CPGE PSI* 2025/2026
Lycée La Fayette

Devoir maison n°2 - Corrigé du probleme

Informatique
Nathalie Planche

Q1.

Lorsqu'on ne met que 1 produit, on a une valeur maximale de 9.

Lorsqu’on ne met que 2 produits, on a une valeur maximale de 13 (produits 1 et 4).

Or il est clair qu'en mettant les produits 1,3 et 4 on a une valeur plus élevée : 14.
Lorsqu'on met 4 produits, le poids maximal est dépassé.

Q2. Trois cargaisons de trois produits respectent le poids maximal :

= La cargaison constituée des produits 1, 2 et 3 a un poids de 6 et donne un profit de 8.
» La cargaison constituée des produits 1, 3 et 4 a un poids de 8 et donne un profit de 14.
= La cargaison constituée des produits 2, 3 et 4 a un poids de 7 et donne un profit de 13.

Q3. On remarque que la cargaison maximisant le profit est 1,3,4 avec une valeur V = 14.

Q4.

1 | def ListeProduits (n):

2 return [i for i in range(1,n+1)]
Q5.

1 | def Ratio(P,V):

2 rapports=|]

3 for i in range(len(P)):

4 rapports .append(V[i]/P[i])

5 return rapports

Q6. 11y a 3 boucles fordelalen(L) —1=4—-1=3
A la fin de la 1&re boucle L = [3,5,2,1]

A la fin de la 2&me boucle L = [2,3,5,1]

A la fin de la 38me boucle L = [1,2,3,5]

Q7. La fonction Tri repose sur le principe du tri par insertion.
En notant n la longueur de la liste passée en argument, on a :

= Meilleur des cas : le tableau est déja trié par ordre croissant. La boucle for est réalisée n — 1 fois et la condition dans

le while est toujours fausse, une seule comparaison est donc effectuée. On aboutit a une complexité en O(n), i.e.

linéaire.

= Pire des cas : le tableau est trié par ordre décroissant. Pour I'itération i de la boucle for, la seconde condition du

while est toujours vraie, I'arrét se fait donc lorsque j prend la valeur 0, c'est-a-dire aprés i comparaisons. On a ainsi

n—1
. onn-—-1 . . o . .
Z 1= (2) comparaisons, on obtient donc une complexité en O <n2) i.e. quadratique.
i=1
Q8.
1 |def Inverse(L):
2 N=len(L)

renverse =[]
for i in range(N):

renverse .append(L[N—1—i])
return renverse

o W

Q9. Tri trie la liste suivant ses valeurs, on pourra donc trier les ratios mais pas simultanément P et V en paralléle.

Q10. On garde I'idée de la fonction Tri sur la liste des ratios mais a chaque étape on effectue les mémes modifications sur
les listes P et V.

1

2 | def Tri2(P,V):

3 rapports=Ratio(P,V)

4 for i in range(len(P)):

5 x=rapports][i]

6 Pval=P][i]

7 Wal=V[i]

8 j=i

9 while j>0 and x<rapports[j—1]:

10 rapports [j]=rapports[j—1]

11 Pli]=P[i—1]

12 V[j]=VIi—1]

13 j=ji—1

14 rapports [j]=x

15 P[j]=Pval

16 V[j]=Wval

17 return Inverse (P), Inverse (V)
Q11. Tant qu'il reste des produits et que I'ajout du suivant ne fait pas dépasser Pmax, on prend ce produit :

1 | def Vmax(P,V,Pmax):

2 P2,V2=Tri2(P,V)

3 SP=0

4 SV=0

5 i=0

6 while i<len(P) and SP+P2[i]<=Pmax:

7 SP=SP-+P2[i]

8 SV=SV+V2[i]

9 i=i+1

10 return SV

Q12. Les ratios valent, dans I'ordre des produits, 4/3,3/2, 1 et 9/4. Aprés la fonction Tri2, les ratios sont [2.25,1.5,1.33, 1],
les poids [4,2,3,1] et les valeurs [9, 3,4, 1]. La fonction Vmax renvoie alors 12 (car 4 +2 < 8 mais4+2+3 > 8).

Cette solution est non optimale d'aprés ce que I'on a vu en Q3.

Q13.

= Justification pour ¢ = 0 : la valeur est nulle puisqu'il n'y a aucun produit.
= Justification pour ¢ > 0 et p; > w : le i-eme produit ayant un poids dépassant la capacité maximale, il ne sera jamais
pris et la valeur maximale sera la méme que celle avec les i — 1 premiers produits.
= Justification pour ¢ > 0 et p; < w : on peut prendre le i-éme produit car son poids ne dépasse pas la capacité
maximale. Il y a alors deux cas possibles parmi lesquels on prend |'optimal (le max). Premiérement, si on ne prend pas
ce i-eme produit, la valeur maximale de la cargaison est la méme qu'avec les i — 1 premiers produits. Deuxiemement,
si on prend le i-éme produit alors la valeur de la cargaison est la valeur de celui-ci (v;) a laquelle on ajoute la valeur
maximale obtenue avec les ¢ — 1 premiers produits et une capacité maximale de w — p; (puisque p; est pris par le
i-éme produit).
Q14. L’algorithme termine lorsque ¢ vaut 0 (cas d'arrét). Or a chaque appel récursif la valeur de i est décrémentée de 1 .
Ainsi en partant de n > 0, on parviendra toujours au cas d'arrét, |'algorithme termine donc.

Q15.

1 | def Max(a,b):

2 if a<b:

3 return b
4 else:

5 return a

Q16. Il suffit de retranscrire les trois cas de la relation de récursivité dans la fonction en faisant attention au décalage
d'indice : les produits p1, ..., py correspondent a P[0],..., P[n —1].

def recur(P,V,i,w):
if i==0:
return 0
if Pli—1]>w:
return recur(P,V,i—1,w)
else:
return Max(recur(P,V,i—1,w),V[i—1]+recur(P,V,i—1,w—P[i—1]))

~N o b~ WN =

Q17.

1 | Pex=[3,2,1,4]
2 | Vex=[4,3,1,9]
3 | print (recur (Pex,Vex,4,8))

Q18.

Le singulier dans I'énoncé force a utiliser deux compréhensions de liste imbriquées :

1 ‘ Mem=[[—1 for i in range(Pmax+1)] for j in range(n+1)]

Si on s’autorise plusieurs instructions, on peut aussi proposer :

Memoire = []
for i in range (n +1):
ligne =]

for j in range (Pmax + 1):
ligne . append (—1)

o AW N

Memoire . append (ligne)

Q19. Remarque : on utilise le principe de mémoisation qui consiste a garder en mémoire des calculs intermédiaires pour
ne pas les effectuer plusieurs fois. Cela se traduit ici sur les tests pour voir si une case dans Memoire vaut —1 (correspond
a un calcul jamais fait donc a faire) ou une valeur strictement plus grande (correspond a un calcul déja effectué, on peut
alors directement renvoyer la valeur).

1 | def recur2(P,V,i,w,Memoire):

2 if i==0:

3 return 0

4 if Memoire[i][w]>—1:

5 return Memoire[i][w]

6 if P[i—1]>w:

7 Memoire[i][w]= recur2(P,V,i—1,w,Memoire)

8 return Memoire[i][w]

9 else:

10 if Memoire[i—1][w]==—1:

11 Memoire[i—1][w]=recur2(P,V,i—1,w,Memoire)

12 if Memoire[i—1][w—P[i—1]]==—1:

13 Memoire[i—1][w—P[i—1]]=recur2(P,V,i—1,w—P[i—1],Memoire)
14 a=Max(Memoire[i—1][w],V[i—1]4+Memoire[i—1][w—P[i—1]])
15 Memoire[i][w]=a

16 return Memoire[i][w]

