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Chapitre 15 : Endomorphismes particuliers d'un espace euclidien

Matrices symétriques réelles

Dans ce chapitre (E,<,>) désigne un espace vectoriel euclidien de dimension n.
On note ||.|| la norme euclidienne associée au produit scalaire.

1 Isométries vectorielles d'un espace euclidien

1.1 Dé�nition

Un endomorphisme d'un espace euclidien (E,<,>) est une isométrie vectorielle
si et seulement si il conserve la norme.

Remarques. Autrement dit f ∈ L(E) est une isométrie si et seulement si f conserve les distances.
iso <-> conserve ; métrie <-> la distance

1.2 Autres caractérisation

Théorème . Soit f ∈ L(E). Alors on a équivalence des propositions suivantes :

i) f est une isométrie vectorielle
ii) ∀x ∈ E , ||f(x)|| = ||x||
iii) ∀(x, y) ∈ E2 , < f(x), f(y) >=< x, y >
iv) Il existe une base orthonormée B telle que f(B) soit une base orthonormée.
v) Pour toute base orthonormée B, f(B) est une base orthonormée.
vi) Si B est une base orthonormée de E alors : MatB(f)

TMatB(f) = In

Remarque. On dit que f conserve le produit scalaire et les bases orthonormées.
On reviendra sur la caractérisation vi) un peu plus tard.

preuve :

1.3 Exemple : symétries orthogonales

1.3.1 Rappels

Dé�nitions. Soit F un sous espace vectoriel de E. Alors la symétrie par rapport à F et parallèlement à F⊥ est
appelée symétrie orthogonale par rapport à F.
Si de plus F est un hyperplan alors on dit que l'on a une ré�exion.

DESSIN :

1.3.2 Propriété

Lemme. Une symétrie orthogonale est une isométrie vectorielle.

preuve :

1.4 Structure de groupe

1.4.1 Dé�nitions

On note O(E) l'ensemble des isométries vectorielles de (E,<,>).
On dit que : O(E) est le groupe orthogonal de (E,<,>).

Remarque. La notion de groupe est hors programme.
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1.4.2 Propriétés

Propriétés.


i) IdE ∈ O(E)

ii) ∀f ∈ O(E) , f ∈ GL(E) et f−1 ∈ O(E)

iii) ∀(f, g) ∈ O(E)2 , f ◦ g ∈ O(E)

Remarques. On peut résumer ceci en O(E) est non vide et ∀(f, g) ∈ O(E)2 , f ◦ g−1 ∈ O(E)
On dit que O(E) est un groupe.

preuve :

1.5 Stabilité de l'orthogonal d'un sous espace stable

Propriété. Soit f ∈ O(E) et F un sous espace vectoriel de E. Alors :

F est stable par f ⇒ F⊥ stable par f

Remarque. Les restrictions de f à F et F⊥ sont des isométries vectorielles.

preuve :

2 Matrices orthogonales

2.1 Introduction

La caractérisation des isométries vectorielles à l'aide de leur matrice dans une base orthonormée amène la dé�nition
suivante :

Dé�nition. On dit qu'une matrice de Mn(R) est orthogonale si et seulement si MTM = In

Notation : On note On(R) l'ensemble des matrices orthogonales de Mn(R).

2.2 Autres caractérisations

Théorème . Soit M ∈ Mn(R). Alors on a équivalence des propositions suivantes :
i) M est une matrice orthogonale
ii) MTM = In
iii) MMT = In
iv) les colonnes de M forment une base orthonormée de Mn,1(R) pour le produit scalaire canonique de Mn,1(R)
v) les lignes de M forment une base orthonormée de M1,n(R) pour le produit scalaire canonique de M1,n(R)

Remarque. On a alors M−1 = MT

preuve :

2.3 Groupe orthogonal d'ordre n

Lemme. Préliminaire : Déterminant d'une matrice orthogonale
Si M ∈ On(R) alors det(M) = 1 ou det(M) = −1

Notation : On note SOn(R) l'ensemble des matrices orthogonales de Mn(R) de déterminant 1.

preuve :

Lemme. ∀A,B ∈ On(R) , AB−1 ∈ On(R)
∀A,B ∈ SOn(R) , AB−1 ∈ SOn(R)

Dé�nitions. On dit que On(R) et SOn(R) sont des groupes.
On(R) est le groupe orthogonal et SOn(R) est le groupe spécial orthogonal.

preuve :
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2.4 Retour aux isométries vectorielles

2.4.1 Lien matrice orthogonale - endomorphisme orthogonale

Lemme. Si B est une base orthonormée de E et si f ∈ L(E) alors : f ∈ O(E) ⇔ MB(f) ∈ On(R).

preuve :

2.4.2 Déterminants

Lemme. Si f ∈ O(E) alors det(f) = 1 ou det(f) = −1.

preuve :

Remarques. Si f ∈ O(E) et si det(f) = 1 alors on dit que f est une isométrie vectorielle positive (ou directe).
Si f ∈ O(E) et si det(f) = −1 alors on dit que f est une isométrie vectorielle négative (ou indirecte).

Dé�nition. On pose SO(E) = {f ∈ O(E) , det(f) = 1}.
SO(E) est appelé groupe spécial orthogonal.

Lemme. ∀(f, g) ∈ O(E)2 , f ◦ g−1 ∈ O(E)
∀(f, g) ∈ SO(E)2 , f ◦ g−1 ∈ SO(E)

preuve :

2.5 Matrices de changements de bases orthonormées

Théorème . Si B est une base orthonormée de E, si B′ est une base de E, alors, en notant PB′

B la matrice de

passage de B à B′ : B′ est une base orthonormée ⇔ PB′

B ∈ On(R)

Corollaire. L'inverse de la matrice de passage entre deux bases orthonormées est égale à sa transposée.

Remarque. On(R) est l'ensemble des matrices de changement de bases orthonormées.

preuve :

3 Espace euclidien orienté de dimension 2 et 3

3.1 Orientation d'un espace euclidien

Orienter un espace euclidien c'est �xer une base orthonormée de référence Br.

Alors, si B est une base orthonormée de E on a 2 possibilités :{
detBr (B) = 1 on dit alors que B est une base orthonormée directe

detBr (B) = −1 on dit alors que B est une base orthonormée indirecte

Remarque. On peut montrer qu'il n'y a sur E que deux orientations possibles.

Exemples. Orientation d'une droite, d'un plan en dimension 3.

3.2 Produit mixte

3.2.1 Dé�nition

Dé�nition. Si (E,<,>) est un espace euclidien orienté de dimension n et si (u1, . . . , un) est une famille de n
vecteurs de E.
Alors on appelle produit mixte de (u1, . . . , un) le déterminant de (u1, . . . , un) dans une base orthonormée directe
quelconque de E.
On note [u1, . . . , un] cette valeur.

Justi�cation de la dé�nition :
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3.2.2 Interprétation

Théorème . En dimension 2, si ABCD est un parallélogramme alors Aire(ABCD) =

∣∣∣∣[−→AB,
−→
AD]

∣∣∣∣
En dimension 3, si ABCDEFGH est un parallélépipède alors V olume(ABCDEFGH) =

∣∣∣∣[−→AB,
−→
AD,

−→
AE]

∣∣∣∣
3.3 Produit vectoriel en dimension 3

3.3.1 Dé�nition

Dé�nition. Soit (E,<,>) un espace préhilbertien orienté de dimension 3.
Soit u⃗ et v⃗ deux vecteurs de E.

Alors il existe un unique vecteur a⃗ dans E véri�ant : ∀x⃗ ∈ E , [u⃗, v⃗, x⃗] =< a⃗, x⃗ >
Ce vecteur a⃗ est appelé produit vectoriel de u⃗ et v⃗ et est noté u⃗ ∧ v⃗

Justi�cation de la dé�nition :

3.3.2 Propriétés

Propriétés. Avec les notations précédentes.


i) ∀x⃗ ∈ E , [u⃗, v⃗, x⃗] =< u⃗ ∧ v⃗, x⃗ >

ii) u⃗ ∧ v⃗ = −v⃗ ∧ u⃗

iii) (u⃗+ λv⃗) ∧ w⃗ = u⃗ ∧ w⃗ + λv⃗ ∧ w⃗

iv) u⃗ ∧ v⃗ = 0⃗E ⇔ (u⃗, v⃗) liée

v) Si B est une base orthonormée directe de E. Si MatB(u⃗) =

x
y
z

, MatB(v⃗) =

x′

y′

z′



alors : MatB(u⃗ ∧ v⃗) =



∣∣∣∣y y′

z z′

∣∣∣∣
−
∣∣∣∣x x′

z z′

∣∣∣∣∣∣∣∣x x′

y y′

∣∣∣∣

 =

yz′ − y′z
x′z − xz′

xy′ − x′y



Remarques. ii) et iii) disent que ∧ est une forme bilinéaire antisymétrique ...
u ⊥ (u ∧ v)
Si (i, j, k) est une base orthonormée alors : i ∧ j = k, i ∧ k = −j etc ..

preuve :

4 Isométries vectorielles d'un plan euclidien

Dans ce paragraphe E est un espace euclidien orienté de dimension 2.

4.1 O2(R)
4.1.1 Etude

4.1.2 Bilan

Théorème . M ∈ SO2(R) ⇔ M ∈ O2(R) et det(M) = 1 ⇔ ∃θ ∈ R , M =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
M ∈ O2(R) et det(M) = −1 ⇔ ∃θ ∈ R , M =

(
cos(θ) −sin(θ)
−sin(θ) −cos(θ)

)
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4.2 Isométrie indirecte

4.2.1 Etude

4.2.2 Bilan

Théorème . Si f est une isométrie vectorielle indirecte en dimension 2 alors f est une ré�exion.

4.3 Isométrie directe

4.3.1 Préliminaires

Lemme. Si on pose ∀θ ∈ R , Rθ =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
alors :


∀(θ, θ′) ∈ R2 , RθRθ′ = Rθ′Rθ = Rθ+θ′

R0 = I2

∀θ ∈ R , (Rθ)
−1 = R−θ

Remarque. Il y a donc commutativité dans SO2(R).

preuve :

4.3.2 Rotations vectorielles

Dé�nition. Soit B une base orthonormée de E. Alors l'endomorphisme rθ de E admettant Rθ =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
comme matrice relativement à B est appelée rotation vectorielle d'angle θ.

Lemme. rθ admet pour matrice Rθ relativement à n'importe quelle base orthonormée directe de E.

Remarque. SO2(R) est donc l'ensemble des matrices de rotations.

preuve :

4.3.3 Interprétation

Avec l'image d'un vecteur

(
cos(t)
sin(t)

)
ou avec les complexes.

4.3.4 Théorème

Théorème . Les isométries vectorielles directes en dimension 2 sont les rotations.

4.4 Classi�cation des isométries vectorielles

Théorème . Soit f une isométrie vectorielle d'un espace euclidien de dimension 2.

Alors :

{
det(f) = 1 ⇔ f est une rotation

det(f) = −1 ⇔ f est une ré�exion

preuve :

4.5 Angle de deux vecteurs

Dé�nition. Si B est une base directe d'un espace euclidien (E,<,>) de dimension 2. Si u⃗, v⃗ ∈ E\{0E}.

Alors il existe une rotation r d'angle θ telle que : v⃗
||v|| = rθ(

u⃗
||u|| ).

Alors θ est appelé angle entre les vecteurs u⃗ et v⃗ et est parfois noté (̂u⃗, v⃗)

Remarque. θ est dé�ni à 2π près.
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5 Isométries vectorielles d'un espace euclidien de dimension 3

Dans ce paragraphe E est un espace euclidien orienté de dimension 3.

5.1 O3(R)
5.1.1 Deux lemmes généraux préliminaires

On présente ici deux lemmes généraux utiles pour le paragraphe suivant. Ils ne sont pas inscrits dans le programme
mais ils sont utiles pour la preuve du paragraphe suivant.

Lemme. Si f ∈ O(E) alors sp(f) ⊂ {−1; 1}.

preuve :

Lemme. Si f ∈ O(E) et si dim(E) = 3 alors sp(f) ̸= ∅.

preuve :

5.1.2 Etude

5.1.3 Bilan

Théorème . Soit f ∈ O3(E) alors il existe une base orthonormée B de E relativement à laquelle la matrice de f
a l'une des formes suivantes :1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 ,

−1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 ,

1 0 0
0 1 0
0 0 −1


5.2 Isométrie directe : Rotation

5.2.1 Dé�nition

Soit u⃗ un vecteur non nul et θ un nombre réel. Alors on appelle rotation d'axe orienté Ru⃗ et d'angle θ l'endomorphisme

de R3 ayant pour matrice relativement à une base orthonormée directe (u⃗, v⃗, w⃗) la matrice

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

.

Remarque. Le premier vecteur de la base orthonormée directe, à savoir u⃗ et l'angle θ su�sent à dé�nir la rotation.

5.2.2 Interprétation

La restriction de la rotation à {u}⊥ est une rotation du plan euclidien {u}⊥.

5.2.3 Propriété

Propriété. Soit u⃗ un vecteur non nul et θ un nombre réel. Soit r la rotation d'axe orienté Ru⃗ et d'angle θ.
Alors pour tout vecteur x⃗ tel que x⃗ ⊥ u⃗ on a : r(x⃗) = cos(θ)x⃗+ sin(θ) u⃗

||u⃗|| ∧ x⃗

Alors pour tout vecteur x⃗ de E : det(x⃗, r(x⃗), u⃗) est du même signe que sin(θ)

preuve :

5.2.4 Exemple

Soit A = 1
3

2 −2 −1
1 2 −2
2 1 2

.

Montrer que A est une matrice de rotation, déterminer l'axe et l'angle.

(1,−1, 1) et π
3
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5.3 Isométries indirectes : complément

Remarque. Rien de préciser sur ce paragraphe dans le programme, en particulier pas de théorème de classi�cation.

5.3.1 Ré�exion

Lemme. L'endomorphisme ayant comme matrice

1 0 0
0 1 0
0 0 −1

 relativement à une base orthonormée B = (e1, e2, e3)

est une ré�exion de plan V ect(e1, e2).

preuve :

5.3.2 Composée rotation-ré�exion

Lemme. L'endomorphisme ayant comme matrice

−1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 relativement à une base orthonormée

B = (e1, e2, e3) est la composée commutative de la ré�exion de plan V ect(e2, e3) et de la rotation d'axe orienté
V ect(e1) et d'angle θ.

preuve :

5.4 Classi�cation des isométries vectorielles en dimension 3 : compléments

Théorème . Les isométries vectorielles directes en dimensions 3 sont les rotations.
Les isométries vectorielles indirectes en dimensions 3 sont les ré�exions et les composées rotations-ré�exions.

Remarque. Soit A ∈ O3(R).
Si det(A) = 1 alors A est une matrice de rotation.
Si det(A) = −1 alors A est une matrice de ré�exion ou de composée rotation-ré�exion.
De plus, si A = AT on a une matrice de ré�exion.

6 Réductions des endomorphismes autoadjoints et des matrices symétriques

réelles

6.1 Dé�nition

Dé�nition. On dit qu'un endomorphisme de (E,<,>) est autoadjoint
si et seulement si ∀(x, y) ∈ E2 , < x, u(y) >=< u(x), y >

Remarques. On note S(E) l'ensemble des endomorphismes autoadjoints de (E,<,>)
On dit "auto-adjoint" car l'endomorphisme est son propre "adjoint" (notion hors programme).

6.2 Matrice d'un endomorphisme autoadjoint dans une base orthonormée

Théorème . Soit f un endomorphisme de (E,<,>) et B une base orthonormée de E.

Alors : f autoadjoint ⇔ MatB(f) est symétrique

Remarques. Il faut bien que B soit orthonormée !!! On parle aussi d'endomorphisme "symétrique" car la
matrice est symétrique réelle mais attention endomorphisme symétrique ̸= symétrie !!

Par isomorphisme d'espace vectoriel : dim(S(E)) = dim(Sn(R)) = n(n+1)
2
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6.3 Théorème spectral

6.3.1 Premier théorème

Théorème . Si f est un endomorphisme autoadjoint de (E,<,>) alors :
i) F est un sous espace stable par f ⇒ F⊥ stable par f
ii) les sous espace propres de f sont en somme directe orthogonale.

preuve :

6.3.2 Théorème spectral pour les endomorphismes autoadjoint

Théorème . Tout endomorphisme autoadjoint d'un espace euclidien admet une base orthonormée de vecteurs
propres.

Remarque. Tout endomorphisme autoadjoint est diagonalisable dans une base orthonormée.

preuve : non exigible

6.3.3 Théorème spectral pour les matrices symétriques réelles

Théorème . Soit A ∈ Mn(R), symétrique. Alors :
∃P ∈ On(R) et D ∈ Mn(R) diagonale, telles que : A = PDPT = PDP−1

Remarques. Déjà vu en partie dans le chapitre réduction.
Autrement dit : Une matrice symétrique réelle est diagonalisable dans une base orthonormée.
Le résultat est faux pour une matrice symétrique complexe.
On peut aussi choisir P ∈ SOn(R)

Exemples. �

(
0 i
i 2

)
et �

3 2 4
2 0 2
4 2 3


6.4 Projecteurs et symétries

6.4.1 Théorème

Théorème . Si f est une symétrie ou une projection orthogonale, et si B est une base orthonormée alors :
MB(f) est une matrice symétrique réelle.

preuve :

6.4.2 Projecteur autoadjoint

Théorème . Soit p un projecteur d'un espace euclidien (E,<,>). Alors :
p est un projecteur orthogonale ⇔ p est autoadjoint

preuve :

6.5 Positivité

6.5.1 Dé�nitions pour un endomorphisme

Dé�nitions. Soit f un endomorphisme d'un espace euclidien (E,<,>).
Alors on dit que :

f est un endomorphisme autoadjoint positif si et seulement si

{
f est autoadjoint

∀x ∈ E , < f(x), x >≥ 0

f est un endomorphisme autoadjoint dé�ni positif si et seulement si

{
f est autoadjoint

∀x ∈ E , x ̸= 0E ⇒< f(x), x >> 0

Remarque. Notations : on note S+(E) l'ensemble des endomorphismes autoadjoints positifs
et on note S++(E) l'ensemble des endomorphismes autoadjoints dé�nis positifs.
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6.5.2 Caractérisation spectrale

Théorème . Soit f un endomorphisme autoadjoint de (E,<,>). Alors :

f ∈ S+(E) ⇔ sp(f) ⊂ [0; +∞[ et f ∈ S++(E) ⇔ sp(f) ⊂]0; +∞[

Remarque. Ne pas oublier que f doit être autoadjoint avant d'appliquer ces équivalences.

preuve :

6.5.3 Pour les matrices

Dé�nitions. Une matrice symétrique réelle A est dite positive si et seulement si sp(A) ⊂ [0; +∞[.
Une matrice symétrique réelle A est dite dé�nie positive si et seulement si sp(A) ⊂]0; +∞[

Remarques. Les matrices symétrique réelles positives représentent les endomorphismes autoadjoints positifs dans
une base orthonormée.
Les matrices symétrique réelles dé�nies positives représentent les endomorphismes autoadjoints dé�nis positifs dans
une base orthonormée.
On note S+

n (R) l'ensemble des matrices réelles positives et S++
n (R) l'ensemble des matrices réelles dé�nies positives.
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