
PSI* 2025-2026

Correction du devoir à la maison de Mathématiques n°8

EXERCICE 0

1) Calcul du polynôme caractéristique de A

Soit χA le polynôme caractéristique de A.

Alors χA(X) = det(XI2 − A) =

∣∣∣∣X − 5 −3
6 X + 4

∣∣∣∣ = X2 −X − 2 = (X + 1)(X − 2)

2) Recherche du spectre de A

χA(X) = 0 ⇔ X = −1 ou X = 2

λ ∈ sp(A) ⇔ χA(λ) = 0 donc sp(A) = {−1, 2}

A admet deux valeurs propres distinctes dans R donc A est diagonalisable dans M2(C)

3) Recherche des sous-espaces propres de A

�

(
x
y

)
∈ E−1(A) = ker(A+ I2) ⇔

{
6x+ 3y = 0

−6x− 3y = 0
⇔ y = −2x

On a donc E−1(A) = V ect(e1) avec e1 =

(
1
−2

)
�

(
x
y

)
∈ E2(A) = ker(A− 2I2) ⇔

{
3x+ 3y = 0

−6x− 6y = 0
⇔ y = −x

On a donc E2(A) = V ect(e2) avec e2 =

(
1
−1

)
4) Diagonalisation de A

A est diagonalisable. On obtient une base diagonalisant A par réunion des bases des sous-espaces propres.
Par la formule de changement de bases on a :

A = PDP−1 avec P =

(
1 1
−2 −1

)
et D =

(
−1 0
0 2

)
5) Calcul de An

det(A) = −2 ̸= 0 donc A (et donc D) est inversible. On a donc : ∀n ∈ Z , A = PDnP−1

Comme Dn =

(
(−1)n 0

0 2n

)
et P−1 =

(
−1 −1
2 1

)
alors :

∀n ∈ Z , An =

(
(−1)n+1 + 2n+1 (−1)n+1 + 2n

2(−1)n − 2n+1 2(−1)n − 2n

)

Remarque : calcul fait avec Maple (logiciel de calcul formel)
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Exercice 1 : e3A PC 2020

1.) Calculons le polynôme caractéristique de Ma :

χA(X) =

∣∣∣∣∣∣
X − 1 −a 0

0 X −1
0 −1 X

∣∣∣∣∣∣ = (X − 1)(X2 − 1) = (X − 1)2(X + 1)

On en déduit que sp(A) = {−1, 1} avec 1 qui est valeur propre double.x
y
z

 ∈ ker(Ma − I3) ⇔


ay = 0

−y + z = 0

y − z = 0

⇔

{
ay = 0

z = y

CAS 1 : a = 0

Alors ker(Ma − I3) est le plan d'équation y = z donc dim(ker(Ma − I3)) = 2
−1 est valeur propre simple de Ma donc dim(ker(Ma + I3)) = 1

On a donc dim(ker(Ma− I3))+ dim(ker(Ma+ I3)) = 2+1 = 3 et Ma ∈ M3(R), la somme des dimensions
des sous espaces propres vaut 3, donc Ma est diagonalisable.

CAS 2 : a ̸= 0

Alors ker(Ma − I3) = V ect(

1
0
0

) et donc dim(ker(Ma − I3)) = 1 alors que 1 est valeur propre double.

On en déduit que Ma n'est pas diagonalisable.

Bilan : Ma est diagonalisable ⇔ a = 0

2.) det(Ma) = −1 donc Ma est inversible pour toute valeur de a

3.) Puisque Ma n'est pas diagonalisable on a : a ̸= 0

On pose e2 =

1
0
0

 le vecteur trouvé en 1.) de telle sorte que : Mae2 = e2

x
y
z

 ∈ ker(Ma + I3) ⇔


2x+ ay = 0

y + z = 0

y + z = 0

⇔

{
z = −y

x = −a
2
y

On pose alors e1 =

 a
−2
2

 de telle sorte que : Me1 = −e1

On cherche e3 =

x
y
z

 tel que Mae3 = e2 + e3

Mae3 = e2 + e3 ⇔


ay = 1

−y + z = 0

y − z = 0

⇔
{
y = z = 1

a
(a ̸= 0)
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Posons e3 =

0
1
a
1
a

, B′ = (e1, e2, e3) et notons B la base canonique de R3.

Alors detB(B
′) =

∣∣∣∣∣∣
a 1 0
−2 0 1

a

2 0 1
a

∣∣∣∣∣∣ = 4
a
̸= 0

Donc B′ est une base, comme de plus


Mae1 = −e1

Mae2 = e2

Mae3 = e2 + e3

alors, par la formule de changement de base

Ma = PTP−1 avec P =

 a 1 0
−2 0 1

a

2 0 1
a

 et T =

−1 0 0
0 1 1
0 0 1


Ma est bien semblable à T =

−1 0 0
0 1 1
0 0 1



Exercice 2 : (oral ccINP PSI 2025)

1) Notons


A = MB(u) la matrice de u relativement à B

X = MB(x) la matrice des coordonnées de x dans B

Y = MB(y) la matrice des coordonnées de y dans B

Alors : < u(x), y >= (AX)TY = (XTAT )Y = XT (ATY ) =< x, u∗(y) >

On a donc bien : ∀(x, y) ∈ E2 , < u(x), y >=< x, u∗(y) >

2) Soit x ∈ F⊥

Alors, pour y ∈ F on a en utilisant le 1) : < y, u∗(x) >=< u(y)︸︷︷︸
∈F

, x︸︷︷︸
∈F⊥

>= 0 en utilisant que F est stable par

u et la dé�nition de F⊥.
Donc ∀y ∈ F , < y, u∗(x) >= 0 et donc u∗(x) ∈ F⊥

Donc : ∀x ∈ F⊥, , u∗(x) ∈ F⊥ et on a bien : F stable par u ⇒ F⊥ stable par u∗

3) a) � Calculons le polynôme caractéristique de A
On a : χA(X) = (X − 1)2(X − 2)

�

x
y
z

 ∈ ker(A− I3) ⇔


−3y + 3z = 0

0 = 0

2y + 2 = 0

⇔ y = z = 0

Donc ker(A− I3) = vect(

1
0
0

) qui est de dimension 1 alors que 1 est valeur propre double de A.

Donc A n'est pas diagonalisable.
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� A et AT ont même spectre.x
y
z

 ∈ ker(AT − I3) ⇔


0 = 0

−3x+ 2z = 0

3x+ z = 0

⇔ x = z = 0

Donc ker(AT − I3) = vect(

0
1
0

) qui est de dimension 1 alors que 1 est valeur propre double de AT .

Donc AT n'est pas diagonalisable.

Bilan : A et AT ne sont pas diagonalisables.

3) b) � Commençons par chercher les droites stables de u à l'aide des valeurs propres.

On a déjà trouvée vect(

1
0
0

) au 3)a )

Avec la valeur propre 2, on trouve vect(

3
0
1

)

� Pour trouver les plans stables de u, on va utiliser le 2) et les droites stables de u∗.

Par le 3) a) vect(

0
1
0

) est stable par u∗ donc le plan d'équation y = 0 est stable par u

Avec la valeur propre 2 : vect(

0
2
1

) est stable par u∗ et donc le plan d'équation 2y+z = 0 est stable par u.

� Les sous-espaces stables par u sont donc :



R3

{0R3}

vect(

1

0

0

)

vect(

3

0

1

)

le plan y = 0

le plan 2y + z = 0
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PROBLÈME 1 : problème 2 de ccINP PSI 2025

Q21) On pose : ∀x ∈ R , A(x) = exp(x)− 1− x
A est dérivable et A′(x) = exp(x)− 1

On a donc le tableau de variation suivant :

x −∞ 0 +∞
A′(x) - 0 +

+∞ +∞
A(x) ↘ ↗

0

On a donc : ∀x ∈ R , exp(x) ≥ 1 + x avec égalité si et seulement si x = 0

Q22) En appliquant Q21) avec x = λi

A
− 1 on a : ∀i ∈ J1;nK , λi

A
≤ exp

(
λi

A
− 1

)
Q23) En multipliant les inégalités de Q22) on obtient :

n∏
i=1

λi

An ≤ exp(

n∑
i=1

λi

A
− n) ⇒ Gn

An ≤ exp(nA
A

− n) = 1 ⇒ Gn ≤ An ⇒ G ≤ A

Q24) Pour avoir l'égalité G = A, il faut l'égalité pour tout i en Q22) donc λi

A
− 1 = 0 ⇔ λi = A

Pour avoir G = A, il faut que les λi soit tous égaux.

Q25) S est symétrique réelle donc diagonalisable dans Mn(R) d'après le théorème spectrale.

Si on note (λ1, . . . , λn) les valeurs propres de S alors, d'après le cours : det(S) =
n∏

i=1

λi et tr(S) =
n∑

i=1

λi

Q26) Comme S ∈ S+
n les λi sont positifs et on peut appliquer Q23) qui donne : (det(S))

1
n ≤ tr(S)

n

Q27) (det(S))
1
n = tr(S)

n
correspond au cas d'égalité dans Q23.

Mais, on sait que l'on a égalité dans Q23) si et seulement si λ1 = · · · = λn = λn donc si et seulement si
sp(S) = {λ}
De plus, comme S est diagonalisable alors sp(S) = {λ} ⇒ S = λIn

On a donc : (det(S))
1
n = tr(S)

n
⇔ ∃λ ∈ R , S = λIn

Q28) Si on note (e1, . . . , en) la base canonique de Mn,1(R) alors sj,j =< ej, Sej >> 0 car S ∈ S++
n

On a donc : ∀j ∈ J1, nK , sj,j > 0

Q29) � Det(D) =
n∏

i=1

√
λi > 0 donc D est bien inversible. On a : D−1 = diag( 1√

s1,1
, . . . , 1√

sn,n
)

Multiplier à droite par D−1 revient à multiplier la j-ième colonne par 1√
sj,j

Multiplier à gauche par D−1 revient à multiplier la i-ième ligne par 1√
si,i

On a donc que le (i, j)ième coe�cient de D−1SD−1 est
si,j√
si,isj,j
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� Si i = j alors le (i, j)ième coe�cient vaut
si,i√
si,isi,i

= 1, et comme S est symétrique alors D−1SD−1 aussi.

De plus, si X ∈ Mn,1(R) on a :
< D−1SD−1X,X >

=< SD−1X,D−1X > car D−1 ∈ S++
n

=< SY, Y >> 0 en posant Y = D−1X et car S ∈ S++
n

On a donc bien D−1SD−1 ∈ S++
n avec les coe�cients diagonaux égaux à 1.

Q30) La question Q29) permet d'utiliser Q26) avec D−1SD−1.

On a alors :
(
det(D−1SD−1)

) 1
n ≤ 1

n
tr(D−1SD−1)

Mais comme on connaît les coe�cients diagonaux de tr(D−1SD−1) on a : tr(D−1SD−1) = n

Alors :
(
det(D−1)2det(S)

) 1
n ≤ 1 ⇒ det(D−1)2det(S) ≤ 1 ⇒ det(S) ≤ det(D)2

On a donc : det(S) ≤
n∏

j=1

sj,j

En utilisant Q27, on a que le cas d'égalité apparaît quand D−1SD−1 = λIn ⇒ S = λD2 et donc :

On a l'égalité det(S) =
n∏

j=1

sj,j quand S est diagonale.

Q31) (MTM)T = MT (MT )T = MTM donc MTM est symétrique.
Soit λ ∈ sp(MTM), alors ∃X ̸= 0 , MTMX = λX
En multipliant à gauche par XT :
XTMTMX = XTλX ⇒ (MX)T (MX) = λXTX ⇒ ||MX||2 = λ ||X||2︸ ︷︷ ︸

̸=0

⇒ λ ≥ 0

De plus si λ = 0 alors det(MTM) = 0 donc det(M) = 0 ce qui n'est pas possible car M est inversible.

Donc sp(MTM) ⊂]0,+∞[ et comme MTM symétrique alors MTM ∈ S++
n

Q32) � Si M n'est pas inversible, alors det(M) = 0 et comme le membre de droite de (3) est clairement
positif alors (3) est véri�ée.

Pour qu'il ait égalité il faut que le membre de droite (qui vaut
n∏

k=1

||Ck||) soit nulle, donc que toute les colonnes

soit nulles.
Dans ce cas, les vecteurs colonnes sont bien orthogonaux 2 à 2.

� Si M est inversible alors par la question Q31) : MTM ∈ S++
n et on peut appliquer Q30) pour avoir

det(MTM) ≤
n∏

j=1

aj,j ou l'on a posé : MTM = (ai,j)

Mais det(MTM) = det(M)2 et aj,j =
n∑

i=1

m2
i,j donc : det(M)2 ≤

n∏
j=1

n∑
i=1

m2
i,j

En prenant la racine on obtient |det(M)| ≤
( n∏

j=1

( n∑
i=1

m2
i,j

))1/2

� En regroupant les cas : ∀M ∈ Mn(R) , |det(M)| ≤
( n∏

j=1

( n∑
i=1

m2
i,j

))1/2

� Il nous reste la cas d'égalité dans le cas M inversible.
Pour avoir égalité, il faut, d'après Q30, que MTM soit diagonale, comme le (i, j)ième coe�cient de MTM est
< Ci, Cj > alors : on a égalité dans (3) si et seulement si (C1, . . . , Cn) est une famille orthogonale.

� ∀M ∈ Mn(R), on a égalité dans (3) si et seulement si (C1, . . . , Cn) est une famille orthogonale.

6



Q33) Si |mi,j| ≤ 1 alors :
n∑

i=1

m2
i,j ≤

n∑
i=1

1 = n et donc (3) devient : |det(M)| ≤
( n∏

j=1

n
)1/2

= (nn)1/2 = nn/2

Pour avoir égalité, il faut avoir égalité dans (3), donc (C1, . . . , Cn) famille orthogonale et de plus, il faut :

∀j ∈ J1, nK ,
n∑

i=1

m2
i,j = 1 ⇔ ∀(i, j)2 ∈ J1, nK2 , m2

i,j = 1 ⇔ ∀(i, j)2 ∈ J1, nK2 , |mi,j| = 1 ⇔ ∀j ∈

J1, nK , ||Cj|| = n
(C1, . . . , Cn) est donc une famille orthogonale de vecteurs de norme

√
n donc MTM = nIn

On a donc |det(M)| ≤
( n∏

j=1

n
)1/2

= (nn)1/2 = nn/2 avec égalité ssi MTM = nIn

Q34) M ∈ Hn ⇔ MTM = nIn ⇒ (M
T

n
)M = In donc M est inversible et M−1 = MT

n

On a alors : (M−1)T (M−1) = (M
T

n
)T MT

n
= 1

n2 (MMT ) = 1
n2 (nIn) =

1
n
In

On résout : 1
n
In ̸= nIn ⇔ n = 1

On a alors :

Si n ̸= 1 alors M ∈ Hn ⇒ M inversible et M−1 = MT

n
et M−1 /∈ Hn

Si n = 1 : M ∈ H1 ⇒ M = 1 ou M = −1 et on a M inversible et M−1 = M ∈ H1

Q35) � On pose T =

(
M M
M −M

)
alors T T =

(
MT MT

MT −MT

)
et T TT =

(
2MMT 0

0 2MMT

)
=

(
2In 0
0 2In

)
= I2n

Comme les coe�cients de T sont des 1 ou des −1 alors, on a donc bien

(
M M
M −M

)
∈ H2n

� En partant de M = (1) ∈ H1 , par le début de la question et itération on coonstruit des matrices de H2p.

On a donc : ∀p ∈ N , 2p ∈ H

Q36) On pose ℓ1 = card({i ∈ J1, nK , mi,1 = mi,2}) et ℓ2 = card({i ∈ J1, nK , mi,1 = −mi,2})
Alors < C1, C2 >= ℓ1 − ℓ2.
Mais M ∈ Hn ⇒< C1, C2 >= 0 donc ℓ1 = ℓ2.
Comme on a aussi ℓ1 + ℓ2 = n alors n = 2ℓ1 et donc n pair

Q37) �On remarque que : x + y est le nombre de 1 de la deuxième, z + t est le nombre de −1 de la
deuxième colonne, x+ z est le nombre de 1 de la troisième, y+ t est le nombre de −1 de la troisième colonne.

� Pour commencer on a clairement x+ y + z + t = n puisque tout les cas sont envisagés.

� Comme la première colonne ne contient que des 1 : < C1, C2 >= 0 ⇒ x+ y − z − t = 0

� Comme la première colonne ne contient que des 1 : < C1, C3 >= 0 ⇒ x− y + z − t = 0

� < C2, C3 >= 0 ⇒ x− y − z + t = 0
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On a donc le système (sy) ⇔


x+ y + z + t = n

x+ y − z − t = 0

x− y + z − t = 0

x− y − z + t = 0

Q38) (sy)

⇔


z = t (L4 − L3)

y = t (L4 − L2)

2(x+ t) = n (L4 + L1)

x+ y + z + t = n (L1)

⇔


z = t

y = t

x = n/2− t

n/2− t+ t+ t+ t = n

⇔ x = y = z = t = n/4 ⇔ n = 4x = 4y = 4z = 4t

On a bien : n est un multiple de 4.
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PROBLÈME 2 : Mines-Ponts 2025 PSI-PC math I

Q1) Avec les notations de l'énoncé.
P (X) = 1

XpP ( 1
X
)

⇔
p∑

k=0

akX
k = 1

Xp

p∑
k=0

akX
−k

⇔
p∑

k=0

akX
k =

p∑
k=0

akX
p−k changement d'indice i = k − p dans la deuxième somme et i = p dans la première

⇔
p∑

i=0

aiX
i =

p∑
i=0

ap−iX
i

⇔
p∑

i=0

(ai − ap−iX
i = 0

⇔ ∀k ∈ J0, pK , ak = ap−k car seul le polynôme nul a une in�nité de racines.

On a donc : P est réciproque si et seulement si ∀k ∈ J0, pK , ak = ap−k

Q2) Avec l'écriture fournie par l'énoncé :

XpP ( 1
X
) = Xpap

d∏
i=1

( 1
X
− λi)

mi = Xpap
d∏

i=1

(1−Xλi

X
)mi = ap

Xp

X

d∑
i=1

mi

d∏
i=1

(1−Xλi)
mi

Mais comme
d∑

i=1

mi = p alors : XpP ( 1
X
) = ap

d∏
i=1

(1−Xλi)
mi

Si P est réciproque alors : P (X) = ap
d∏

i=1

(1−Xλi)
mi

Et donc les λi sont non nuls car sinon P serait de degré < p (terme en (1−Xλi) de degré 0)

De plus P (X) = ap
d∏

i=1

(1−Xλi)
mi = ap

d∏
i=1

λi(X − 1
λi
)mi

Si P est réciproque, ses racines λi sont non nuls et les 1
λi

sont racines de même ordre de multiplicité que λi.

Q3) � Si Q est antiréciproque, en prenant X = 1 dans la relation caractérisant Q on a :

Q(1) = −1Q(1) ⇒ Q(1) = 0 donc 1 est racine de Q.

� Comme 1 est racine de Q on peut factoriser Q par X − 1 et donc ∃P ∈ Rd−1[X]

s'écrivant : P (X) =
d−1∑
k=0

akX
k tel que Q(X) = (X − 1)P (X)

Alors Q(X) = − 1
XdQ( 1

X
)

⇒ (X − 1)P (X) = − 1
Xd (

1
X
− 1)P ( 1

X
)

⇒ (X − 1)P (X) = − 1
Xd−1 (1−X)P ( 1

X
)

⇒ (X − 1)P (X) = (X − 1) 1
Xd−1P ( 1

X
)

⇒ P (X) = 1
Xd−1P ( 1

X
)

donc P est soit constant (si d = 1), soit réciproque.

� Si Q est antiréciproque, alors 1 est racine de Q et Q s'écrit Q(X) = (X − 1)P (X) avec P constant ou réciproque.
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Q4) On résout : a = 1
a
⇔ a2 = 1 ⇔ a = 1 ou a = −1

En isolant les racines 1 et −1 de R, et en regroupant les racines λi avec
1
λi

qui a le même ordre de multiplicité

que λi, on peut alors écrire R sous la forme : R(X) = (X − 1)α(X + 1)β
d∏

i=1

(
X − λi)(X − 1

λi
)
)γi

Le produit des racines de R vaut donc 1α(−1)β ×
d∏

i=1

(
λi

λi

)γi
= ±1

Le produit des racines de R vaut donc 1 ou −1.

Q5) On reprend l'écriture de R donnée en Q4) :
XpR( 1

X
)

= Xp( 1
X
− 1)α( 1

X
+ 1)β

d∏
i=1

[( 1
X
− λi)(

1
X
− 1

λi
)]γi

= (1−X)α(1 +X)β
d∏

i=1

[(1−Xλi)(1−X 1
λi
)]γi

= (1−X)α(1 +X)β
d∏

i=1

[λi(
1
λi
−X) 1

λi
(λi −X)]γi

= (1−X)α(1 +X)β
d∏

i=1

[( 1
λi
−X)(λi −X)]γi

= (−1)α(X − 1)α(X + 1)β
d∏

i=1

[(X − 1
λi
)(X − λi)]

γi

= (−1)αR(X)

Si α est paire, R est réciproque, si α est impaire, R est antiréciproque.

On a donc : R est réciproque ou antiréciproque.

Q6) Comme A est inversible et x ̸= 0 :
det(xIn − A)

= det(In)det(xIn − A) car det(In) = 1
= det(AA−1)det(xIn − A) car AA−1 = In puisque A ∈ GLn

= det(A)det(A−1(xIn − A))
= det(A)det(xA−1 − In)
= det(A)det

(
x(A−1 − 1

x
In)

)
= det(A)xndet

(
A−1 − 1

x
In
)

= det(A)xn(−1)ndet
(
1
x
In − A−1

)
On a donc : det(xIn − A) = (−1)ndet(A)xndet

(
1
x
In − A−1

)
Q7) � Si A est semblable à son inverse alors A et A−1 ont même déterminant et donc :

det(A) = det(A−1) ⇒ det(A) = 1
det(A)

⇒ det(A) = ±1

Si A est semblable à son inverse alors : det(A) = ±1

� La relation de Q6) donne alors : χA(X) = ±XnχA(
1
X
) et donc χA est réciproque ou antiréciproque.
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Q8) On suppose B diagonalisable et que son polynôme caractéristique est réciproque ou antiréciproque.
Alors avec Q2 si P est réciproque et Q3 (+Q2) si il est antiréciproque, on a que le spectre de B peut s'écrire
sous la forme :
sp(B) = {λi , i ∈ J1; d} ∪ { 1

λi
, i ∈ J1; d} ∪ V PUN avec V PUN = ∅ ou V PUN = {1} suivant si 1 est valeur

propre ou non de B.
De plus λi et

1
λi

ont même ordre de multiplicité.
On remarque donc que 0 n'est pas valeur propre de B et donc que B est inversible.
Comme B est diagonalisable on a B semblable à diag(Iz, J1, . . . , Ji, . . . , Jd) ou z est l'ordre de multiplicité de
1 comme valeur propre de B (éventuellement 0) et Ji est un bloc de la forme Ji = diag(λiIαi

, 1
λi
Iαi

)

On a alors B−1 semblable à une matrice diagonale dont les valeurs sont les mêmes que celle de B donc B et
B−1 sont semblables.

Si B est diagonalisable et si son polynôme caractéristique est réciproque ou antiréciproque,

alors B est inversible et semblable à B−1

Q9) Directement, en "lisant" B, 2 est valeur propre double de B et E2(B) = V ect(e1, e2)

On a B−1 =


1
2

0 0 0
0 1

2
0 0

0 0 2 −4
0 0 0 2


Le sous espace propre associé à la valeur propre 2 est E2(B

−1) = V ect(e3) et est de dimension 1.

dim(E2(B)) ̸= dim(E2(B
−1)) donc B et B−1 ne sont pas semblable.

Q10) Si A = S1S2 alors A(S2S1) = S1 (S2S2)︸ ︷︷ ︸
In

S1 = S2
1 = In donc A est inversible et A−1 = S2S1

A = S1S2 = S1S2 (S1)
2︸ ︷︷ ︸

In

= S1S2S1S1 = S1(S2S1)S1 = S1A
−1S1 = S1A

−1S−1
1 car S1 = (S1)

−1

Donc A = S1A
−1S−1

1 et donc A est semblable à A−1

Q11) Si A = S1S2 est le produit de deux matrices de symétries S1 et S2, alors une matrice semblable à A
est de la forme : PAP−1 = PS1S2P

−1 = PS1P
−1︸ ︷︷ ︸

symétrie

PS2P
−1︸ ︷︷ ︸

symétrie

Donc si A est le produit de deux matrices de symétrie,

toute matrices semblables à A est aussi le produit de deux matrices de symétries.

Q12) S2
1 =

(
PQ 0
0 QP

)
, donc S1 matrice de symétrie si et seulement si Q = P−1

S2
2 = (S1A)

2 avec S1A =

(
0 PC

QB 0

)
donc S2

2 =

(
PCQB 0

0 QBPC

)
Alors S2 matrice de symétrie si et seulement si PCQB = QBPC = In
Avec Q = P−1, PCP−1 = B−1 et P−1BP = C−1, autrement dit PCP−1 = B−1 (puisque les deux conditions
sont équivalentes).

S1 et AS1 sont des matrices de symétries ⇔ PCP−1 = B−1
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Q13) Si C est semblable à B−1, alors ∃P ∈ GLn telle que PCP−1 = B−1

Avec les calculs de Q12) on a alors : S2
1 = I2n et S

2
2 = I2n donc A = S−1

1 S2 est bien le produit de deux symétries.

Si C est semblable à B−1, alors A est bien le produit de deux symétries.

Q14) � Comme gn−1 ̸= 0 alors ∃x ∈ E tel que gn−1(x) ̸= 0E
Montrons alors que (x, g(x), . . . , gn−1(x)) est libre dans E.

Soit (a0, a1, . . . , an−1) ∈ Cn tel que :
n−1∑
k=0

akg
k(x) = 0E

Raisonnons par l'absurde et supposons que (a0, a1, . . . , an−1) ̸= (0, 0, . . . , 0)

On peut alors poser i = Min({k ∈ J0;n− 1K , ak ̸= 0}) et on a
n−1∑
k=i

akg
k(x) = 0E

En composant par gn−1−i (avec n− 1− i ≥ 0) on a :
n−1∑
k=i

akg
k+n−i(x) = 0E

Et comme, pour k > i, on a gk+n−i = 0L(E) alors il reste aig
p−1(x) = 0E ⇒ ai = 0 puisque gn−1(x) ̸= 0E ce

qui contredit la dé�nition de i. Absurde.

On a donc (a0, a1, . . . , an−1) = (0, 0, . . . , 0) et on a montrer que la famille (x, g(x), . . . , gn−1(x)) est libre
dans E

� Comme cette famille est de cardinal n et dim(E) = n alors a que : B = (gn−1(x), gn−2(x), . . . , g(x), x)
est une base de E.
Comme g(gj(x)) = gj+1(x) avec en particulier g(gn−1(x) = gn(x) = 0E alors la matrice de g dans cette base
est alors la matrice N .

Il existe une base de E dans laquelle la matrice de g est N .

Q15) On commencer par remarquer que Nn est nulle.
� Recherche : si on était en dimension 1, calculs formels :

Jn(λ) = λ+N donc (Jn(λ))
−1 = 1

λ+N
= 1

λ
1

1+N
λ

= 1
λ

n−1∑
k=0

Nk

λk car Nn = 0

� On pose alors : J ′ =
n−1∑
k=0

(−1)k Nk

λk+1 alors :

Jn(λ)J
′

= (λIn +N)(
n−1∑
k=0

(−1)k Nk

λk+1 )

=
n−1∑
k=0

(−1)k Nk

λk +
n−1∑
k=0

(−1)k Nk+1

λk+1

=
n−1∑
k=0

(−1)k Nk

λk −
n∑

k=1

(−1)k Nk

λk

= In car Nn est nulle

On a donc Jn(λ) inversible et
(
Jn(λ)

)−1
= 1

λ
In +N ′ avec N ′ =

n−1∑
k=1

(−1)k Nk

λk+1

12



Q16) N ′n est une matrice triangulaire supérieure de trace nulle, donc N ′n = (0)
De plus, comme la première surdiagonale n'est pas nulle, alors N ′n−1 n'est pas nulle.
En utilisant Q14), N ′ est semblable à N , donc 1

λ
In +N ′ est semblable à 1

λ
In +N et donc

(Jn(λ))
−1 est semblable à Jn(

1
λ
)

Q17) Clairement s21 = s22 = IdE avec E = Cn−1[X]

On pose Q = s2(P ) donc Q(X) = P (1−X), alors :(
(s1 ◦ s2)(P )

)
(X)

= s1(Q)(X) = Q(−X) = P (1− (−X)) = P (X + 1) = P (X + 1)− P (X) + P (X) = (g + IdE)(P )(X)

Donc s1 ◦ s2 = g + IdE

Q18) Si d, le degré de P , est supérieur ou égal à 1, on écrit P =
d∑

k=0

akX
k

Alors g(P )(X) =
d∑

k=0

ak[(X + 1)k −Xk]

= ad[(X + 1)d −Xd] + ad−1[(X + 1)d−1 −Xd−1] + élément de Cd−2[X]
= ad[X

d + dXd−1 −Xd] + ad−1[X
d−1 −Xd−1] + élément de Cd−2[X]

= dad︸︷︷︸
̸=0

Xd−1 + élément de Cd−2[X]

Donc g(P ) est de degré d− 1.

Donc P non constant ⇒ deg(g(P )) = deg(P )− 1

Q19) Posons Q = Xn qlors, par Q18) : B = (Qn, g(Qn), g
2(Qn), . . . , g

n−1(Qn)) est une famille de polynôme
échelonée en degré. C'est donc une base de E et on remarque que la matrice de g relativement à B est N .

La matrice de s1 ◦ s2 = g + IdE est donc Jn(1), comme c'est aussi celle de s1 ◦ s2 et que s1 et s2 sont des

symétries, alors on a : Jn(1) est le produit de deux matrices de symétries.

Q20) Par blocs : A′−1 =


(Jn1(λ1))

−1 0 . . . 0

0 (Jn2(λ2))
−1 . . .

...
...

. . . . . . 0
0 . . . 0 (Jnr(λr))

−1


D'après Q16) : (Jnk

(λk))
−1 est semblable à Jnk

( 1
λk
)

Donc, par blocs : A′−1 est semblable à


Jn1(

1
λ1
) 0 . . . 0

0 Jn2(
1
λ2
)

. . .
...

...
. . . . . . 0

0 . . . 0 Jnr(
1
λr
)



Comme A−1 est semblable à A′−1 alors : A−1 est semblable à


Jn1(

1
λ1
) 0 . . . 0

0 Jn2(
1
λ2
)

. . .
...

...
. . . . . . 0

0 . . . 0 Jnr(
1
λr
)


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Q21) A étant semblable à son inverse, alors ses valeurs propres sont, soit 1, soit −1, soit λi /∈ {−1, 1}
d'ordre ni avec

1
λi

qui est aussi valeur propre d'ordre ni.

A est semblable à une matrice diagonale par blocs, avec pour blocs : Jk(1), Jk′(−1) ouKi =

(
Jni

(λi) 0
0 Jni

( 1
λi
)

)
On a déjà vu que Jk(1) et Jk′(−1) était le produit de deux matrices de symétries.

On peut appliquer à Ki la question Q13) car Jni
(λi) et Jni

( 1
λi
) sont semblables par Q16).

Alors Ki est le produit de deux matrices de symétries.

En raisonnant par bloc, on peut alors conclure que A est le produit de deux matrices de symétries.
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