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Ce sujet comporte quatre parties, qui peuvent étre traitées indépendamment :

— La partie I étudie deux facons d’approcher le réel v/2.

— La partie II généralise la méthode de Héron d’Alexandrie étudiée en sous-partie I.B au cadre des matrices
symétriques positives.

— La partie III traite le cas général de la méthode de Newton numérique réelle.

— La partie IV g’inspire de la méthode de Newton abordée en partie III pour établir 'existence de la décom-
position de Jordan-Chevalley-Dunford, par une approche algorithmique et en donne une application a la
détermination de la racine carrée de certaines matrices.

Notations

Dans tout le sujet, K désigne R ou C et ¢ est un entier naturel non nul.

On note M (K) I'ensemble des matrices carrées de taille g a coefficients dans K ; on note I, la matrice identité
dans M q([K) et PT la transposée d’une matrice P. On note § q([R) I’ensemble des matrices symétriques apparte-
nant a M (R). On note O(q) le sous-ensemble de M ,(R) constitué des matrices orthogonales, c’est-a-dire des

matrices P € M ,(R) vérifiant PTP = I.
Pour toute matrice M € M (K) et pour tous 1 < i,j < g, on note [M], ; le coefficient d’indice (3, j) de M.
Pour ay, ...,a, € K, on note diag(ay, ..., a,) la matrice A de M (K) telle que, pour tous 1 < i,j < q:

_Ja;sit=3j
[A]i,j - {O sinon.

On munit I'ensemble M, (K) d’une norme [|-||. On rappelle que, par I’équivalence des normes en dimension finie,
la notion de convergence d'une suite (M,,),,c & valeurs dans M (K) ne dépend pas du choix de la norme |-|.

On pourra alors utiliser librement et sans démonstration dans tout le sujet les deux résultats suivants :

pour toute suite (M,, ),y & valeurs dans M (K) et pour toute matrice M € M (K),

— la suite (M,,),,cy converge vers M si et seulement si, pour tous 1 < 4, j < g, la suite ([Mn
vers [M]; ;;

— si A € M (K) et si la suite (M, ),y converge vers M, alors les suites (AM,, ),y et (M, A),cy convergent
respectivement vers AM et MA.

]i’j>nen\l converge

I Quelques approximations de v/2.

I.LA — Via un développement en série entiére.

Soit & € R. On pose ay =1 et, pour tout n € N*,

ala—1)(a—n+1) 175

| |
n! nl 2
Q1. Montrer que le rayon de convergence R de la série entiere Z a,z" vaut :
neN
n— { 1 si a.¢ N
+00 sinon.
Q 2. Donner, sans justification supplémentaire, ’expression de la fonction somme de la série entiere Z a,x"
neN
sur |—R, R[.
(2n)!

Q 3. Pour tout n € N, on pose b,, = ———~-———_. Montrer que, pour tout = € |—1, 1],

~22n(2n — 1)(n!)2

+00
Vitx= Z(—l)”“bnx".
n=0
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Q 4. Déterminer un équivalent simple de la suite (b,) _ . En déduire la nature de la série Z(—l)"*lbn.

neN
Q5. Montrer que la série entiére Z(—l)”“bnx" converge uniformément sur [—1, 1] et en déduire la valeur
N neN
oo
de S (<1,
n=0

Q 6. Montrer que

L 1
=S o ()

I.B — Via la méthode de Héron d’Alexandrie.
Soit a € R,. On définit la suite (c,,(a)), ey par :
cola) =1
1 a
VneN, ¢, (a) = i(cn(a) + cn(a))'
Q. Montrer, par récurrence sur n € N, que, pour tout n € N, ¢,,(a) est bien défini et que ¢,,(a) > 0.
Q 8. Pour tout n € N, donner une expression de ¢, (a)? — a faisant intervenir (c,(a)? — a)?. En déduire

que, pour tout n > 1, ¢, (a) = /a.
Q9. Montrer que (¢, (a)),en converge vers 1/a.
Q 10.  Calculer ¢,(2). A I'aide de la question Q 8, montrer que, pour tout n € N*,

on—1

(22 —2< 8(3%)

En déduire que

a0 ((H)7)

n—+oo
I.C - Comparaison des différentes approxzimations de v/2 : vitesses de convergence.
1
32
Dans la question suivante, on s’interdit d’utiliser une valeur approchée de \/2 stockée dans Python. En particulier,
on s’interdit lutilisation de 2 * x(1/2), math.sqrt(2) ou numpy.sqrt(2).

1 271,—1
Q 11. Parmi les deux suites (3—/2) et <( ) >, déterminer celle qui converge le plus vite vers zéro.
n

Q 12.  Ecrire une suite d’instructions en Python permettant, grace a la méthode de la question Q 10, d’obtenir
une approximation de v/2 avec 10 décimales correctes.

IT Racine carrée d’une matrice symétrique positive.
On note SZ(IR) I'ensemble des matrices symétriques positives de M (R), c’est-a-dire des matrices M € §,(R)
vérifiant XTMX > 0 pour toute matrice colonne X € M, (R).

Dans toute cette partie, étant donnée une matrice M € M q([R), on appelle racine carrée de M toute matrice
B e M (R) telle que B> = M.

II.A — Racines carrées de la matrice I,.
Q 13. Rappeler sans démonstration la description des matrices de O(2).
On décrira leurs coefficients en fonction d'un paramétre 6 € R.

Q 14. Déterminer les racines carrées de I, appartenant & O(2). Que peut-on conclure quant au nombre de
racines carrées de I, 7

II.B — [Existence et unicité d’une racine carrée symétrique positive.

Q 15. Rappeler sans démonstration la condition nécessaire et suffisante portant sur le spectre d’une matrice
symétrique pour qu’elle soit positive.

Q 16.  Soit M € S/ (R). Déterminer une matrice B € S} (R) telle que B* = M.

Q 17. Montrer que B est la seule racine carrée de M appartenant a 5;([!3)

On note alors v/ M 'unique racine carrée symétrique positive de M.
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II.C — Une méthode de Héron d’Alexandrie matricielle.
Soit M € Sq*([R). On note Ay, ..., A, les valeurs propres de M comptées avec multiplicité. On rappelle que, d’apres
le théoréme spectral, il existe une matrice P € O(q) telle que

M = Pdiag(Ay, ..., A,) PT.

On rappelle de plus que, pour tout réel a > 0, la suite (¢,(a)),cy définic en sous-partie I.B, est & valeurs
strictement positives et converge vers y/a. On pose alors :

My =1,
1 _
VneN, M, ;= B (MnJrMMnl).
Q 18. Montrer, par récurrence sur n € N que, pour tout n € N, M, est bien définie et que

M, = Pdiag(c,(A),....,c,(N,) PT.

Q 19. En déduire que la suite (M, ), converge vers v/ M.

IIT Méthode de Newton numérique.

Soit I un intervalle ouvert non vide de R et f : I — R une fonction de classe €2 sur I telle que f’ ne s’annule
pas sur [I.

III.A — Convergence de la méthode de Newton.

Q 20. Que dire du nombre du nombre de points d’annulation de fsur I 7

On suppose qu'il existe ¢ € I tel que f(c) = 0. Pour tout r > 0, on pose J. =[c—r,c+r].

cop el
{ f(en)

vneN, ¢, =c¢, — .
o f(eq)

L’objectif de cette sous-partie III.A est de montrer qu’il existe » > 0 tel que J, C I et tel que, si ¢, € J,., alors
(Cp)nen COLVErgE Vers c.

Q 21.  Soit 7 > 0 tel que J,. C I. Justifier que s, = sup |f”| et i, = i}1f|f’| sont bien définis et que i, > 0.

T

Soit (¢, ),en une suite telle que

s,
O te K, = —.
n note K, %
Q 22.  Justifier qu’il existe r > 0 tel que 0 < 7K, < 1.
Dans la suite de cette sous-partie III.A, on fixe r > 0 tel que 7K, < 1.

Q 23. On suppose que n € N et ¢, € J,. A Daide de I'inégalité de Taylor-Lagrange, montrer que
|Cn+1 - C| < Kr‘cn - 6‘27

puis en déduire que ¢, € J,.

on
K, |cyg—c
Q 24. Montrer que, si ¢, € J,, alors, pour tout n € N, |¢, —¢| < % et conclure.
T
III.B — Une implémentation en Python.
Q 25. On désigne dans cette question par df la fonction Python représentant f’. Ecrire une fonction Python

newton(c0,f,df) prenant en arguments le réel ¢, et les fonctions f et f’ et renvoyant, si la suite (c,),cn
converge, une valeur approchée de ¢ et la valeur None si (c,,),,cy diverge.

On pourra convenir ici que la suite (c,,),cn converge si on trouve un n < 50 tel que |f(c,)| < 10710, et qu’elle
diverge sinon.

IV Décomposition de Jordan-Chevalley-Dunford et calcul de racine
carrée.

On dit qu'une matrice N € M ,(C) est nilpotente s’il existe k € N* tel que NF =0.
Dans toute cette partie IV, on fixe M € M (C). On note Ay, ..., A  les valeurs propres deux a deux distinctes
de M (avec s € N*). On définit alors
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On note P’ le polynéme dérivé de P.
d d
Pour tout polynéme Q = Z'kak € C[X], on note Q(M) = Z%Mk € M ,(C) et on pose
k=0 k=0

CM] ={QM)|Q € C[X]} .
On admet alors et on pourra utiliser librement que :

— si A, B € C[M], alors A et B commutent, et A+ B et AB appartiennent a C[M] ;
— si Q € C[X] et si A € C[M], alors Q(A) € C[M].

IV.A — Une méthode de Newton matricielle.

Q 26.  Montrer que, pour toute racine complexe p de P’, la matrice M — pl, est inversible. En déduire que
P’(M) est inversible.
Q 27.  Montrer que le polynéme caractéristique x,; de M divise P?. En déduire que P(M) est nilpotente.

Gréce a ces résultats, on peut définir la suite de matrices (M,,),,c, en posant :
MO = M
vn e N, Mn+1 = Mn - P(Mn)P/(Mn>71
On admet que, pour tout n € N :
— M, est bien définie et appartient & M (C) ;
— il existe B,, € C[M] telle que P(M,,) = (P(M))*"B

— la matrice P’(M,,) est inversible.

n

Q 28.  Montrer que la suite (M,,), ¢ est stationnaire.

Q 29. Montrer que, pour tout n € N, les matrices M et M, commutent.

Q 30. On note A la limite de (M,,),,cn- Montrer que A est diagonalisable.

Q 31. On pose N = M — A. Justifier que A et N commutent et que N est nilpotente.

IV.B — Un calcul de racine carrée pour certaines matrices réelles trigonalisables

Q 32. En utilisant le développement limité en 0 de la fonction x + /1 + z, montrer qu'il existe un polynéme
R, € R[X] tel que X9 divise 1 + X — R (X)?.

Q 33.  En déduire 'expression d’une racine carrée de I, + N lorsque N est une matrice nilpotente.

Pour les questions suivantes, on suppose que M est a coeflicients réels et trigonalisable dans M q([R) et que le

spectre de M est inclus dans R,
On considére alors les matrices A et N introduites dans la sous-partie IV.A.

Q 34.  Justifier que A et N sont a coefficients réels et que A est diagonalisable dans M (R).
Q 35. Montrer que le spectre de A est inclus dans R

Q 36.  Justifier que la méthode de Héron d’Alexandrie de la sous-partie II.C peut étre appliquée a la matrice
A afin d’obtenir une racine carrée A’ de A. En déduire 'expression d’une racine carrée de M.

oo e[INe oo
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