
CPGE PSI* 2025/2026 Informatique
Lycée La Fayette Nathalie Planche

Devoir maison no2 - Corrigé du problème

Q1.

Lorsqu’on ne met que 1 produit, on a une valeur maximale de 9.

Lorsqu’on ne met que 2 produits, on a une valeur maximale de 13 (produits 1 et 4).

Or il est clair qu’en mettant les produits 1,3 et 4 on a une valeur plus élevée : 14.

Lorsqu’on met 4 produits, le poids maximal est dépassé.

Q2. Trois cargaisons de trois produits respectent le poids maximal :

• La cargaison constituée des produits 1, 2 et 3 a un poids de 6 et donne un profit de 8.

• La cargaison constituée des produits 1, 3 et 4 a un poids de 8 et donne un profit de 14.

• La cargaison constituée des produits 2, 3 et 4 a un poids de 7 et donne un profit de 13.

Q3. On remarque que la cargaison maximisant le profit est 1,3,4 avec une valeur V = 14.

Q4.

1 def ListeProduits (n):
2 return [i for i in range(1,n+1)]

Q5.

1 def Ratio(P,V):
2 rapports=[]
3 for i in range(len(P)):
4 rapports .append(V[i]/P[i])
5 return rapports

Q6. Il y a 3 boucles for de 1 à len(L) − 1 = 4 − 1 = 3

À la fin de la 1ère boucle L = [3, 5, 2, 1]

À la fin de la 2ème boucle L = [2, 3, 5, 1]

À la fin de la 3ème boucle L = [1, 2, 3, 5]

Q7. La fonction Tri repose sur le principe du tri par insertion.
En notant n la longueur de la liste passée en argument, on a :

• Meilleur des cas : le tableau est déjà trié par ordre croissant. La boucle for est réalisée n − 1 fois et la condition dans
le while est toujours fausse, une seule comparaison est donc effectuée. On aboutit à une complexité en O(n), i.e.
linéaire.

• Pire des cas : le tableau est trié par ordre décroissant. Pour l’itération i de la boucle for, la seconde condition du
while est toujours vraie, l’arrêt se fait donc lorsque j prend la valeur 0, c’est-à-dire après i comparaisons. On a ainsi
n−1∑
i=1

i = n(n − 1)
2 comparaisons, on obtient donc une complexité en O

(
n2

)
, i.e. quadratique.

Q8.

1 def Inverse (L):
2 N=len(L)

1

3 renverse=[]
4 for i in range(N):
5 renverse .append(L[N−1−i])
6 return renverse

Q9. Tri trie la liste suivant ses valeurs, on pourra donc trier les ratios mais pas simultanément P et V en parallèle.

Q10. On garde l’idée de la fonction Tri sur la liste des ratios mais à chaque étape on effectue les mêmes modifications sur
les listes P et V.

1
2 def Tri2(P,V):
3 rapports=Ratio(P,V)
4 for i in range(len(P)):
5 x=rapports[i]
6 Pval=P[i]
7 Vval=V[i]
8 j=i
9 while j>0 and x<rapports[j−1]:

10 rapports [j]=rapports[j−1]
11 P[j]=P[j−1]
12 V[j]=V[j−1]
13 j=j−1
14 rapports [j]=x
15 P[j]=Pval
16 V[j]=Vval
17 return Inverse (P), Inverse (V)

Q11. Tant qu’il reste des produits et que l’ajout du suivant ne fait pas dépasser Pmax, on prend ce produit :
1 def Vmax(P,V,Pmax):
2 P2,V2=Tri2(P,V)
3 SP=0
4 SV=0
5 i=0
6 while i<len(P) and SP+P2[i]<=Pmax: #tant qu’on a des produits
7 SP=SP+P2[i] #et que le poids ajouté ne fait
8 SV=SV+V2[i] #pas dépasser Pmax
9 i=i+1

10 return SV

Q12. Les ratios valent, dans l’ordre des produits, 4/3,3/2, 1 et 9/4. Après la fonction Tri2, les ratios sont [2.25, 1.5, 1.33, 1],
les poids [4, 2, 3, 1] et les valeurs [9, 3, 4, 1]. La fonction Vmax renvoie alors 12 (car 4 + 2 ⩽ 8 mais 4 + 2 + 3 > 8).

Cette solution est non optimale d’après ce que l’on a vu en Q3.

Q13.

• Justification pour i = 0 : la valeur est nulle puisqu’il n’y a aucun produit.
• Justification pour i > 0 et pi > ω : le i-ème produit ayant un poids dépassant la capacité maximale, il ne sera jamais

pris et la valeur maximale sera la même que celle avec les i − 1 premiers produits.
• Justification pour i > 0 et pi ⩽ ω : on peut prendre le i-ème produit car son poids ne dépasse pas la capacité

maximale. Il y a alors deux cas possibles parmi lesquels on prend l’optimal (le max). Premièrement, si on ne prend pas
ce i-ème produit, la valeur maximale de la cargaison est la même qu’avec les i−1 premiers produits. Deuxièmement,
si on prend le i-ème produit alors la valeur de la cargaison est la valeur de celui-ci (vi) à laquelle on ajoute la valeur
maximale obtenue avec les i − 1 premiers produits et une capacité maximale de ω − pi (puisque pi est pris par le
i-ème produit).

Q14. L’algorithme termine lorsque i vaut 0 (cas d’arrêt). Or à chaque appel récursif la valeur de i est décrémentée de 1 .
Ainsi en partant de n ⩾ 0, on parviendra toujours au cas d’arrêt, l’algorithme termine donc.

2

Q15.

1 def Max(a,b):
2 if a<b:
3 return b
4 else :
5 return a

Q16. Il suffit de retranscrire les trois cas de la relation de récursivité dans la fonction en faisant attention au décalage
d’indice : les produits p1, . . . , pn correspondent à P [0], . . . , P [n − 1].

1 def recur(P,V,i ,w):
2 if i==0:
3 return 0
4 if P[i−1]>w:
5 return recur(P,V,i−1,w)
6 else :
7 return Max(recur(P,V,i−1,w),V[i−1]+recur(P,V,i−1,w−P[i−1]))

Q17.

1 Pex=[3,2,1,4]
2 Vex=[4,3,1,9]
3 print (recur(Pex,Vex,4,8))

Q18.

Le singulier dans l’énoncé force à utiliser deux compréhensions de liste imbriquées :
1 Mem=[[−1 for i in range(Pmax+1)] for j in range(n+1)]

Si on s’autorise plusieurs instructions, on peut aussi proposer :
1 Memoire = []
2 for i in range (n +1):
3 ligne = []
4 for j in range (Pmax + 1):
5 ligne . append (−1)
6 Memoire . append (ligne)

Q19. Remarque : on utilise le principe de mémöısation qui consiste à garder en mémoire des calculs intermédiaires pour
ne pas les effectuer plusieurs fois. Cela se traduit ici sur les tests pour voir si une case dans Memoire vaut −1 (correspond
à un calcul jamais fait donc à faire) ou une valeur strictement plus grande (correspond à un calcul déjà effectué, on peut
alors directement renvoyer la valeur).

1 def recur2(P,V,i ,w,Memoire):
2 if i==0:
3 return 0
4 if Memoire[i][w]>−1: #déjà calculé
5 return Memoire[i][w]
6 if P[i−1]>w:
7 Memoire[i][w]= recur2(P,V,i−1,w,Memoire)
8 return Memoire[i][w]
9 else :

10 if Memoire[i−1][w]==−1: #doit etre calculé
11 Memoire[i−1][w]=recur2(P,V,i−1,w,Memoire)
12 if Memoire[i−1][w−P[i−1]]==−1: #doit etre calculé
13 Memoire[i−1][w−P[i−1]]=recur2(P,V,i−1,w−P[i−1],Memoire)
14 a=Max(Memoire[i−1][w],V[i−1]+Memoire[i−1][w−P[i−1]])
15 Memoire[i][w]=a
16 return Memoire[i][w]

3

