
1

CPGE PSI* 2025/2026 Informatique

Lycée La Fayette Nathalie Planche

07 – Introduction aux bases de données

Une base de données (ou database en anglais), usuellement abrégée en BD ou BDD, est un ensemble

structuré et organisé permettant le stockage de grandes quantités d'informations afin d'en faciliter

l'exploitation (ajout, mise à jour, recherche de données).

Nous utilisons tous les jours des bases de données, voici quelques exemples :

• Lorsque vous consultez vos notes sur Pronote : les informations vous concernant sont enregistrées

sur une base de données.

• Lorsque vous allez sur un site d'achat sur internet tel que Amazon, vous pouvez accéder à une liste

de catégorie de produits (livres, CD, informatique…), consulter les différentes rubriques de livres,

consulter la description du livre, commander un livre et réaliser le paiement en ligne avec vos

informations bancaires, consulter vos précédentes commandes.

• Lorsque vous écoutez de la musique sur une application type Deezer ou Spotify.

Remarque : nous travaillerons avec des ensembles de données de taille raisonnable cette année, mais vous

avez sans doute déjà entendu parler des Big Data, ensembles de données tellement gigantesques qu’ils

deviennent ingérables avec les quelques outils que nous allons découvrir ensemble. (les géants comme

Google et Amazon ont développé leur propre système de gestion de base de données)

I) Concept des bases de données relationnelles

1) Bases de données simples (à une table)

Pour stocker et organiser de l’information sur un sujet donné, on peut la représenter sous forme d’un tableau

à deux dimensions.

Exemples :

Base de données sur les régions de France :

Base de données sur les pays :

Nom Continent Capitale Indépendance Population Superficie PIB/hab.

Afghanistan

Afrique du

Sud

…

Asie

Afrique

…

Kaboul

Pretoria

…

1919

1910

…

34 859 568

55 653 654

…

647 500

1 219 912

…

585

6 160

…

Nom Préfecture Population Superficie

Auvergne-Rhône-Alpes

Bourgogne-Franche-

Comté

…

Lyon

Dijon

…

7 820 96

2 820 623

…

69 711

47 784

…

2

2) Bases de données complexes (à plusieurs tables)

Pour éviter d’éventuelles redondances dans de tels tableaux, on peut être amené à stocker l’information

voulue dans plusieurs tables, entre lesquelles on établit alors des liens.

Exemple : Base de données sur les régions et villes de France

Régions :

Villes :

3) Vocabulaire

a) Généralités

• Une base de données est un ensemble de tables (une table s’appelle aussi une relation de la base de

données).

• Chaque table est composée de colonnes, le nom de chaque colonne s’appelle un attribut.

• A chaque attribut est associé son domaine, c’est­à­dire un ensemble auquel appartiennent les entrées de

la colonne (chaine de caractères, entier, réel…).

• Chaque ligne d’une table (la ligne du nom des colonnes étant exclue) s’appelle un multiplet (tuple en

anglais), ou encore un enregistrement.

• Un champ est l’intersection d’une ligne et d’une colonne.

• On appelle schéma relationnel le descriptif qui associe à chaque table la liste de ses attributs.

Exemple : Base de données d’une

compagnie aérienne

Remarque : un champ non

renseigné sera codé NULL.

Numéro Nom Préfecture Population Superficie

1

…

Auvergne-Rhône-Alpes

…

25

…

7 820 96

…

69 711

…

Numéro Nom Code Postal Région Population

1

…

Agen

…

47000

…

10

…

33 988

…

3

b) Clef primaire/clef étrangère

Les lignes (multiplets) d’une relation sont toujours deux à deux distinctes.

On appelle clef primaire d’une relation tout sous ensemble minimal de ses attributs permettant d’identifier

de façon unique ses multiplets. Il faut être vigilant car dans l’exemple ci-dessus, dans la table «PILOTE»,

l’attribut « PLNOM » ne peut pas servir de clef primaire (plusieurs pilotes peuvent avoir le même nom), et

même le couple (« nom », « prénom ») ne peut pas être une clef primaire. C’est pour ça qu’un numéro a été

attribué à chaque pilote.

Dans le cas extrême, la clef primaire sera l’ensemble des attributs, c’est­à­dire seule la donnée de toute la

ligne permettra d’identifier cette ligne de façon unique ; il est déconseillé d’arriver à ce cas de figure.

Dans la réalité, on utilise donc plutôt une numération des lignes, comme dans l’exemple de la base données

« Vols » ci-dessus, et c’est cet identifiant unique qui sera la clef primaire, ceci pour chacune des tables.

Le lien entre les différentes tables d’une base de données se fait grâce à une clef étrangère.

Il s’agit des valeurs d’un ou des attributs d’une table, qui fait référence à la clef primaire d’une autre

table.

N.B.: une clef étrangère d’une table est toujours la clef primaire d’une autre table.

Exemple :

Pour qu’une base

de données serve à quelque chose, on doit être en mesure d’accéder à la BDD en consultation ou en

écriture. Pour cela, il faut écrire un ou plusieurs programmes qui seront chargés de lancer les requêtes

nécessaires. Ces programmes seront lancés notamment lorsque l’utilisateur lance une recherche (par

exemple lorsque sur une appli de musique, vous voulez trouver toutes les versions disponibles du titre

« Allez les verts »).

Dans ce cours nous allons donc apprendre à lancer des requêtes sur une base de données déjà créée.

L’écriture dans une base de données n’est pas au programme.

4

II) Requêtes dans une base de données comportant une seule table

Le langage utilisé pour faire des requêtes dans une base de données relationnelle est le SQL, pour

Structured Query Language (langage de requête structuré).

Les logiciels permettant (via SQL) la gestion et l’interrogation de bases de données s’appellent des systèmes

de gestions de bases de données (SGBD).

Cette année, nous utiliserons https://sqliteonline.com, qui est (comme son nom l’indique) une façon de

travailler en ligne avec une base de données située sur votre ordinateur.

1) La commande SELECT…FROM… et tous les mot-clefs associés

Toutes les requêtes dans une base de données commencent par la commande SELECT… FROM…, à

laquelle on peut ajouter des commandes optionnelles permettant de sélectionner/trier les résultats voulus.

a) Syntaxe de base

Une requête SELECT dans une base de données se fait selon la syntaxe suivante :

SELECT attribut FROM table

ou

SELECT liste d’attributs FROM table

ou

SELECT * FROM table

• L’astérisque * signifie l’ensemble des attributs : on récupère donc la totalité de la table.

• La commande SELECT peut potentiellement afficher des lignes en double ; pour éviter des

redondances dans le résultat, il faut utiliser SELECT DISTINCT . Dans ce cas les lignes qui font

doublons ne seront pas affichées.

Exemple sur la base de données vols :

Pour obtenir la liste de tous les noms d’avions en activité :

SELECT AVNOM FROM AVION

mais il y aura des redondances si plusieurs avions du même nom sont en circulation (s’il y a deux A320 par

exemple) ; on demandera donc plutôt :

SELECT DISTINCT AVNOM FROM AVION

b) L’option WHERE

L’option WHERE permet de garder, parmi les multiplets de la relation considérée, seulement ceux qui

vérifient une condition donnée, selon la syntaxe suivante

SELECT attribut, ou liste d’attributs, ou * FROM table WHERE condition

• La condition est typiquement de la forme « attribut=valeur », où = peut être remplacé par !=

(différent de) et les comparaisons >, <, >= et <=.

• La condition peut contenir des liens logiques AND, OR ou NOT, voire une combinaison des trois

(attention à la place des parenthèses)

5

Exemple : Voici le début d’une table « Pays »

Nom Continent Capitale Indépendance Population Superficie PIB/hab.

Afghanistan

Afrique du Sud

…

Asie

Afrique

…

Kaboul

Pretoria

…

1919

1910

…

34 859 568

55 653 654

…

647 500

1 219 912

…

585

6 160

…

Pour obtenir toutes les informations sur les pays d’Europe, on utilisera :

SELECT * FROM Pays WHERE Continent=« Europe »

Pour obtenir le nom des pays d’Europe de moins de 10 millions d’habitants, on utilisera :

SELECT Nom FROM Pays WHERE Continent=« Europe » AND Population<=10000000

Exercice : Ecrire la requête pour obtenir le nom des pays qui ne sont pas en Afrique et qui ont une superficie

supérieure ou égale à un million de km2.

On peut aussi faire une recherche suivant un modèle sur les valeurs d’un attribut, grâce à l’opérateur LIKE,

associé au joker %, qui représente aucun, un ou plusieurs caractères.

Exemple :

SELECT Nom, Capitale FROM Pays WHERE Capitale LIKE «K% »

va retourner le nom et la capitale de tous les pays dont la capitale commence par la lettre K.

On peut enfin spécifier l’appartenance à un groupe de valeurs grâce aux instructions IN et NOT IN

Exemple :

SELECT Nom FROM Pays WHERE continent IN (« Europe », « Asie »)

c) Opérations élémentaires sur les données

Une requête SELECT peut porter sur des opérations algébriques élémentaires (c’est­à­dire sommes,

produits, différences, quotients) entre attributs, lorsque ceux-ci sont de type numérique.

Pour améliorer l’affichage du résultat, on peut procéder au renommage du calcul effectué, via la syntaxe :

SELECT calcul_sur_attributs AS nouveau_nom FROM table

Exemple : Avec la table « Pays »

Nom Continent Capitale Indépendance Population Superficie PIB/hab.

Afghanistan

Afrique du Sud

…

Asie

Afrique

…

Kaboul

Pretoria

…

1919

1910

…

34 859 568

55 653 654

…

647 500

1 219 912

…

585

6 160

…

Qu’effectue la requête suivante ?

SELECT Nom, Population/Superficie AS ‘densité’ FROM Pays

Remarque : Le renommage des attributs sans calcul est également possible.

6

d) Fonctions d’agrégation

Pour faire des statistiques élémentaires sur les bases de données, le SQL dispose des fonctions d’agrégation

MIN, MAX, SUM, AVG (moyenne, average en anglais) et COUNT.

On parle de fonctions d’agrégations car à partir des champs de plusieurs lignes, on obtient une seule valeur.

L’option de renommage est possible pour ces fonctions.

Exemple : Avec la table « Pays », qu’effectue la requête suivante ?

SELECT MIN(Superficie), MAX(Superficie) FROM Pays WHERE Continent=’Asie’

Plus de précisions sur la fonction COUNT :

• COUNT compte le nombre de lignes que donne la requête.

• Si on veut le nombre total de lignes COUNT(*) le fait.

• Si l’on précise un attribut, par exemple Continent, COUNT(Continent) donne le nombre de lignes tel

que ce champ n’est pas NULL.

Remarquons que le résultat ici ne sera pas intéressant, puisque les continents seront comptés

plusieurs fois ; pour éviter ceci, on utilise le mot clef DISTINCT :

• Qu’effectue la requête suivante ? SELECT COUNT(DISTINCT Continent) FROM Pays

Exemple : Ecrire une requête permettant de connaître le nombre de pays européen présents dans cette table.

Groupements : la fonction GROUP BY

On peut appliquer les fonctions d’agrégation à des groupements (et non pas à toutes les valeurs d’un

attribut), pour cela on utilise l’instruction GROUP BY.

Par exemple si on veut récupérer le nombre total d’habitants par continents :

SELECT Continent , SUM(Population) FROM Pays GROUP BY Continent

Filtrage des agrégats : la fonction HAVING permet de filtrer les résultats que l’on a obtenus en appliquant

une fonction d’agrégation. (car on ne peut pas utiliser un WHERE pour une condition qui porte sur le

résultat d’une fonction d’agrégation)

SELECT colonne1, SUM(colonne2) AS Total FROM table

GROUP BY colonne1 HAVING condition sur Total

Exemple : Avec la table « Pays »

Nom Continent Capitale Indépendance Population Superficie PIB/hab.

Afghanistan

Afrique du Sud

…

Asie

Afrique

…

Kaboul

Pretoria

…

1919

1910

…

34 859 568

55 653 654

…

647 500

1 219 912

…

585

6 160

…

Ecrire une requête permettant de faire afficher chaque continent et sa population totale, uniquement pour les

continents qui ont une population totale supérieure ou égale à un milliard d’habitants :

7

Si on ne veut pas afficher la colonne sur laquelle opère le HAVING, on peut faire figurer la fonction

d’agrégation seulement dans le HAVING (et pas dans le SELECT), avec la syntaxe suivante :

SELECT colonne1 FROM table

GROUP BY colonne1

HAVING condition sur SUM(colonne2)

Ecrire une requête permettant de faire afficher le nom des continents ayant une population totale supérieure

ou égale à un milliard d’habitants :

e) Sous-requêtes

On peut réutiliser le résultat d’une requête, sachant que le résultat d’une requête SQL qui ne fournit qu’un

champ peut être identifié avec son unique valeur et utilisé comme tel.

Exemple : Avec la table « Pays », qu’effectue la requête suivante ?

 SELECT Nom FROM Pays WHERE PNB>=(SELECT AVG(PNB) FROM Pays)

2) Affichage des résultats d’une requête

• La commande ORDER BY permet de trier les lignes dans un résultat d’une requête SQL. Il est possible

de trier les données sur une ou plusieurs colonnes, par ordre ascendant ou descendant.

 SELECT colonne1, colonne2 FROM table ORDER BY colonne1

Par défaut les résultats sont classés par ordre ascendant (=croissant), toutefois il est possible d’inverser

l’ordre en utilisant le suffixe DESC après le nom de la colonne. Par ailleurs, il est possible de trier sur

plusieurs colonnes en les séparant par une virgule. Une requête plus élaborée ressemblerait à cela :

SELECT colonne1, colonne2, colonne3 FROM table

 ORDER BY colonne1 DESC, colonne2 ASC

• La clause LIMIT est à utiliser dans une requête SQL pour spécifier le nombre maximum de résultats que

l’on souhaite obtenir.
 SELECT * FROM table LIMIT 10

Cette requête permet de récupérer seulement les 10 premiers résultats d’une table. Bien entendu, si la

table contient moins de 10 résultats, alors la requête retournera toutes les lignes.

La bonne pratique lorsque l’on utilise LIMIT consiste à utiliser également la clause ORDER BY pour

s’assurer que ce sont toujours les bonnes données qui sont présentées. En effet, sans instruction

spécifique, l’ordre d’affichage des résultats est imprévisible.

• L’utilisation de OFFSET permet d’ignorer certains résultats : avec OFFSET m on ignore les m premiers

résultats. La syntaxe pour utiliser une limite et un offset est la suivante :

 SELECT colonne1 FROM table ORDER BY colonne1 LIMIT 10 OFFSET 1

Cette requête permet d’ignorer la première ligne et d’afficher 10 lignes.

Ecrire OFFSET 0 revient au même que de ne rien écrire.

8

3) Remarques sur le langage SQL

• A la différence du langage de programmation Python, le SQL n’est sensible ni à la casse, ni à

l’indentation. L’usage veut que les commandes soient écrites en majuscule.

• Notons que SQL est un langage déclaratif, c’est­à­dire que l’on dit au SGBD ce que l’on veut faire,

mais on ne lui dit pas (vraiment) comment il doit le faire. En interne, l’interpréteur va s’arranger pour

optimiser la requête pour obtenir le résultat en un minimum de temps.

III) Requêtes dans une base de données comportant plusieurs tables

Il s’agit d’obtenir des informations portant sur plusieurs relations d’une même base de données.

1) Union, intersection, différence

a) Commande UNION

L'union de deux tables est une table contenant chaque ligne de la première table et chaque ligne de la

seconde table.

Le nombre des colonnes sélectionnées dans chacune des deux tables doit être le même, mais les

champs que l'on fait correspondre dans les deux tables n'ont pas besoin de porter les mêmes noms ni de se

présenter dans le même ordre. (Cependant attention aux résultats qui n’ont aucun sens)

On peut également sélectionner seulement certaines lignes de chacune des tables grâce à la

commande WHERE.

C’est donc une commande qui permet de concaténer les résultats de deux requêtes (ou plus).

Remarque : par défaut, les lignes exactement identiques ne seront pas répétées dans les résultats. Pour

effectuer une union dans laquelle même les lignes dupliquées sont affichées il faut utiliser la commande

UNION ALL.

Syntaxe :

SELECT attribut, ou liste d’attributs, ou * FROM table1 WHERE conditions

UNION

SELECT attribut, ou liste d’attributs, ou * FROM table2 WHERE conditions

Exemple : Imaginons une entreprise qui possède deux magasins et dans chacun de ces magasins il y a une

table qui liste les clients.

La table du magasin n°1 s’appelle « mag1_client » La table du magasin n°2 s’appelle « mag2_client »

et contient les données suivantes : et contient les données suivantes :

prenom nom ville date_naissance

Marion Leroy Lyon 1982-10-27

Paul Moreau Lyon 1976-04-19

Marie Bernard Paris 1993-07-03

Marcel Duron Paris 1976-11-24

prenom nom ville date_naissance

Léon Dupuis Paris 1983-03-06

Marie Bernard Paris 1993-07-03

Sophie Dupond Marseille 1986-02-22

Marcel Duron Paris 1976-11-24

9

SELECT * FROM mag1_client

UNION

SELECT * FROM mag2_client

Le résultat de cette requête montre bien que les enregistrements des 2 requêtes sont mis à la suite des uns des

autres mais sans inclure plusieurs fois les mêmes lignes.

Traduire avec une phrase la requête suivante. Combien de lignes comporte le résultat ?

SELECT prenom,nom FROM mag1_client WHERE date_naissance>=1980-01-01

UNION

SELECT prenom,nom FROM mag2_client WHERE date_naissance>=1980-01-01

b) Commande INTERSECT

La commande INTERSECT permet d’obtenir l’intersection des résultats de deux requêtes.

Cette commande permet donc de récupérer les lignes communes à deux requêtes.

Cela peut s’avérer utile lorsqu’il faut trouver s’il y a des données similaires sur deux tables distinctes.

Pour l’utiliser il est nécessaire que les deux requêtes retournent le même nombre de colonnes.

Syntaxe :

SELECT attribut, ou liste d’attributs, ou * FROM table1

INTERSECT

SELECT attribut, ou liste d’attributs, ou * FROM table2

Exemple :Traduire avec une phrase la requête suivante. Combien de lignes comporte le résultat ?

SELECT * FROM mag1_client

INTERSECT

SELECT * FROM mag2_client

c) Commande EXCEPT

La commande EXCEPT permet de récupérer les lignes de la première requête sans inclure les lignes de la

deuxième. (d’un point de vue ensembliste il s’agit de la différence entre deux ensembles)

Pour l’utiliser il est nécessaire que les deux requêtes retournent le même nombre de colonnes.

Syntaxe :

SELECT attribut, ou liste d’attributs, ou * FROM table1

EXCEPT

SELECT attribut, ou liste d’attributs, ou * FROM table2

prenom nom ville date_naissance

Léon Dupuis Paris 1983-03-06

Marie Bernard Paris 1993-07-03

Sophie Dupond Marseille 1986-02-22

Marcel Duron Paris 1976-11-24

Marion Leroy Lyon 1982-10-27

Paul Moreau Lyon 1976-04-19

10

Exemple :Traduire avec une phrase la requête suivante. Combien de lignes comporte le résultat ?

SELECT * FROM mag1_client

EXCEPT

SELECT * FROM mag2_client

2) Produit cartésien et jointure

Nous allons ici utiliser une même requête SELECT sur plusieurs tables en même temps.

Le produit cartésien de deux tables est une table obtenue en accolant à chaque ligne de la première table

l’ensemble des lignes de la seconde.

Si chacune des deux tables contient un grand nombre d'enregistrements, le résultat du produit est encore plus

grand (il aura un nombre de lignes égal au produit du nombre de lignes de la première table par le nombre de

lignes de la deuxième), et généralement dénué de sens.

La figure ci-dessous illustre l'opération de produit cartésien :

Ce produit cartésien aura un résultat qui ressemble à ça :

Remarquons que ce tableau n’a aucun intérêt ainsi.

Pour que le résultat renvoyé ait du sens, il faut seulement garder les lignes où les numéros d’avions

correspondent, c’est­à­dire là où la clef étrangère AVNUM de la table VOL est la même que la clef

primaire AVNUM de la table AVION

Ceci est possible grâce à la syntaxe suivante

SELECT attribut(s) FROM table1 JOIN table2 ON condition

Remarques :

• La condition qui vient après ON est généralement une égalité du type

 table1.identifiant=table2.identifiant.

• Lorsque deux tables ont des attributs identiques (du style identifiant, nom…), on différencie ceux-ci

en utilisant les syntaxes table1.attribut et table2.attribut.

11

Exemple : SELECT VOLNUM,PLNUM,VOL.AVNUM,AVNOM,CAPACITE

FROM VOL JOIN AVION ON VOL.AVNUM=AVION.AVNUM

retourne :

En créant ainsi des n-uplets grâce à deux tables et une

condition pertinente pour que ces n-uplets aient un sens, on a

réalisé ce que l’on appelle une jointure entre les tables.

Exemple : Toujours en utilisant la base de données Vols, écrire une requête permettant d’obtenir le nom de

tous les pilotes qui effectuent un vol au départ de Nice :

3) Jointure avec trois tables ou plus

La syntaxe est la suivante :

SELECT attribut(s)

FROM Table1 JOIN Table2 ON Table1.colonne1=Table2.colonne1

JOIN Table3 ON Table1.colonne2=Table3.colonne1

4) Auto-jointure

Une auto-jointure est la jointure d'une table avec elle-même.

Pour réaliser une auto-jointure, un renommage des tables est obligatoire, puisque tous les attributs sont

ambigus. Pour donner un alias à une table, on note dans la clause FROM l'alias après le nom de la relation :

FROM nom_table AS alias.

SELECT attribut(s) FROM table AS T1 JOIN table AS T2 ON T1.nom=T2.nom

Remarque : de manière générale, pour créer un alias d’une table ou d’un attribut, le mot-clef AS est

optionnel (cependant je vous conseille de l’écrire pour plus de lisibilité), on pourrait donc écrire

SELECT attribut(s) FROM table T1 JOIN table T2 ON T1.nom=T2.nom

Exemple : Considérons une entreprise qui possède la table de ces employés (appelée table_emp)

décrivant la hiérarchie entre ces employés : les employés peuvent être dirigé par un supérieur direct qui se

trouve lui-même dans la table.

Si l’on veut lister le nom de tous les employés, suivi du nom de leur supérieur direct (dans le cas où ils en

ont un), on peut utiliser la requête suivante :

VOLNUM PLNUM VOL.AVNUM AVNOM CAPACITE

100 1 1 A300 300

101 1 2 A310 300

102 2 1 A300 300

12

SELECT T1.nom AS employé, T2.nom AS supérieur

 FROM table_emp AS T1 JOIN table_emp AS T2 ON T1.manager_id=T2.id

Qu’affiche concrètement cette requête avec la table donnée en exemple ci-dessous ?

5) Produit cartésien en général

On peut avoir besoin d’effectuer un produit cartésien entre deux tables, qui soit moins restrictif qu’en faisant

une équi-jointure comme vue précédemment. (une équi-jointure est une jointure utilisant un test d’égalité

après le ON, ce qu’on utilisera dans la très grande majorité des cas).

Faire un produit cartésien de façon quelconque est possible mais attention ! il faudra bien prendre garde à la

cohérence des lignes qui seront créées, bien souvent il faudra utiliser une clause WHERE bien choisie pour

ne garder que des lignes pertinentes.

La syntaxe pour effectuer un produit cartésien sans restriction est :

SELECT attribut(s) FROM table1 , table2

ou bien

SELECT attribut(s) FROM table1 CROSS JOIN table2

Exemple : Soient les deux tables suivantes contenant les groupes sanguins d’une population de 4 mâles et 4

femelles souris d’un laboratoire :

MALES FEMELLES

Groupe Rhesus Groupe Rhesus

A - B -

AB + B -

B + AB +

B - A -

On souhaite créer une table de tous les mixages possibles afin d’étudier les groupes possibles des bébés

souris issus de tous les croisements possibles.

On peut alors écrire : SELECT * FROM MALES CROISS JOIN FEMELLES

Voici les premières lignes du résultat obtenu :
A - B -

A - B -

A - AB +

A - A -

AB + B -

AB + B -

… … … …

Ecrire à présent la requête permettant d’obtenir les mixages possibles où les rhésus des deux parents sont

différents :

