−k(1− u)) ≤ −k(u)− k(1− u)

� On utilise ce résultat pour majorer |k(x)−k(y)|
|x−y|α

Alors : |k(x)−k(y)|
|x−y|α ≤ −k(1−u)−k(u)

uα = C(u) avec C(u) = −(1−u)ln(1−u)−uln(u)
uα

On va étudier C sur ]0, 1[ car u = y − x ∈]0, 1[
C est clairement continue sur ]0, 1[. Voyons si elle est prolongeable par continuité en 0 et en 1.

En 0 :
C(u) = −(1−u)ln(1−u)

uα + −uln(u)
uα = −(1−u)(−u+o(u))

uα + −uln(u)
uα = uα−1 + o(uα−1)− u1−αln(u) −→

u→0
0 car 1− α > 0

Donc C est prolongeable par continuité en 0.

En 1 :
C(u) = −(1−u)ln(1−u)−uln(u)

uα −→
u→1

0 Donc C est prolongeable par continuité en 1.

C peut donc être prolongée en une fonction continue sur [0, 1] et on a alors une fonction continue sur un
segment. On en déduit que C est bornée, donc ∃M > 0 , ∀u ∈]0, 1[ , C(u) ≤ M

Donc si 0 ≤ x < y ≤ 1 on a : |k(x)−k(y)|
|x−y|α ≤ M qui sécrit : |k(x)− k(y)| ≤ M |x− y|α

Le résultat est évident pour x = y et est aussi vrai, par symétrie pour x > y.

On a donc ∀(x, y) ∈ [0, 1]2 , |k(x)− k(y)| ≤ M |x− y|α et donc ∀α ∈]0, 1[ , k est α-höldérienne.
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Q31) � Soit f ∈ Hα
2π

Fixons x ∈ R.
On sait que : |f(x)− f(y)| ≤ K |x− y|α −→

x→y
0 car α ∈]0, 1[

On a donc f continue. Comme on savait déjà que f était 2π périodique alors : f ∈ C0
2π

On a donc Hα
2π ⊂ C0

2π

� Hα
2π est clairement non vide, puisque la fonction nulle est dans cette enesemble.

� Soit (f, g) ∈ (Hα
2π)

2 et λ ∈ R

Alors, par inégalité triangulaire :
|(f + λg)(x)− (f + λg)(y)| ≤ |f(x)− f(y)|+ |λ| |g(x)− g(y)|

≤ Kf |x− y|α + |λ|Kg |x− y|α = (Kf + |λ|Kg) |x− y|α
On en déduit f + λg α-höldérienne donc f + λg ∈ Hα

2π

� On a donc Hα
2π est une partie non vide, stable par combinaison linéaire de C0

2π, donc :

Hα
2π est un sous-espace vectoriel de C0

2π

Q32) � On a g ∈ C0
2π, donc on peut utiliser le 16b) pour trouver Tng telle que ||Tng − g||∞ ≤ bωg(

1
n
)

Mais d'après la question Q8) Jn ∈ T2n et donc Tng ∈ T2n

On a donc δ2n(g) ≤ ||g − Tng||∞ ≤ bωg(
1
n
)

Mais g α-höldérienne donne : wg(h) ≤ Khα donc : δ2n(g) ≤ ||g − Tng||∞ ≤ Kb 1
nα

On en déduit donc δ2n(g) = O( 1
nα )

Puisque T2n ⊂ T2n+1 ⊂ T2n+2 alors : δ2n+2(g) ≤ δ2n+1(g) ≤ δ2n(g) et donc δ2n+1(g) = O( 1
nα )

Finalement : δn(g) = O( 1
nα )

Q33) � On a δn(f) = inf
p∈Tn

||f − p||∞
Comme on peut choisir p égale à la fonction nulle qui est bien dans Tn alors : δn(f) ≤ ||f ||∞

� Posons Ω = {p ∈ Tn , ||f − p||∞ ≤ ||f ||∞}

Alors : # Ω est non vide puisqu'il contient la fonction nulle.

# Ω est bornée puisque, par la deuxième inégalité triangulaire et par la dé�nition de Ω :

||p||∞ − ||f ||∞ ≤ ||p− f ||∞ ≤ ||f ||∞ ⇒ ||p||∞ ≤ 2 ||f ||∞

# Ω est fermé car : Ω = ρ−1([0, ||f ||∞]) avec ρ : p ∈ Tn 7→ ||p− f ||∞ qui est une application continue.

� p 7→ ||f − p||∞ est donc une application continue qui atteint ses bornes sur Ω puisque Ω est une partie
fermée bornée de Tn

Donc ∃qn ∈ Tn , ∀p ∈ Ω , ||f − p||∞ ≥ ||f − qn|| = inf
p∈Tn

||f − p||∞
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� Comme pour p /∈ Ω on a : ||p− f || ≥ ||f ||∞ ≥ δn(f) alors on en déduit : δn(f) = ||f − qn||∞

� Conclusion : ∃qn ∈ Tn , δn(f) = ||f − qn||∞

Q34) Posons qn = pn+1 − pn, alors qn ∈ T2n+1 , on peut donc appliquer Q25) et obtenir :∣∣∣∣p′n+1 − p′n
∣∣∣∣ ≤ 3× 2n+1 ||pn+1 − pn||∞

Mais ||pn+1 − pn||∞ = ||pn+1 − f + f − pn||∞ et par inégalité triangulaire on a :
||pn+1 − pn||∞ ≤ ||pn+1 − f ||∞ + ||f − pn||∞

On utilise la dé�nition de δ2n+1 pour avoir : ||pn+1 − pn||∞ ≤ 2δ2n+1(f)

Mais, par hypothèse : δ2n+1(f) = O( 1
(2n+1)α

) = O(2−α(n+1)) Donc il existe une constante M > 0 telle que :

δ2n+1(f) ≤ M2−α(n+1)

En reportant ci-dessus : ||pn+1 − pn||∞ ≤ 2M2−α(n+1)

On reporte encore dans
∣∣∣∣p′n+1 − p′n

∣∣∣∣ ≤ 3× 2n+1 ||pn+1 − pn||∞
et on obtient :

∣∣∣∣p′n+1 − p′n
∣∣∣∣ ≤ 6M2n+12−α(n+1) = 6M21−α︸ ︷︷ ︸

C′

2n(1−α)

On a donc : ∃C ′ > 0 ,
∣∣∣∣p′n+1 − p′n

∣∣∣∣ ≤ C ′2n(1−α)

Q35) On remarque pn = p0 +
n∑

k=1

(pk − pk−1), donc en dérivant : p′n = p′0 +
n∑

k=1

(p′k − p′k−1)

Par inégalité triangulaire : ||p′n||∞ ≤ ||p′0||∞ +
n∑

k=1

∣∣∣∣p′k − p′k−1

∣∣∣∣
∞

On utilise alors Q34) et on a : ||p′n||∞ ≤ ||p′0||∞ +
n∑

k=1

C ′2(k−1)(1−α)

Somme des termes d'une série géométrique de raison 21−α

||p′n||∞ ≤ ||p′0||∞ + C ′ 1−2n(1−α)

1−21−α ⇒ ||p′n||∞ ≤ ||p′0||∞ + C ′ 2n(1−α)−1
21−α−1

⇒ ||p′n||∞ ≤ ||p′0||∞ + C ′ 2n(1−α)

21−α−1

On a donc : ||p′n||∞ ≤ ||p′0||∞ + C′

21−α−1
2n(1−α)

Q36) On a : 2n(1−α) ≥ 1 puisque α ∈]0, 1[ donc ||p′0||∞ ≤ 2n(1−α) ||p′0||∞

Reporter en Q35) : ||p′n||∞ ≤ 2n(1−α) ||p′0||∞ + C′

21−α−1
2n(1−α) = 2n(1−α) [||p′0||∞ +

C ′

21−α − 1
]︸ ︷︷ ︸

A

2n(1−α)

Donc : ∃A > 0 , ||p′n||∞ ≤ A2n(1−α)
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Q37) Soit (x, y) ∈ R2 et n ∈ N .
Alors f(x)− f(y) = f(x)− pn(x) + pn(x)− pn(y) + pn(y)− f(y) donc par inégalité triangulaire :
|f(x)− f(y)| ≤ |f(x)− pn(x)|+ |pn(x)− pn(y)|+ |pn(y)− f(y)|

Par dé�nition de ||f − pn||∞ on a : |f(x)− f(y)| ≤ 2 ||f − pn||∞ + |pn(x)− pn(y)|

Mais ||f − pn||∞ ≤ 2δ2n(f) ≤ C 1
(2n)α

donc : |f(x)− f(y)| ≤ 2C 1
(2n)α

+ |pn(x)− pn(y)|

Mais |pn(x)− pn(y)| ≤ wpn(|x− y|) ≤ ||p′n||∞ |x− y| par le théorème des accroissements �nis. Donc :
|f(x)− f(y)| ≤ 2C 1

(2n)α
+ ||p′n||∞ |x− y|

En utilisant Q36), on obtient : |f(x)− f(y)| ≤ C21−nα + A2(1−α)n |x− y|

Q38) On cherche une constante K > 0 telle que : ∀(x, y) ∈ R2 , |f(x)− f(y)| ≤ K |x− y|α
Comme suggéré par l'énoncé on a considérer plusiseurs cas.

cas 1 : x = y

Alors |f(x)− f(y)| = 0 ≤ K1 |x− y|α avec K1 = 1 par exemple.

cas 2 : |x− y| > 1

Alors |f(x)− f(y)| ≤ |f(x)|+ |f(y)| ≤ ||f ||∞ + ||f ||∞ = 2 ||f ||∞
Comme |x− y| > 1 alors |x− y|α > 1 et donc |f(x)− f(y)| ≤ 2 ||f ||∞ |x− y|α

On a : |f(x)− f(y)| ≤ K2 |x− y|α avec K2 = 2 ||f ||∞

cas 3 : 0 < |x− y| ≤ 1

Comme suggéré choisissons ns ∈ N , 1
2n+1 ≤ |x− y| ≤ 1

2n

(possible car ( 1
2n
) est décroissante et tend vers 0 en partant de 1 ≥ |x− y|)

Alors, avec Q37) : |f(x)− f(y)| ≤ 2C
2nα + A2n

2nα |x− y|

Mais 2n |x− y| ≤ 1 donc : |f(x)− f(y)| ≤ 2C
2nα + A

2nα = 2C+A
2nα = (2C+A)2α

2(n+1)α

Mais 1
2n+1 ≤ |x− y| donc 1

2(n+1)α ≤ |x− y|α donc |f(x)− f(y)| ≤ (2C + A)2α︸ ︷︷ ︸
K

|x− y|α

On a donc trouvé K > 0 telle que : ∀(x, y) ∈ R2 , |f(x)− f(y)| ≤ K |x− y|α

On a donc : f est α-höldérienne.
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