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Chapitre 15 : Endomorphismes particuliers d'un espace euclidien
Matrices symétriques réelles

Dans ce chapitre (F, <, >) désigne un espace vectoriel euclidien de dimension n.
On note ||.|| la norme euclidienne associée au produit scalaire.

1 Isométries vectorielles d’un espace euclidien

1.1 Définition

Un endomorphisme d’un espace euclidien (F, <, >) est une isométrie vectorielle
si et seulement si il conserve la norme.

Remarques. Autrement dit f € L(E) est une isométrie si et seulement si f conserve les distances.
150 <-> conserve ; métrie <-> la distance

1.2 Autres caractérisation

Théoréme . Soit f € L(E). Alors on a équivalence des propositions suivantes :

i) [ est une isométrie vectorielle
i)V e B, ||f()] = |l
i) ¥(x,y) € B>, < f(x), fly) >=< =,y >
iv) Il existe une base orthonormée B telle que f(B) soit une base orthonormée.
v) Pour toute base orthonormée B, f(B) est une base orthonormée.
vi) Si B est une base orthonormée de E alors : Matg(f)" Matg(f) = I,

Remarque. On dit que f conserve le produit scalaire et les bases orthonormées.
On reviendra sur la caractérisation vi) un peu plus tard.

preuve :

1.3 Exemple : symétries orthogonales
1.3.1 Rappels

Définitions. Soit F' un sous espace vectoriel de E. Alors la symétrie par rapport @ F et parallelement @ F- est
appelée symétrie orthogonale par rapport a F.
Si de plus F' est un hyperplan alors on dit que 'on a une réflexion.

DESSIN :

1.3.2 Propriété

Lemme. Une symétrie orthogonale est une isométrie vectorielle.

preuve :

1.4 Structure de groupe
1.4.1 Définitions

On note O(E) lensemble des isométries vectorielles de (E, <, >).
On dit que : O(E) est le groupe orthogonal de (E, <, >).

Remarque. La notion de groupe est hors programme.



1.4.2 Propriétés
i) Idg € O(E)
Propriétés. i) Vf € O(E) , f € GL(E)
iii) ¥(f,9) € O(E)* ,  foge€ O(E)

et f~1eO(F)

Remarques. On peut résumer ceci en O(E) est non vide et V(f,g) € O(E)? , fog™! € O(E)
On dit que O(E) est un groupe.

preuve :

1.5 Stabilité de orthogonal d’un sous espace stable

Propriété. Soit f € O(E) et F un sous espace vectoriel de E. Alors :

F est stable par f = F* stable par f
Remarque. Les restrictions de f a F et F- sont des isométries vectorielles.

preuve :

2 DMatrices orthogonales

2.1 Introduction

La caractérisation des isomeétries vectorielles & ’aide de leur matrice dans une base orthonormée améne la définition
suivante :

Définition. On dit qu’une matrice de M, (R) est orthogonale si et seulement si MT M = I,

Notation : On note O,,(R) I’ensemble des matrices orthogonales de M, (R).

2.2 Autres caractérisations

Théoréme . Soit M € M, (R). Alors on a équivalence des propositions suivantes :

i) M est une matrice orthogonale

i) MTM =1,

i) MMT =1,

iv) les colonnes de M forment une base orthonormée de M, 1(R) pour le produit scalaire canonique de M, 1(R)
v) les lignes de M forment une base orthonormée de My ,(R) pour le produit scalaire canonique de My ,,(R)

Remarque. On a alors M~ = M7T

preuve :

2.3 Groupe orthogonal d’ordre n

Lemme. Préliminaire : Déterminant d’une matrice orthogonale
Si M € O,(R) alors det(M) =1 ou det(M) = —1

Notation : On note SO, (R) l’ensemble des matrices orthogonales de M, (R) de déterminant 1.

preuve :

Lemme. VA, B € O0,(R), AB~! € O,(R)
VA, B € SO,(R), AB~! € SO,(R)

Définitions. On dit que O,(R) et SO, (R) sont des groupes.
O, (R) est le groupe orthogonal et SO,,(R) est le groupe spécial orthogonal.

preuve :



2.4 Retour aux isométries vectorielles
2.4.1 Lien matrice orthogonale - endomorphisme orthogonale

Lemme. Si B est une base orthonormée de E et si f € L(E) alors : f € O(FE) < Mp(f) € O,(R).

preuve :

2.4.2 Deéterminants
Lemme. Si f € O(E) alors det(f) =1 ou det(f) = —1.
preuve :

Remarques. Si f € O(E) et si det(f) =1 alors on dit que [ est une isométrie vectorielle positive (ou directe).
Si f € O(E) et sidet(f) = —1 alors on dit que f est une isométrie vectorielle négative (ou indirecte).

Définition. On pose SO(E) ={f € O(E) , det(f)=1}.
SO(E) est appelé groupe spécial orthogonal.

Lemme. Y(f,g) € O(E)? , fog~! € O(F)
V(f,9) € SO(E)? , fog™' € SO(E)

preuve :

2.5 Matrices de changements de bases orthonormées

Théoréme . Si B est une base orthonormée de E, si B’ est une base de E, alors, en notant Pgl la matrice de
passage de B o B' : B’ est une base orthonormée < PB' € 0, (R)

Corollaire. L’inverse de la matrice de passage entre deuzx bases orthonormées est égale & sa transposée.
Remarque. O,(R) est l'ensemble des matrices de changement de bases orthonormées.

preuve :

3 Espace euclidien orienté de dimension 2 et 3

3.1 Orientation d’un espace euclidien

Orienter un espace euclidien c’est fixer une base orthonormée de référence B,..
Alors, si B est une base orthonormée de E on a 2 possibilités :

detp, (B) =1 on dit alors que B est une base orthonormée directe
detp, (B) = —1 on dit alors que B est une base orthonormée indirecte

Remarque. On peut montrer qu’il n’y a sur E que deux orientations possibles.

Exemples. Orientation d’une droite, d’un plan en dimension 3.

3.2 Produit mixte
3.2.1 Définition

Définition. Si (E,<,>) est un espace euclidien orienté de dimension n et si (ui,...,u,) est une famille de n
vecteurs de F.

Alors on appelle produit mizte de (uy,...,u,) le déterminant de (u1,...,u,) dans une base orthonormée directe
quelconque de E.

On note [uy, ..., uy,] cette valeur.

Justification de la définition :



3.2.2 Interprétation

Théoréme . En dimension 2, si ABCD est un parallélogramme alors Aire(ABCD) = ’[AB, AD]

N
En dimension 8, si ABCDEFGH est un parallélépipéde alors Volume(ABCDEFGH) = ‘[AB AD, AE

3.3 Produit vectoriel en dimension 3
3.3.1 Définition

Définition. Soit (E,<,>) un espace préhilbertien orienté de dimension 3.
Soit U et U deux vecteurs de E.

—

Alors il existe un unique vecteur @ dans E vérifiant : VZ € E | [4,0,Z] =< d, T >
Ce vecteur d est appelé produit vectoriel de U et U et est noté U N U

Justification de la définition :

3.3.2 Propriétés

Propriétés. Avec les notations précédentes.

x x
v) Si B est une base orthonormée directe de E. Si Matg(@) = |y |, Matg(®) = [ ¢/
z Z
/
Yy vy
z 2 ,
. yz' —y'z
alors : Matg(GAV)= | — I 'z —xz
o
z 2 Ty —TY
y v
Remarques. i) et i) disent que N est une forme bilinéaire antisymétrique ...
ul (uAv)
Si (i,7,k) est une base orthonormée alors : iNj=k,iNk=—j etc ..
preuve :

4 Isométries vectorielles d’un plan euclidien

Dans ce paragraphe E est un espace euclidien orienté de dimension 2.

4.1 Oy(R)
4.1.1 Etude
4.1.2 Bilan

. B o (cos(0) —sin(6)
Théoréme . M € SO3(R) & M € O2(R) et det(M)=1<3I0cR, M= <sm(¢9) cos(6)

M € Oy(R) et det(M)=—1 0 eR, M= <_C§;§?2)) :izgzg)



4.2 Isométrie indirecte
4.2.1 Etude
4.2.2 Bilan

Théoréme . Si f est une isométrie vectorielle indirecte en dimension 2 alors [ est une réflexion.

4.3 Isométrie directe

4.3.1 Préliminaires
. V(Q, 9/) € R? s RoRyr = Ro Ry = R@.;,_g/
) cos(f) —sin(0)
Lemme. Si on pose VO e R, Ry = | . alors : Ry=1
sin(0)  cos()
Vo eR , (R9)71 =Ry

Remarque. Il y a donc commutativité dans SO2(R).

preuve :

4.3.2 Rotations vectorielles

cos(0) sm(a)>

Définition. Soit B une base orthonormée de E. Alors ’endomorphisme rg de E admettant Rg = | .
sin(0)  cos()

comme matrice relativement 4 B est appelée rotation vectorielle d’angle 0.
Lemme. 79 admet pour matrice Ry relativement a nimporte quelle base orthonormée directe de E.
Remarque. SO2(R) est donc l’ensemble des matrices de rotations.

preuve :

4.3.3 Interprétation
,- , cos(t)
Avec I'image d’un vecteur | ou avec les complexes.
sin(t)
4.3.4 Théoréme

Théoréme . Les isométries vectorielles directes en dimension 2 sont les rotations.

4.4 Classification des isométries vectorielles

Théoréme . Soit f une isométrie vectorielle d’un espace euclidien de dimension 2.
det(f) =1 < f est une rotation

Alors : X o
det(f) = —1 < f est une réflexion

preuve :

4.5 Angle de deux vecteurs

Définition. Si B est une base directe d’un espace euclidien (E, <,>) de dimension 2. Si @,V € E\{0g}.

Alors il existe une rotation r d’angle 6 telle que : o = rg(HZH).

Alors 0 est appelé angle entre les vecteurs U et U et est parfois noté (4, v)

Remarque. 0 est défini a 21 prées.



5 Isométries vectorielles d’un espace euclidien de dimension 3

Dans ce paragraphe E est un espace euclidien orienté de dimension 3.

5.1 O3 (R)
5.1.1 Deux lemmes généraux préliminaires

On présente ici deux lemmes généraux utiles pour le paragraphe suivant. Ils ne sont pas inscrits dans le programme
mais ils sont utiles pour la preuve du paragraphe suivant.

Lemme. Si f € O(E) alors sp(f) C {—1;1}.
preuve :

Lemme. Si f € O(E) et si dim(E) = 3 alors sp(f) # 0.

preuve :
5.1.2 Etude
5.1.3 Bilan

Théoréme . Soit f € O3(E) alors il existe une base orthonormée B de E relativement a laquelle la matrice de f
a l'une des formes suivantes :

1 0 0 -1 0 0 1 0 0
0 cos(d) —sin(@)]| , | 0 cos(@) —sin@)],]0 1 0
0 sin(@) cos(0) 0 sin(0) cos(9) 0 0 -1

5.2 Isométrie directe : Rotation
5.2.1 Définition

Soit @ un vecteur non nul et § un nombre réel. Alors on appelle rotation d’axe orienté R et d’angle 6 ’endomorphisme
1 0 0

de R? ayant pour matrice relativement & une base orthonormée directe (i, ¥, ) la matrice | 0 cos() —sin(6)
0 sin(f) cos(9)

Remarque. Le premier vecteur de la base orthonormée directe, a savoir i et I’angle 0 suffisent a définir la rotation.

5.2.2 Interprétation

La restriction de la rotation & {u}* est une rotation du plan euclidien {u}~.

5.2.3 Propriété

Propriété. Soit 4 un vecteur non nul et 6 un nombre réel. Soit r la rotation d’aze orienté R et d’angle 0.
Alors pour tout vecteur T tel que I L i on a : r(¥) = cos(0)T + sin(0) im A T

Alors pour tout vecteur & de E : det(Z,r(Z),d) est du méme signe que sin(6)

preuve :

5.2.4 Exemple

2 -2 -1
Soit A=3 1 2 -2
2 1 2

Montrer que A est une matrice de rotation, déterminer 1’axe et I’angle.

(1,-1,1) et =



5.3 Isométries indirectes : complément

Remarque. Rien de préciser sur ce paragraphe dans le programme, en particulier pas de théoréme de classification.

5.3.1 Reéflexion

1 0 0
Lemme. L’endomorphisme ayant comme matrice | 0 1 0 | relativement a une base orthonormée B = (eq, €3, €3)
0 0 -1
est une réflexion de plan Vect(ey,eq).
preuve :
5.3.2 Composée rotation-réflexion
-1 0 0

Lemme. L’endomorphisme ayant comme matrice | 0 cos(0) —sin(f) | relativement & une base orthonormée
0 sin(9) cos(9)

B = (e1,ea,e3) est la composée commutative de la réflexion de plan Vect(ea,es) et de la rotation d’aze orienté

Vect(er) et d’angle 0.

preuve :

5.4 Classification des isométries vectorielles en dimension 3 : compléments

Théoréme . Les isométries vectorielles directes en dimensions 8 sont les rotations.
Les isométries vectorielles indirectes en dimensions 3 sont les réflexions et les composées rotations-réflexions.

Remarque. Soit A € O3(R).

Si det(A) =1 alors A est une matrice de rotation.

Si det(A) = —1 alors A est une matrice de réflexion ou de composée rotation-réflexion.
De plus, si A = AT on a une matrice de réflexion.

6 Réductions des endomorphismes autoadjoints et des matrices symétriques
réelles

6.1 Définition

Définition. On dit qu’un endomorphisme de (E,<,>) est autoadjoint
si et seulement si ¥(x,y) € E? , < x,u(y) >=< u(z),y >

Remarques. On note S(E) l'ensemble des endomorphismes autoadjoints de (E, <,>)
On dit "auto-adjoint" car l’endomorphisme est son propre "adjoint" (notion hors programme).

6.2 Matrice d’'un endomorphisme autoadjoint dans une base orthonormée

Théoréme . Soit f un endomorphisme de (E,<,>) et B une base orthonormée de E.

Alors : f autoadjoint < Matp(f) est symétrique

Remarques. Il faut bien que B soit orthonormée !!!' On parle aussi d’endomorphisme "symétrique" car la

matrice est symétrique réelle mais attention endomorphisme symétrique #= symétrie !!

Par isomorphisme d’espace vectoriel : dim(S(E)) = dim(S,(R)) = %



6.3 Théoréme spectral
6.3.1 Premier théoréme

Théoréme . Si f est un endomorphisme autoadjoint de (E,<,>) alors :
i) F est un sous espace stable par f = F* stable par f
ii) les sous espace propres de [ sont en somme directe orthogonale.

preuve :

6.3.2 Théoréme spectral pour les endomorphismes autoadjoint

Théoréme . Tout endomorphisme autoadjoint d’un espace euclidien admet une base orthonormée de vecteurs
propres.

Remarque. Tout endomorphisme autoadjoint est diagonalisable dans une base orthonormeée.

preuve : non exigible

6.3.3 Théoréme spectral pour les matrices symétriques réelles

Théoréme . Soit A € M, (R), symétrique. Alors :
3P € O,(R) et D € M, (R) diagonale, telles que : A = PDPT = PDP~!

Remarques. Déja vu en partie dans le chapitre réduction.

Autrement dit : Une matrice symétrique réelle est diagonalisable dans une base orthonormée.
Le résultat est faux pour une matrice symétrique compleze.

On peut aussi choisir P € SO, (R)

=N W

0 2 4
Exemples. 0<. ;) et o 0 2

! 2 3
6.4 Projecteurs et symétries
6.4.1 Théoréme

Théoréme . Si f est une symétrie ou une projection orthogonale, et si B est une base orthonormée alors :
Mp(f) est une matrice syméltrique réelle.

preuve :

6.4.2 Projecteur autoadjoint

Théoréme . Soit p un projecteur d’un espace euclidien (E,<,>). Alors :
p est un projecteur orthogonale < p est autoadjoint

preuve :

6.5 DPositivité
6.5.1 Définitions pour un endomorphisme

Définitions. Soit f un endomorphisme d’un espace euclidien (E, <,>).
Alors on dit que :
f est autoadjoint

f est un endomorphisme autoadjoint positif si et seulement si
Vee E, < f(z),z>>0

f est autoadjoint

f est un endomorphisme autoadjoint défini positif si et seulement si
Vee E, x#0p =< f(x),x >>0

Remarque. Notations : on note ST(E) I’ensemble des endomorphismes autoadjoints positifs
et on note STT(E) l’ensemble des endomorphismes autoadjoints définis positifs.



6.5.2 Caractérisation spectrale

Théoréme . Soit f un endomorphisme autoadjoint de (E,<,>). Alors :

J€8ST(E) & sp(f) C[0;+0] et f e STH(E) < sp(f) C]0;+o00]
Remarque. Ne pas oublier que f doit étre autoadjoint avant d’appliquer ces équivalences.

preuve :

6.5.3 Pour les matrices

Définitions. Une matrice symétrique réelle A est dite positive si et seulement si sp(A) C [0; +o0].
Une matrice symétrique réelle A est dite définie positive si et seulement si sp(A) C]0; +o0]

Remarques. Les matrices symétrique réelles positives représentent les endomorphismes autoadjoints positifs dans
une base orthonormée.
Les matrices symétrique réelles définies positives représentent les endomorphismes autoadjoints définis positifs dans
une base orthonormée.
On note S, (R) ’ensemble des matrices réelles positives et S+ (R) I’ensemble des matrices réelles définies positives.
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