1 # =============================================================================
2 # DM2 - Version Exercices
3 # =============================================================================
4
5 #%% Exercice 1
6 def positions(liste,elt):
7 liste pos=[]
8 for i in range(len(liste)):
9 if liste[i]==elt:
10 liste pos.append(i)
11 return liste pos
12
13 #%% Exercice 2
14 def renverse(chaine):
15 chaine inv="'
16 n=len (chaine)
17 for i in range(n):
18 chaine inv=chaine inv+chaine[n-1-1i]
19 return chaine inv
20
21
22 #%% Exercice 3
23 def max pair(liste):
24 maxi=-float('inf"')
25 for x in liste:
26 if x%2==0 and x>maxi:
27 maxi=x
28 if maxi==-float('inf'):
29 return None
30 else:
31 return maxi
32
33 #%% Exercice 4
34 def deuxieme(liste):
35 #on cherche d'abord le plus grand
36 maxi=-float('inf"')
37 for x in liste:
38 if x>maxi:
39 maxi=x
40
41 #recherche du deuxieme plus grand
42 deux=-float('inf'")
43 for x in liste:
44 if x!'=maxi and x>deux:
45 deux=x
46
47 if deux==-float('inf'):
48 return None
49 else:
50 return deux
51
52 #%% Exercice 5
53 def doublons(liste):
54 liste2=[]
55 for x in liste:
56 if x not in liste2:
57 liste2.append(x)
58 return liste2
59 #Cette fonction est de complexité quadratique car on a:
60 # une boucle qui parcourt la liste de départ
61 #et a 1l'intérieur le test x not in liste2 qui parcourt liste2
62
63 #0n améliore la complexité grdce a un dictionnaire
64 #La complexité devient linéaire car la recherche d'une clef dans un dictionnaire
65 # est de complexité constante
66 def doublons2(liste):
67 liste2=[]
68 d={}
69 for x in liste:
70 if x not in d:
71 liste2.append(x)

72 d[x]="'present'



73 return liste?2

74

75 #%% Exercice 6

76 def croissante(liste):

77 n=len(liste)

78 for i in range(n-1):

79 if liste[i+l]<=liste[i]:
80 return False

81 return True

82

83 #%% Exercice 7

84 def occurrences(liste):

85 d={}

86 for x in liste:

87 if x not in d:

88 d[x]=1

89 else:

90 d[x]+=1

91 return d

92

93 def cle max(dico):

94 valmaxi=-float('inf')

95 for cle in dico:

96 if dico[cle]l>valmaxi:
97 clemaxi=cle #clemaxi sera initialisée des le ler tour de boucle
98 valmaxi=dico[cle]
99 return clemaxi
100
101 def plus frequent (phrase):
102 liste=phrase.split(' ') #On crée une liste contenant tous les mots de la phrase
103 d=occurrences (liste)
104 return cle max(d)
105
106 #%% Exercice 8
107 def anagrammes (motl,mot?2):
108 dl=occurrences (motl)
109 d2=occurrences (mot2)
110 return dl==d2
111
112 #%% Exercice 9
113 def longueurs(liste):
114 d={}
115 for mot in liste:
116 n=len (mot)
117 if n not in d:
118 d[n]=[mot]
119 else:
120 d[n].append(mot)
121 return d
122

123 #%% Exercice 10
124 def decalage(liste):

125 n=len(liste)

126 b=liste[0]

127 for i in range(n-1):
128 a=liste[i+1]

129 liste[i+1]=Db

130 b=a

131 liste[0]=Db

132

133 #%% Exercice 11
134 def fusion(a,b):

135 '"''réalise la fusion de deux listes a et b déja triées'''

136 t=[1]

137 i=0;3=0

138

139 while i<len(a) and j<len(b): #la boucle tourne tant gu'au moins une des listes
n'est pas parcourue entierement

140 if a[il<bl[]j]:

141 t.append(alil)

142 i=i+1

143 else:



144
145
146
147

148
149

150
151
152
153

t.append(b[j])
J=j+1

if i==len(a): # s'il

avec les éléments restants
t=t+b[J:len(b)]

if j==len(b): # s'il

avec les éléments restants
t=t+a[i:len(a)]

return t

s'agit de la liste a qui est épuisée,
de b

s'agit de la liste b qui est épuisée,
de a

on complete t

on complete t



