CPGE PSI* 2025/2026
Lycée La Fayette

Informatique
Nathalie Planche

07 — Introduction aux bases de données

Une base de données (ou database en anglais), usuellement abrégée en BD ou BDD, est un ensemble
structuré et organisé permettant le stockage de grandes quantités d'informations afin d'en faciliter
l'exploitation (ajout, mise a jour, recherche de données).

Nous utilisons tous les jours des bases de données, voici quelques exemples :

e Lorsque vous consultez vos notes sur Pronote : les informations vous concernant sont enregistrées
sur une base de données.

e Lorsque vous allez sur un site d'achat sur internet tel que Amazon, vous pouvez accéder a une liste
de catégorie de produits (livres, CD, informatique...), consulter les différentes rubriques de livres,
consulter la description du livre, commander un livre et réaliser le paiement en ligne avec vos
informations bancaires, consulter vos précédentes commandes.

e Lorsque vous écoutez de la musique sur une application type Deezer ou Spotify.

Remarque : nous travaillerons avec des ensembles de données de taille raisonnable cette année, mais vous
avez sans doute déja entendu parler des Big Data, ensembles de données tellement gigantesques qu’ils
deviennent ingérables avec les quelques outils que nous allons découvrir ensemble. (les géants comme
Google et Amazon ont développé leur propre systeme de gestion de base de données)

I Concept des bases de données relationnelles

1) Bases de données simples (a une table)

Pour stocker et organiser de I’information sur un sujet donné, on peut la représenter sous forme d’un tableau
a deux dimensions.

Exemples :
Base de données sur les régions de France :

Nom Préfecture Population Superficie
Auvergne-Rhone-Alpes Lyon 7 820 96 69 711
Bourgogne-Franche- Dijon 2 820623 47 784
Comté
Base de données sur les pays :
Nom Continent Capitale | Indépendance | Population Superficie PIB/hab.
Afghanistan Asie Kaboul 1919 34 859 568 647 500 585
Afrique du Afrique Pretoria 1910 55 653 654 1219912 6 160
Sud

2) Bases de données complexes (a plusieurs tables)

Pour éviter d’éventuelles redondances dans de tels tableaux, on peut étre amené a stocker I’information
voulue dans plusieurs tables, entre lesquelles on établit alors des liens.
Exemple : Base de données sur les régions et villes de France

Régions : Numéro Nom Préfecture | Population | Superficie
1 Auvergne-Rhone-Alpes 25 7 820 96 69 711
Villes :
Numéro Nom Code Postal Région | Population
1 Agen 47000 10 33988

3) Vocabulaire
a) Généralités

e Une base de données est un ensemble de tables (une table s’appelle aussi une relation de la base de
données).

e Chaque table est composée de colonnes, le nom de chaque colonne s’appelle un attribut.

o A chaque attribut est associé son domaine, c¢’est-a-dire un ensemble auquel appartiennent les entrées de
la colonne (chaine de caractéres, entier, réel...).

e Chaque ligne d’une table (la ligne du nom des colonnes étant exclue) s’appelle un multiplet (tuple en
anglais), ou encore un enregistrement.

e Un champ est I’intersection d’une ligne et d’une colonne.

e On appelle schéma relationnel le descriptif qui associe a chaque table la liste de ses attributs.

. , , PILOTE(PLNUM, PLNOM, PLPRENOM, VILLE, SALAIRE)
Exemple : Base de données d’une B A 1\ AVION(AVNUM, AVNOM, CAPACITE, LOCALISATION)
[) V() NS VOL(VOLNUM, PLNUM, AVNUM, VILLEDEP, VILLEARR, HEUREDEP, HEUREARR)

compagnie aérienne)
Schéma / Nom de la table
de la base
PLNUM| PLNOM |PLPRENOM| VILLE | SALAIRE
: 1 MIRANDA SERGE PARIS 21000
Relation (=table) 2 LETHANH NAHN TOULOUSE 21000
3 TALADOIRE GILLES 18000
AVION
m AVNOM | CAPACITE | LOCALISATION Champ(=cellule)
Remarque : un champ non A300 300 NICE
7m0 NCE >« e
.y , Attribut
renseigné sera codé NULL. 3 B707 250 PARIS

VOLNUM PLNUM AVNUM VILLEDEP VILLEARR IHEUREDEPl 1EUREARR

100 NICE TOULQUSE 12:30
101 1 2 PARIS TOULOUSE 17 00 18:30
102 2 1 TOULOUSE LYON 14:00 16:00

b) Clef primaire/clef étrangere

Les lignes (multiplets) d’une relation sont toujours deux a deux distinctes.

On appelle clef primaire d’une relation tout sous ensemble minimal de ses attributs permettant d’identifier
de facon unique ses multiplets. Il faut étre vigilant car dans I’exemple ci-dessus, dans la table «PILOTE»,
I"attribut « PLNOM » ne peut pas servir de clef primaire (plusieurs pilotes peuvent avoir le méme nom), et
méme le couple (« nom », « prénom ») ne peut pas étre une clef primaire. C’est pour ¢a qu’un numéro a été
attribué a chaque pilote.

Dans le cas extréme, la clef primaire sera I’ensemble des attributs, c’est-a-dire seule la donnée de toute la
ligne permettra d’identifier cette ligne de fagon unique ; il est déconseillé d’arriver a ce cas de figure.

Dans la réalité, on utilise donc plutét une numération des lignes, comme dans I’exemple de la base données

« Vols » ci-dessus, et c’est cet identifiant unique qui sera la clef primaire, ceci pour chacune des tables.

Le lien entre les différentes tables d’une base de données se fait grace a une clef étrangere.
11 s’agit des valeurs d’un ou des attributs d’une table, qui fait référence a la clef primaire d’une autre
table.

N.B.: une clef étrangére d’une table est toujours la clef primaire d’une autre table.

Exemple : PILOTE(PLNUM, PLNOM, PLPRENOM, VILLE, SALAIRE)

h|) V(-)lg, AVION(AVNUM. AVNOM, CAPACITE, LOCALISATION)
- VOL(VOLNUM, PLNUM, AVNUM, VILLEDEP, VILLEARR, HEUREDEP, HEUREARR)

PILOTE
PLNUM| PLNOM |PLPRENOM VILLE SALAIRE

1 MIRANDA SERGE PARIS 21000
LETHANH NAHN TOULOUSE 21000

Clé primaire (unique, non nulle) TALADOIRE GILLES NICE 18000

AN AOW CAACTE [TGS on

A300 NICE
2 A310 300 NICE
3 B707 250 PARIS

e o,

100 NICE TOULOUSE 11:00 12:30
101 1 PARIS TOULOUSE 17:00 18:30
102 2 TOULOUSE LYON 14:00 16:00

Clés étrangéres (référence) "

Pour qu’une base

de données serve a quelque chose, on doit étre en mesure d’accéder a la BDD en consultation ou en
écriture. Pour cela, il faut écrire un ou plusieurs programmes qui seront chargés de lancer les requétes
nécessaires. Ces programmes seront lancés notamment lorsque ['utilisateur lance une recherche (par
exemple lorsque sur une appli de musique, vous voulez trouver toutes les versions disponibles du titre

« Allez les verts »).

Dans ce cours nous allons donc apprendre a lancer des requétes sur une base de données déja créée.
L’écriture dans une base de données n’est pas au programme.

IT) Requétes dans une base de données comportant une seule table

Le langage utilisé pour faire des requétes dans une base de données relationnelle est le SQL, pour
Structured Query Language (langage de requéte structuré).

Les logiciels permettant (via SQL) la gestion et I’interrogation de bases de données s’appellent des systémes
de gestions de bases de données (SGBD).

Cette année, nous utiliserons https://sqliteonline.com, qui est (comme son nom 1’indique) une fagon de
travailler en ligne avec une base de données située sur votre ordinateur.

1) La commande SELECT...FROM... et tous les mot-clefs associés

Toutes les requétes dans une base de données commencent par la commande SELECT... FROM..., a
laquelle on peut ajouter des commandes optionnelles permettant de sélectionner/trier les résultats voulus.

a) Syntaxe de base

Une requéte SELECT dans une base de données se fait selon la syntaxe suivante :

SELECT attribut FROM table

ou

SELECT liste d’attributs FROM table

ou

SELECT * FROM table

e L’astérisque * signifie ’ensemble des attributs : on récupére donc la totalité de la table.

e Lacommande SELECT peut potentiellement afficher des lignes en double ; pour éviter des
redondances dans le résultat, il faut utiliser SELECT DISTINCT . Dans ce cas les lignes qui font
doublons ne seront pas affichées.

Exemple sur la base de données vols :

Pour obtenir la liste de tous les noms d’avions en activité :
SELECT AVNOM FROM AVION

mais il y aura des redondances si plusieurs avions du méme nom sont en circulation (s’il y a deux A320 par

exemple) ; on demandera donc plutot :
SELECT DISTINCT AVNOM FROM AVION

b) L’option WHERE
L’option WHERE permet de garder, parmi les multiplets de la relation considérée, seulement ceux qui

vérifient une condition donnée, selon la syntaxe suivante

SELECT attribut, ou liste d’attributs, ou * FROM table WHERE condition

e La condition est typiquement de la forme « attribut=valeur », ou = peut étre remplacé par !=
(différent de) et les comparaisons >, <, >= et <=.

e La condition peut contenir des liens logiques AND, OR ou NOT, voire une combinaison des trois
(attention a la place des parentheses)

Exemple : Voici le début d’une table « Pays »

Nom Continent Capitale | Indépendance Population Superficie PIB/hab.
Afghanistan Asie Kaboul 1919 34 859 568 647 500 585
Afrique du Sud Afrique Pretoria 1910 55653 654 1219912 6 160

Pour obtenir toutes les informations sur les pays d’Europe, on utilisera :
SELECT * FROM Pays WHERE Continent=« Europe »

Pour obtenir le nom des pays d’Europe de moins de 10 millions d’habitants, on utilisera :
SELECT Nom FROM Pays WHERE Continent=« Europe » AND Population<=10000000

Exercice : Ecrire la requéte pour obtenir le nom des pays qui ne sont pas en Afrique et qui ont une superficie
supérieure ou égale a un million de km?2.

On peut aussi faire une recherche suivant un modele sur les valeurs d’un attribut, grace a I’opérateur LIKE,
associ¢ au joker %, qui représente aucun, un ou plusieurs caracteres.

Exemple :
SELECT Nom, Capitale FROM Pays WHERE Capitale LIKE «K% »

va retourner le nom et la capitale de tous les pays dont la capitale commence par la lettre K.
On peut enfin spécifier I’appartenance a un groupe de valeurs grace aux instructions IN et NOT IN
Exemple :

SELECT Nom FROM Pays WHERE continent IN (« Europe », « Asie »)

¢) Opérations élémentaires sur les données

Une requéte SELECT peut porter sur des opérations algébriques élémentaires (c’est-a-dire sommes,
produits, différences, quotients) entre attributs, lorsque ceux-ci sont de type numérique.
Pour améliorer I’affichage du résultat, on peut procéder au renommage du calcul effectué, via la syntaxe :

SELECT calcul sur attributs AS nouveau nom FROM table

Exemple : Avec la table « Pays »

Nom Continent Capitale | Indépendance Population Superficie PIB/hab.
Afghanistan Asie Kaboul 1919 34 859 568 647 500 585
Afrique du Sud Afrique Pretoria 1910 55 653 654 1219912 6 160

Qu’effectue la requéte suivante ?
SELECT Nom, Population/Superficie AS ‘densité’ FROM Pays

Remarque : Le renommage des attributs sans calcul est également possible.

d) Fonctions d’agrégation

Pour faire des statistiques €¢lémentaires sur les bases de données, le SQL dispose des fonctions d’agrégation
MIN, MAX, SUM, AVG (moyenne, average en anglais) et COUNT.

On parle de fonctions d’agrégations car a partir des champs de plusieurs lignes, on obtient une seule valeur.
L’option de renommage est possible pour ces fonctions.

Exemple : Avec la table « Pays », qu’effectue la requéte suivante ?
SELECT MIN (Superficie), MAX (Superficie) FROM Pays WHERE Continent=’'Asie’

Plus de précisions sur la fonction COUNT :

e COUNT compte le nombre de lignes que donne la requéte.

e Sion veut le nombre total de lignes COUNT(*) le fait.

e Sil’on précise un attribut, par exemple Continent, COUNT(Continent) donne le nombre de lignes tel
que ce champ n’est pas NULL.
Remarquons que le résultat ici ne sera pas intéressant, puisque les continents seront comptés
plusieurs fois ; pour éviter ceci, on utilise le mot clef DISTINCT :

SELECT COUNT (DISTINCT Continent)

e Qu’effectue la requéte suivante ? FROM Pays

Exemple : Ecrire une requéte permettant de connaitre le nombre de pays européen présents dans cette table.

Groupements : la fonction GROUP BY
On peut appliquer les fonctions d’agrégation a des groupements (et non pas a toutes les valeurs d’un
attribut), pour cela on utilise I’instruction GROUP BY.
Par exemple si on veut récupérer le nombre total d’habitants par continents :
SELECT Continent , SUM(Population) FROM Pays GROUP BY Continent

Filtrage des agrégats : la fonction HAVING permet de filtrer les résultats que I’on a obtenus en appliquant

une fonction d’agrégation. (car on ne peut pas utiliser uyn WHERE pour une condition qui porte sur le
résultat d’une fonction d’agrégation)

SELECT colonnel, SUM(colonne?2) AS Total FROM table
GROUP BY colonnel HAVING condition sur Total

Exemple : Avec la table « Pays »

Nom Continent Capitale | Indépendance Population Superficie PIB/hab.
Afghanistan Asie Kaboul 1919 34 859 568 647 500 585
Afrique du Sud Afrique Pretoria 1910 55 653 654 1219912 6 160

continents qui ont une population totale supérieure ou égale a un milliard d’habitants :

Ecrire une requéte permettant de faire afficher chaque continent et sa population totale, uniquement pour les

Si on ne veut pas afficher la colonne sur laquelle opére le HAVING, on peut faire figurer la fonction
d’agrégation seulement dans le HAVING (et pas dans le SELECT), avec la syntaxe suivante :

SELECT colonnel FROM table
GROUP BY colonnel
HAVING condition sur SUM(colonne?2)

Ecrire une requéte permettant de faire afficher le nom des continents ayant une population totale supérieure
ou égale a un milliard d’habitants :

e) Sous-requétes
On peut réutiliser le résultat d’une requéte, sachant que le résultat d’une requéte SQL qui ne fournit qu’un

champ peut étre identifi¢ avec son unique valeur et utilisé comme tel.
Exemple : Avec la table « Pays », qu’effectue la requéte suivante ?
SELECT Nom FROM Pays WHERE PNB>= (SELECT AVG (PNB) FROM Pays)

2) Affichage des résultats d’une requéte

e Lacommande ORDER BY permet de trier les lignes dans un résultat d’une requéte SQL. Il est possible
de trier les données sur une ou plusieurs colonnes, par ordre ascendant ou descendant.
SELECT colonnel, colonne?2 FROM table ORDER BY colonnel
Par défaut les résultats sont classés par ordre ascendant (=croissant), toutefois il est possible d’inverser
I’ordre en utilisant le suffixe DESC apres le nom de la colonne. Par ailleurs, il est possible de trier sur
plusieurs colonnes en les séparant par une virgule. Une requéte plus élaborée ressemblerait a cela :
SELECT colonnel, colonne?2, colonne3 FROM table
ORDER BY colonnel DESC, colonne?2 ASC

e Laclause LIMIT est a utiliser dans une requéte SQL pour spécifier le nombre maximum de résultats que

I’on souhaite obtenir.
SELECT * FROM table LIMIT 10

Cette requéte permet de récupérer seulement les 10 premiers résultats d’une table. Bien entendu, si la
table contient moins de 10 résultats, alors la requéte retournera toutes les lignes.
La bonne pratique lorsque I’on utilise LIMIT consiste a utiliser également la clause ORDER BY pour
s’assurer que ce sont toujours les bonnes données qui sont présentées. En effet, sans instruction
spécifique, I’ordre d’affichage des résultats est imprévisible.

e [L’utilisation de OFFSET permet d’ignorer certains résultats : avec OFFSET m on ignore les m premiers
résultats. La syntaxe pour utiliser une limite et un offset est la suivante :

SELECT colonnel FROM table ORDER BY colonnel LIMIT 10 OFFSET 1
Cette requéte permet d’ignorer la premiere ligne et d’afficher 10 lignes.

Ecrire OFFSET 0 revient au méme que de ne rien écrire.

3) Remarques sur le langage SQL

e A ladifférence du langage de programmation Python, le SQL n’est sensible ni a la casse, ni a
I’indentation. L usage veut que les commandes soient écrites en majuscule.

e Notons que SQL est un langage déclaratif, ¢’est-a-dire que 1’on dit au SGBD ce que I’on veut faire,
mais on ne lui dit pas (vraiment) comment il doit le faire. En interne, I’interpréteur va s’arranger pour
optimiser la requéte pour obtenir le résultat en un minimum de temps.

III) Requétes dans une base de données comportant plusieurs tables

11 s’agit d’obtenir des informations portant sur plusieurs relations d’une méme base de données.

1) Union, intersection, différence

a) Commande UNION
L'union de deux tables est une table contenant chaque ligne de la premiére table e chaque ligne de la

seconde table.

Le nombre des colonnes sélectionnées dans chacune des deux tables doit étre le méme, mais les
champs que I'on fait correspondre dans les deux tables n'ont pas besoin de porter les mémes noms ni de se
présenter dans le méme ordre. (Cependant attention aux résultats qui n’ont aucun sens)

On peut également sélectionner seulement certaines lignes de chacune des tables grace a la
commande WHERE.

C’est donc une commande qui permet de concaténer les résultats de deux requétes (ou plus).

Remarque : par défaut, les lignes exactement identiques ne seront pas répétées dans les résultats. Pour

effectuer une union dans laquelle méme les lignes dupliquées sont affichées il faut utiliser la commande
UNION ALL.

Syntaxe :

SELECT attribut, ou liste d’attributs, ou * FROM tablel WHERE conditions
UNION
SELECT attribut, ou liste d’attributs, ou * FROM table?2 WHERE conditions

Exemple : Imaginons une entreprise qui posséde deux magasins et dans chacun de ces magasins il y a une
table qui liste les clients.

La table du magasin n°1 s’appelle « magl client » La table du magasin n°2 s’appelle « mag2 client »
et contient les données suivantes : et contient les données suivantes :
m prenom nom ville date naissance

Léon Dupuis Paris 1983-03-06 Marion _ Leroy Lyon 1982-10-27

Marie Bernard Paris 1993-07-03 Paul Moreau _Lyon 1976-04-19

Sophie Dupond Marseille 1986-02-22 Marie Bernard Paris 1993-07-03

Marcel Duron Paris 1976-11-24 Marcel Duron _ Paris 1976-11-24

prenom nom ville date naissance

Léon Dupuis Paris 1983-03-06
SELECT * FROM magl client Marie Bernard Paris 1993-07-03
UNION , — > | Sophie Dupond Marseille 1986-02-22
SELECT * FROM mag2 client Marcel Duron Paris 1976-11-24
Marion Leroy Lyon 1982-10-27
Paul Moreau Lyon 1976-04-19

Le résultat de cette requéte montre bien que les enregistrements des 2 requétes sont mis a la suite des uns des
autres mais sans inclure plusieurs fois les mémes lignes.

Traduire avec une phrase la requéte suivante. Combien de lignes comporte le résultat ?
SELECT prenom,nom FROM magl client WHERE date naissance>=1980-01-01
UNION

SELECT prenom,nom FROM mag2 client WHERE date naissance>=1980-01-01

b) Commande INTERSECT
La commande INTERSECT permet d’obtenir ’intersection des résultats de deux requétes.

Cette commande permet donc de récupérer les lignes communes a deux requétes.
Cela peut s’avérer utile lorsqu’il faut trouver s’il y a des données similaires sur deux tables distinctes.
Pour I’utiliser il est nécessaire que les deux requétes retournent le méme nombre de colonnes.

Syntaxe :

SELECT attribut, ou liste d’attributs, ou * FROM tablel
INTERSECT
SELECT attribut, ou liste d’attributs, ou * FROM table?2

Exemple :Traduire avec une phrase la requéte suivante. Combien de lignes comporte le résultat ?

SELECT * FROM magl client
INTERSECT
SELECT * FROM mag2 client

¢) Commande EXCEPT
La commande EXCEPT permet de récupérer les lignes de la premiere requéte sans inclure les lignes de la

deuxiéme. (d’un point de vue ensembliste il s’agit de la différence entre deux ensembles)

Pour 'utiliser il est nécessaire que les deux requétes retournent le méme nombre de colonnes.
Syntaxe :

SELECT attribut, ou liste d’attributs, ou * FROM tablel
EXCEPT
SELECT attribut, ou liste d’attributs, ou * FROM table2

Exemple :Traduire avec une phrase la requéte suivante. Combien de lignes comporte le résultat ?

SELECT * FROM magl client
EXCEPT
SELECT * FROM mag2 client

2) Produit cartésien et jointure

Nous allons ici utiliser une méme requéte SELECT sur plusieurs tables en méme temps.

Le produit cartésien de deux tables est une table obtenue en accolant a chaque ligne de la premicére table
I’ensemble des lignes de la seconde.

Si chacune des deux tables contient un grand nombre d'enregistrements, le résultat du produit est encore plus
grand (il aura un nombre de lignes égal au produit du nombre de lignes de la premiére table par le nombre de
lignes de la deuxieme), et généralement dénu¢ de sens.

La figure ci-dessous illustre I'opération de produit cartésien :

AVION
AVNUM AVNOM | CAPACITE | LOCALISATION
101 1 g PARIS TOULOUSE 17:00 18:20 2 ﬁg?g ggg E:EE
102 2 1 TOULOUSE LYON 14:00 16:00

3 B707 250 PARIS

Ce produit cartésien aura un résultat qui ressemble a ¢a :

VOLNUM | PLNUM | AVNUM | VILLEDEP | VILLEARR | HEUREDEP HEUREARRAVNOM CAPACITE | LOCALISATION

NICE TOULOUSE 11:00 12:30 1 A300 NICE
100 1 1 NICE TOULOUSE 11:00 12:30 2 A310 300 NICE
100 1 1 NICE TOULOUSE 11:00 12:30 3 B707 250 PARIS
101 1 2 PARIS TOULOUSE 17.00 18:30 1 A300 300 NICE
101 1 2 PARIS TOULOUSE 17.00 18:30 2 A310 300 NICE
101 1 2 PARIS TOULOUSE 17.00 18:30 3 B707 250 PARIS
102 2 1 TOULOUSE LYON 14:00 16:00 1 A300 300 NICE
102 2 1 TOULOUSE LYON 14:00 16:00 2 A310 300 NICE
102 2 1 TOULOUSE LYON 14:00 16:00 3 B707 250 PARIS

Remarquons que ce tableau n’a aucun intérét ainsi.

Pour que le résultat renvoyé ait du sens, il faut seulement garder les lignes ou les numéros d’avions
correspondent, ¢’est-a-dire 1a ou la clef étrangére AVNUM de la table VOL est la méme que la clef
primaire AVNUM de la table AVION

Ceci est possible grace a la syntaxe suivante

SELECT attribut(s) FROM tablel JOIN table2?2 ON condition

Remarques :
e La condition qui vient aprés ON est généralement une égalité du type
tablel .identifiant=table2.identifiant.

e Lorsque deux tables ont des attributs identiques (du style identifiant, nom...), on différencie ceux-ci
en utilisant les syntaxes fablel.attribut et table2.attribut.

10

Exemple : SELECT VOLNUM, PLNUM, VOL.AVNUM, AVNOM, CAPACITE
FROM VOL JOIN AVION ON VOL.AVNUM=AVION.AVNUM

retourne :
100 1 1 A300 300
En créant ainsi des n-uplets grace a deux tables et une 101 1 2 A310 300
condition pertinente pour que ces n-uplets aient un sens, on a 102 2 1 A300 300

réalisé ce que 1’on appelle une jointure entre les tables.
Exemple : Toujours en utilisant la base de données Vols, écrire une requéte permettant d’obtenir le nom de
tous les pilotes qui effectuent un vol au départ de Nice :

3) Jointure avec trois tables ou plus

La syntaxe est la suivante :

SELECT attribut (s)
FROM Tablel JOIN Table?2 ON Tablel.colonnel=Table2.colonnel
JOIN Table3 ON Tablel.colonneZ2=Table3.colonnel

4) Auto-jointure
Une auto-jointure est la jointure d'une table avec elle-méme.
Pour réaliser une auto-jointure, un renommage des tables est obligatoire, puisque tous les attributs sont

ambigus. Pour donner un alias a une table, on note dans la clause FROM l'alias aprés le nom de la relation :
FROM nom table AS alias.

SELECT attribut(s) FROM table AS Tl JOIN table AS T2 ON Tl.nom=T2.nom

Remarque : de maniere générale, pour créer un alias d’une table ou d’un attribut, le mot-clef AS est
optionnel (cependant je vous conseille de 1’écrire pour plus de lisibilité¢), on pourrait donc écrire

SELECT attribut(s) FROM table Tl JOIN table T2 ON Tl.nom=T2.nom

Exemple : Considérons une entreprise qui posséde la table de ces employés (appelée table emp)
décrivant la hiérarchie entre ces employés : les employés peuvent étre dirigé par un supérieur direct qui se
trouve lui-méme dans la table.

id prenom nom emalil manager_id
1 Sebastien Martin s.martin@example.com MULL

2 Gustave Dubois g-dubois@example.com NULL

3 Georgette Leroy g.leroy@example.com 1

4 Gregory Roux g-roux@example.com 2

Si I’on veut lister le nom de tous les employés, suivi du nom de leur supérieur direct (dans le cas ou ils en
ont un), on peut utiliser la requéte suivante :

11

SELECT Tl.nom AS employé, TZ2.nom AS supérieur

FROM table emp AS Tl JOIN table emp AS T2 ON Tl.manager 1id=T2.id

Qu’affiche concrétement cette requéte avec la table donnée en exemple ci-dessous ?

5) Produit cartésien en général

On peut avoir besoin d’effectuer un produit cartésien entre deux tables, qui soit moins restrictif qu’en faisant
une équi-jointure comme vue précédemment. (une équi-jointure est une jointure utilisant un test d’égalité
apres le ON, ce qu’on utilisera dans la trés grande majorité des cas).

Faire un produit cartésien de fagon quelconque est possible mais attention ! il faudra bien prendre garde a la
cohérence des lignes qui seront créées, bien souvent il faudra utiliser une clause WHERE bien choisie pour
ne garder que des lignes pertinentes.

La syntaxe pour effectuer un produit cartésien sans restriction est :

SELECT attribut(s) FROM tablel , table?2

ou bien

SELECT attribut(s) FROM tablel CROSS JOIN table2

Exemple : Soient les deux tables suivantes contenant les groupes sanguins d’une population de 4 males et 4
femelles souris d’un laboratoire :

MALES FEMELLES
Groupe Rhesus Groupe Rhesus
A - B -
AB + B -
B + AB +
B - A -

On souhaite créer une table de tous les mixages possibles afin d’étudier les groupes possibles des bébés
souris issus de tous les croisements possibles.
On peut alors écrire : SELECT * FROM MALES CROISS JOIN FEMELLES

Voici les premicres lignes du résultat obtenu :
A -
A -
A -
A -
AB +
AB s

w | [| |
+

Ecrire a présent la requéte permettant d’obtenir les mixages possibles ou les rhésus des deux parents sont
différents :

12

