
1 # ===
2 # DM2 - Version Exercices
3 # ===
4
5 #%% Exercice 1
6 def positions(liste,elt):
7 liste_pos=[]
8 for i in range(len(liste)):
9 if liste[i]==elt:

10 liste_pos.append(i)
11 return liste_pos
12
13 #%% Exercice 2
14 def renverse(chaine):
15 chaine_inv=''
16 n=len(chaine)
17 for i in range(n):
18 chaine_inv=chaine_inv+chaine[n-1-i]
19 return chaine_inv
20
21
22 #%% Exercice 3
23 def max_pair(liste):
24 maxi=-float('inf')
25 for x in liste:
26 if x%2==0 and x>maxi:
27 maxi=x
28 if maxi==-float('inf'):
29 return None
30 else:
31 return maxi
32
33 #%% Exercice 4
34 def deuxieme(liste):
35 #on cherche d'abord le plus grand
36 maxi=-float('inf')
37 for x in liste:
38 if x>maxi:
39 maxi=x
40
41 #recherche du deuxieme plus grand
42 deux=-float('inf')
43 for x in liste:
44 if x!=maxi and x>deux:
45 deux=x
46
47 if deux==-float('inf'):
48 return None
49 else:
50 return deux
51
52 #%% Exercice 5
53 def doublons(liste):
54 liste2=[]
55 for x in liste:
56 if x not in liste2:
57 liste2.append(x)
58 return liste2
59 #Cette fonction est de complexité quadratique car on a:
60 # une boucle qui parcourt la liste de départ
61 #et à l'intérieur le test x not in liste2 qui parcourt liste2
62
63 #On améliore la complexité grâce à un dictionnaire
64 #La complexité devient linéaire car la recherche d'une clef dans un dictionnaire
65 # est de complexité constante
66 def doublons2(liste):
67 liste2=[]
68 d={}
69 for x in liste:
70 if x not in d:
71 liste2.append(x)
72 d[x]='present'

73 return liste2
74
75 #%% Exercice 6
76 def croissante(liste):
77 n=len(liste)
78 for i in range(n-1):
79 if liste[i+1]<=liste[i]:
80 return False
81 return True
82
83 #%% Exercice 7
84 def occurrences(liste):
85 d={}
86 for x in liste:
87 if x not in d:
88 d[x]=1
89 else:
90 d[x]+=1
91 return d
92
93 def cle_max(dico):
94 valmaxi=-float('inf')
95 for cle in dico:
96 if dico[cle]>valmaxi:
97 clemaxi=cle #clemaxi sera initialisée dès le 1er tour de boucle
98 valmaxi=dico[cle]
99 return clemaxi

100
101 def plus_frequent(phrase):
102 liste=phrase.split(' ') #On crée une liste contenant tous les mots de la phrase
103 d=occurrences(liste)
104 return cle_max(d)
105
106 #%% Exercice 8
107 def anagrammes(mot1,mot2):
108 d1=occurrences(mot1)
109 d2=occurrences(mot2)
110 return d1==d2
111
112 #%% Exercice 9
113 def longueurs(liste):
114 d={}
115 for mot in liste:
116 n=len(mot)
117 if n not in d:
118 d[n]=[mot]
119 else:
120 d[n].append(mot)
121 return d
122
123 #%% Exercice 10
124 def decalage(liste):
125 n=len(liste)
126 b=liste[0]
127 for i in range(n-1):
128 a=liste[i+1]
129 liste[i+1]=b
130 b=a
131 liste[0]=b
132
133 #%% Exercice 11
134 def fusion(a,b):
135 '''réalise la fusion de deux listes a et b déjà triées'''
136 t=[]
137 i=0;j=0
138
139 while i<len(a) and j<len(b): #la boucle tourne tant qu'au moins une des listes

n'est pas parcourue entièrement
140 if a[i]<b[j]:
141 t.append(a[i])
142 i=i+1
143 else:

144 t.append(b[j])
145 j=j+1
146
147 if i==len(a): # s'il s'agit de la liste a qui est épuisée, on complète t

avec les éléments restants de b
148 t=t+b[j:len(b)]
149 if j==len(b): # s'il s'agit de la liste b qui est épuisée, on complète t

avec les éléments restants de a
150 t=t+a[i:len(a)]
151
152 return t
153

