Alors xa(X) =det(XI, — A) =

Correction du devoir a la maison de Mathématiques n°8

EXERCICE 0

1) Calcul du polynéme caractéristique de A

Soit x4 le polynome caractéristique de A.
X-5 -3
6 X +4

2) Recherche du spectre de A

‘:XQ—X—Q:(X+1)(X—2)

Xa(X)=0e X=—-1louX =2
A€ sp(A) © xa(A) =0 donc sp(A) = {—-1,2}
A admet deux valeurs propres distinctes dans R donc A est diagonalisable dans My (C)

3) Recherche des sous-espaces propres de A

6 3y =20
. (1) € E (A =ker(A+ L) < £y S y=—2x
Y —6x —3y =0
On a donc E_1(A) = Vect(ey) avec e; = (_12>
3 3y =20
. (x) € By(A) = ker(A —21) & {20 Y P —
Y —6x — 6y =0

On a donc Ey(A) = Vect(es) avec ey = (_11>

4) Diagonalisation de A

PSI* 2025-2026

A est diagonalisable. On obtient une base diagonalisant A par réunion des bases des sous-espaces propres.

Par la formule de changement de bases on a :

1 1 -1 0
_ -1 _ _
A=PDP " avec P = (_2 1) et D = ( 0 2)

5) Calcul de A"

det(A) = —2 # 0 donc A (et donc D) est inversible. On a donc : Vn € Z , A= PD"P~!

Comme D" = ((_01) 2(31) et P71 = (_21 _11> alors :

VnecZ . A" = ((_1)n+1 +2mth (=)t 4 2”)

2(—1)" —2ntl 2(—1)" —2n

Remarque : calcul fait avec Maple (logiciel de calcul formel)



Exercice 1 : e3A PC 2020

1.) Calculons le polynéme caractéristique de M, :

X—-1 —a 0
xa(X) = 0 X —1=(X-1D)(X?-1)=(X-1)*(X+1)
0 -1 X

On en déduit que sp(A) = {—1, 1} avec 1 qui est valeur propre double.
T ay =0
ay =10
y| € ker(M,—13) < —y+2=0 <:>{
2=y
z y—z=0
CAS1:a=0

Alors ker(M, — I3) est le plan d’équation y = z donc dim(ker(M, — I3)) = 2
—1 est valeur propre simple de M, donc dim(ker(M, + I3)) =1

On a donc dim(ker(M, — I3)) + dim(ker(M, + I3)) = 2+ 1 = 3 et M, € M3(R), la somme des dimensions
des sous espaces propres vaut 3, donc M, est diagonalisable.

CAS2:a#0
1

Alors ker(M, — I3) = Vect(| 0 |) et donc dim(ker(M, — I3)) = 1 alors que 1 est valeur propre double.
0

On en déduit que M, n’est pas diagonalisable.

Bilan : ’Ma est diagonalisable & a = 0‘

2.) det(M,) = —1 donc | M, est inversible pour toute valeur de a

3.) Puisque M, n’est pas diagonalisable on a : a # 0

1
On pose es = | 0| le vecteur trouvé en 1.) de telle sorte que : Myes = ey
0
T 2z 4+ay =0
y| €ker(My+13) ©y+2=0 @{Z:tg
o y+z=0 ey
a
On pose alors e; = | —2 | de telle sorte que : Me; = —ey
2

On cherche ez = tel que Mye3 = ey + €3

x

Y

z

ay =1

Mies=er+e3= < —y+2=0 @{y:zzé (a #0)
y—z=0



0
Posons e3 = i , B" = (e1, e, e3) et notons B la base canonique de R3.
1
a 1 0
Alors detg(B)=|-2 0 L =230
2 0 =
Mge; = —e;
Donc B’ est une base, comme de plus < M, e, = e, alors, par la formule de changement de base
Maeg = €9 + €3
a 1 0 -1 0 0
M,=PTP tavecP=|-2 0 % etT’=10 1 1
2 0 % 0 01
-1 0 0
M, est bien semblablea T = 0 1 1
0 01

Exercice 2 : (oral ccINP PSI 2025)

A = Mp(u) la matrice de u relativement a B
1) Notons ¢ X = Mp(x) la matrice des coordonnées de = dans B

Y = Mp(y) la matrice des coordonnées de y dans B

Alors : < u(z),y >= (AX)TY = (XTAT)Y = XT(ATY) =< z,u*(y) >

On a donc bien : |V(z,y) € E? |, <u(z),y >=< z,u*(y) >

2) Soit x € F+
Alors, pour y € F on a en utilisant le 1) : < y,u*(z) >=< u(y),_x  >= 0 en utilisant que F' est stable par

eF €Ft
u et la définition de F*.
Donc Yy € F, < y,u*(x) >= 0 et donc u*(z) € F*

Donc : Vo € F*, | u*(z) € F* et on a bien : | F stable par u = F'* stable par u*

3) a) @ Calculons le polynéme caractéristique de A
Ona: ya(X)=(X-1)*X-2)

x ( —3y+32=0
o [y]| cker(A—1I3) < c0=0 sy=2z=0
2 2y +2=0
1
Donc ker(A — I3) = vect(| 0 | ) qui est de dimension 1 alors que 1 est valeur propre double de A.
0

Donc A n’est pas diagonalisable.



e A et AT ont méme spectre.

x 0=0
y| €eker(AT — L) &< -30+2:=0 Sarx=2=0
< 3z +2=0
0
Donc ker(AT — I3) = vect(| 1 |) qui est de dimension 1 alors que 1 est valeur propre double de A”.
0

Donc AT n’est pas diagonalisable.

Bilan : | A et AT ne sont pas diagonalisables.

3) b) ¢ Commencons par chercher les droites stables de u a 1’aide des valeurs propres.
1
On a déja trouvée vect(| 0 |) au 3)a )
0

Avec la valeur propre 2, on trouve vect(

= O W
~—

e Pour trouver les plans stables de u, on va utiliser le 2) et les droites stables de u*.

0
Par le 3) a) vect(| 1 |) est stable par u* donc le plan d’équation y = 0 est stable par u
0

0
Avec la valeur propre 2 : vect( | 2 |) est stable par u* et donc le plan d’équation 2y+z = 0 est stable par u.
1

(Rg
{Os }
1
vect(| 0 |)
e Les sous-espaces stables par u sont donc : g
vect(| 0 ])
1
le plan y =0
(le plan 2y + 2 =0



PROBLEME 1 : probléme 2 de ccINP PSI 2025

Q21) On pose : Ve € R, A(x) =exp(z) —1—x
A est dérivable et A'(x) = exp(z) — 1

T —00 0 +00
A (z) - 0 +
On a donc le tableau de variation suivant : +00 400
A(x) N
0

On a donc : |Vz € R, exp(x) > 1+ x avec égalité si et seulement si x = 0

Q22) En appliquant Q21) avec = = j lona: |Vie][l;n], j <e p(% — 1)

Q23) En multlphant les inégalités de (Q22) on obtient :

H)‘i EA
= ):>—<e$p( ):1:>G"§A”:>

< exp(=;
Q24) Pour avoir I'égalité G = A, il faut I’égalité pour tout i en Q22) donc % —1=0)\=4

’Pour avoir G = A, il faut que les \; soit tous égaux.‘

Q25) S est symétrique réelle donc | diagonalisable dans M, (R) | d’aprés le théoréme spectrale.

Si on note (Aq,...,\,) les valeurs propres de S alors, d’aprés le cours : |det(S) = [[ \; et tr(S) = >\
=1

Q26) Comme S € S les \; sont positifs et on peut appliquer Q23) qui donne : | (det(S))» <

Q27) (det(S))n = ”(S) correspond au cas d’égalité dans Q23.
Mais, on sait que 'on a égalité dans Q23) si et seulement si Ay = --- = X\, = A, donc si et seulement si

sp(S) = {\}

De plus, comme S est diagonalisable alors sp(S) = {\} = S = A,

On a donc : | (det(9))s = "8 o INe R, S =\,

Q28) Si on note (ey, ..., e,) la base canonique de M, ;(R) alors s;; =< e;,Se; >> 0 car S € S+

On adonc: |Vje[l,n], s;; >0

Q29) @ Det(D) = [ v/Ai > 0 donc D est bien inversible. On a : D~ = diag(

1 1
V/S1,1 rrr \/Sn,n>

i=1
e . 1 1

Multiplier a droite par D NG
RT N -1 1

Multiplier a gauche par D NG

PN . 1 -1 Si.j
On a donc que |le (7, j)iéme coefficient de D='SD~! est Weweost




e Si i = j alors le (7, j)iéme coefficient vaut =1, et comme S est symétrique alors D™1SD~! aussi.
De plus, si X € M, 1(R) on a :
< DISD1X, X >
=< SD'X,D7'X > car D"t € S
=< SY,Y >>0enposant Y = D' X et car S € S;F

On a donc bien | D7'SD~! € S avec les coefficients diagonaux égaux a 1.

Siyi
\/S4,iSi,i

Q30) La question Q29) permet d’utiliser Q26) avec D~1SD~1.
On a alors : (det(D~'SD™'))" < Ltr(D71SD™1)
Mais comme on connait les coefficients diagonaux de tr(D~'SD ') on a: tr(D~'SD™ ') =n
1
Alors : (det(D71)2det(S))" <1 = det(D7")2det(S) < 1 = det(S) < det(D)*

On a donc : |det(S) < [] s;;
j=1

En utilisant Q27, on a que le cas d’égalité apparait quand D~*SD~! = \I,, = S = AD? et donc :

On a l'égalité det(S) = [] s;; quand S est diagonale.
j=1

Q31) (MTM)T = M*(M™)" = MTM donc MTM est symétrique.
Soit A € sp(MTM), alors 3X £ 0, MTMX = \X
En multipliant & gauche par X7 :
XTMTMX = XT)AX = (MX)T(MX) = AXTX = [|[MX|? = M|IX]P=A1>0

~——
£0

De plus si A = 0 alors det(MT M) = 0 donc det(M) = 0 ce qui n’est pas possible car M est inversible.

Donc sp(MT M) C]0, +oo[ et comme M7 M symétrique alors | MTM € S

(Q32) e Si M n’est pas inversible, alors det(M) = 0 et comme le membre de droite de (3) est clairement
positif alors (3) est vérifiée.
Pour qu’il ait égalité il faut que le membre de droite (qui vaut [] ||Ck||) soit nulle, donc que toute les colonnes

. k=1
soit nulles.

Dans ce cas, les vecteurs colonnes sont bien orthogonaux 2 a 2.

e Si M est inversible alors par la question Q31) : MTM € ST et on peut appliquer Q30) pour avoir
det(MTM) < [] a;; ou Pon a posé : MTM = (a; ;)
j=1
Mais det(MT M) = det(M)?* et a;; = Z m;; donc : det(M)* < H 2
j: :

En prenant la racine on obtient |det(M)| < < IT(>m:,))

j=1 =1

n n 1/2
e En regroupant les cas : VM € M,(R) , |det(M)| < ( I1(> m%))
Jj=1 1

e Il nous reste la cas d’égalité dans le cas M inversible.
Pour avoir égalité, il faut, d’aprés Q30, que MT M soit diagonale, comme le (7, j)iéme coefficient de MT M est
< C;,C; > alors : on a égalité dans (3) si et seulement si (C4,...,C,) est une famille orthogonale.

o VM € M,(R), on a égalité dans (3) si et seulement si (C1,...,C,) est une famille orthogonale.




n n n 1/2
Q33) Si |m; | <1 alors : ;mfj < 21 1 =n et donc (3) devient : |det(M)| < ( I1 n) = (n™)Y/2 = nn/?

j=1

Pour avoir égalité, il faut avoir égalité dans (3), donc (C4, ..., C,) famille orthogonale et de plus, il faut :
Vi e [1,n] , ;m?’j =1 & V(0,5 € [L,n]*, m{; =1 & V(,5)° € [Ln]*, Imiy| =1 & Vj €
[1,n] , [IC5lf = n
(C4,...,C,) est donc une famille orthogonale de vecteurs de norme y/n donc M*M = nlI,

n

1/2
On a donc | |det(M)| < ( I1 n) = (n™)1/2 = n™? avec égalité ssi MTM = nl,

j=1

Q34) M € A, < MM =nl, = (MTT)M = I, donc M est inversible et M~! = ]ZL—T
On a alors : (M~Y)T(M~Y) = (MOTML — LMY = L (nl,) = 11,

On résout : +1, #nl, & n=1

On a alors :

Sin # 1 alors M € J, = M inversible et M~! = %T et M~ &

’Sinzl:ME%:>M:1ouM:—letonaMinversibleethl:ME%

(M M e (MTMT
Q35)oOnp0seT—(M —M> alors T' _(MT —MT>

oMMT 0 20, 0
T __ _ n —
et = ( 0 QMMT) - ( 0 21n> = I

Comme les coefficients de T" sont des 1 ou des —1 alors, on a donc bien

M M
(M —M> € Hon

e En partant de M = (1) € J4 , par le début de la question et itération on coonstruit des matrices de .74,

Onadonc:’VpEN, 2”6%‘

Q36) On pose ¢y = card({i € [1,n] , m;1 =my;2}) et bo = card({i € [1,n] , m;1 = —m;2})
Alors < Cl, CQ >= 61 — 62.
Mais M € 7, =< C1,Cy >= 0 donc {; = {s.

Comme on a aussi /1 + {5 = n alors n = 2¢; et donc

Q37) eOn remarque que : x + y est le nombre de 1 de la deuxiéme, z + t est le nombre de —1 de la
deuxiéme colonne, x + 2z est le nombre de 1 de la troisiéme, y + ¢ est le nombre de —1 de la troisiéme colonne.

e Pour commencer on a clairement x + y + z + t = n puisque tout les cas sont envisagés.
e Comme la premiére colonne ne contient que des 1 : < C,Cy >=0=24+y—2—1t=0
e Comme la premiére colonne ne contient que des 1 : < C},C3>=0=x—y+2—1t=0

e < (5, (C3>=0=ax—y—2+t=0



rT+y+z+it=n
r+y—2—1t=0
r—y+z—1t=0
r—y—z+1t=0

On a donc le systéme (sy) <

Q38) (sy)
(Z =1 (L4 - Lg)
- t (L4 - Lg)

2z +t)=n (Ls+ Ly)
(z+y+z+t=n (L)

(2 =1
=1
Sr=y=z=t=n/fden=4r=4y =4z =4t
r=n/2—1

(n/2—t+t+t+t=n

On a bien : ’n est un multiple de 4.




PROBLEME 2 : Mines-Ponts 2025 PSI-PC math I

Q1) Avec les notations de ’énoncé.

P(X) = P(x)
p p
=4 Z (Zka = % Z CLkX_k
k=0 k=0
p
=
k=0 k=0

p . p .
=4 ZCLZ’Xl = Zap_in
1=0 =0

P )
<~ Z((IZ — G,p_iXZ =0
=0

p
apX*® = 3" a XP~* changement d’indice i = k — p dans la deuxiéme somme et i = p dans la premiére

1=
& Vk e [0,p] , ar = a,—i car seul le polynéme nul a une infinité de racines.

On a donc : | P est réciproque si et seulement si Vk € [0,p] , ax = ap—g
Q2) Avec I’écriture fournie par I'énoncé :
d d d
X0P(E) = X0y TG = 2™ = Xva, TT 52 = 0,3 [T - X0
i=1 i=1 mi =1

Xi=1

4 1

i — - XPp(L
Mais comme E 1mZ p alors : XPP(%) 1
1= =

d
Si P est réciproque alors : P(X) =a, [J(1 —X\;)™
=1

d

Et donc les \; sont non nuls car sinon P serait de degré < p (terme en (1 — X \;) de degré 0)

d
a, JT(1 = X A)™

i=1

De plus P(X) — A%)ml

d
= CLp 1:[1 )\Z(X

1

Si P est réciproque, ses racines A; sont non nuls et les 1
T

sont racines de méme ordre de multiplicité que \;.

Q3) e Si @ est antiréciproque, en prenant X = 1 dans la relation caractérisant ) on a :

Q(1) = —1Q(1) = Q(1) = 0 donc 1 est racine de Q.

e Comme 1 est racine de @ on peut factoriser @ par X — 1 et donc 3P € Ry [X]

-1
sécrivant : P(X) = Y ap X* tel que Q(X) = (X — 1)P(X)
2

=0

Alors Q(X) = — Q%)
= (X = 1)P(X) = —3 (£ — )P(L)
= (X -1)P(X)= —Xj,l (1-— X)P(%)
= (X~ )P(X) = (X — 1) g P(3)

= P(X) = za=P(3)

donc P est soit constant (si d = 1), soit réciproque.

e | Si ) est antiréciproque, alors 1 est racine de @ et @) s’écrit Q(X)

(X —1)P(X) avec P constant ou récipr




Q4) Onrésout : a =1 s a*>=1<a=1oua=-1
En isolant les racines 1 et —1 de R, et en regroupant les racines \; avec 5- qu1 a le méme ordre de multiplicité
Vi

que \;, on peut alors écrire R sous la forme : R(X) = (X — 1)*(X + 1)5 H <X — )X — %))
i=1 !

i
Le produit des racines de R vaut donc 1%(—1)# x H (/\—> ==+1

’Le produit des racines de R vaut donc 1 ou —1.‘

Q5) On reprend Pécriture de R donnée en Q4) :
XPR(%)

I
3
.

|
=

Q
—~
=
+
=
sy
S
|
>
S
|
>

s

= (1= X)L+ X)° [[[(L = XA)(1 - X))

-
Il
—

=

= (1= X)*"(1+X)7 TIN5 — X) 5N = X))

s
Il
—

::]za~

?IH

= (1 =X)L+ X)7 TTI(5;

(DX = D*(X + 1)/311;[1[(?( — )X =)
(=D)*R(X)

5
>
|
z

-
I
—

Si « est paire, R est réciproque, si « est impaire, R est antiréciproque.

On a donc : ’R est réciproque ou antiréciproque.

Q6) Comme A est inversible et x # 0 :
det(xl, — A)
= det(I,)det(z1, — A) car det(l,) =1

= det(AAY)det(zI, — A) car AA™! = [, puisque A € GL,
= det(A)det(A_l(xIn — A))

= det(A)det(x A~ — )

= det(A)det (z(A™' — 11,))

= det(A)z"det (A~ — ;In

= det(A)z"(—1)"det (11, — A7)

On a donc : |det(zI, — A) = (—1)"det(A)z"det (11, — A7)

Q7) e Si A est semblable a son inverse alors A et A~! ont méme déterminant et donc :

det(A) = det(A™") = det(A) = 4 t( = det(A) = +1

Si A est semblable a son inverse alors : det(A) = +1

e La relation de Q6) donne alors : x4(X) = i—X"XA(%) et donc ’XA est réciproque ou antiréciproque.

10



Q8) On suppose B diagonalisable et que son polynome caractéristique est réciproque ou antiréciproque.
Alors avec Q)2 si P est réciproque et Q3 (+Q2) si il est antiréciproque, on a que le spectre de B peut s’écrire
sous la forme :
sp(B) ={\;, ie€[l;d}U {/\i , 1€ [1;d}UVPUN avec VPUN = () ou VPUN = {1} suivant si 1 est valeur
propre ou non de B.

De plus A; et /\i ont méme ordre de multiplicité.

On remarque donc que 0 n’est pas valeur propre de B et donc que B est inversible.

Comme B est diagonalisable on a B semblable a diag(I,, Jy,...,J;, ..., Jq) ou z est I'ordre de multiplicité de
1 comme valeur propre de B (éventuellement 0) et J; est un bloc de la forme J; = diag(\il,,, %i[ai)

On a alors B~! semblable & une matrice diagonale dont les valeurs sont les mémes que celle de B donc B et
B~! sont semblables.

’Si B est diagonalisable et si son polynéme caractéristique est réciproque ou antiréciproque,

’ alors B est inversible et semblable & B~!

Q9) Directement, en "lisant" B, 2 est valeur propre double de B et Ey(B) = Vect(ey, e3)

100 0
010 0
OnaBo=10902 —
000 2

Le sous espace propre associé a la valeur propre 2 est Fy(B™!) = Vect(e3) et est de dimension 1.
dim(Ey(B)) # dim(E,(B™')) donc | B et B~! ne sont pas semblable.

Q10) Si A = S;5, alors A(S5S1) = Sy (S255) Sy = 52 = I, donc | A est inversible | et A™' = S5,
N——

In
A= 5152 = 5152 (Sl>2 = 51525151 = 51(5251)51 = SlA_lSl = SlA_lel car Sl = (Sl>_1
——
I

Donc A = $;A~1S; " et donc | A est semblable a A~!|

Q11) Si A = 515, est le produit de deux matrices de symétries Sy et Sy, alors une matrice semblable & A
est de la forme : PAP~ ' = PSSP~ ' = PS, P! PS,P~!
—— —

symétrie  symeétrie

Donc ’si A est le produit de deux matrices de symeétrie,

’ toute matrices semblables & A est aussi le produit de deux matrices de symétries.‘

Q12) S? = (POQ QOP)’ donc S; matrice de symétrie si et seulement si Q = P!

- ) [0 PC , (PCQB 0
S3 = (514) avecSlA—<QB 0 donc S35 = 0 QBPC

Alors Sy matrice de symeétrie si et seulement si PCQB = QBPC =1,
Avec Q = P7', PCP™' = B ' et P"'BP = C~!, autrement dit PCP~! = B! (puisque les deux conditions
sont équivalentes).

S et AS; sont des matrices de symétries & PCP~! = B~!

11



Q13) Si C est semblable & B~!, alors 3P € G L, telle que PCP~! = B!
Avec les calculs de Q12) on a alors : S = Iy, et S3 = I, donc A = Sfng est bien le produit de deux symétries.

Si C est semblable & B!, alors A est bien le produit de deux symétries.

Q14) @ Comme g" ' = 0 alors 3z € E tel que ¢g" (z) # 0g
Montrons alors que (z,g(z),...,¢" !(z)) est libre dans E.

n—1
Soit (ag,ay,...,an_1) € C" tel que : Y. arg®(x) = 0p
k=0

Raisonnons par I'absurde et supposons que (ag, a1, ...,a,-1) # (0,0,...,0)

On peut alors poser i = Min({k € [0;n — 1] , ar # 0}) et on a X_: arg®(z) = Op

En composant par ¢" '~ (avecn —1—4>0) on a : Z arg" " (z) = O

Et comme, pour k > i, on a ¢"™"* = 0pp) alors il reste a;g? ' (x) = 0p = a; = 0 puisque ¢" (z) # Op ce

qui contredit la définition de 7. Absurde.

On a donc (ag,ay,-..,a,-1) = (0,0,...,0) et on a montrer que la famille (z,g(z),...,g" *(z)) est libre
dans F
e Comme cette famille est de cardinal n et dim(E) = n alors a que : B = (¢" (), 9" %(2),...,9(z), x)

est une base de F.
Comme ¢(¢’(x)) = ¢’T'(x) avec en particulier g(g
est alors la matrice N.

"=l(z) = g"(x) = Op alors la matrice de g dans cette base

’Il existe une base de E dans laquelle la matrice de g est V. ‘

Q15) On commencer par remarquer que N™ est nulle.
e Recherche : si on était en dimension 1, calculs formels

Jn(A) = XA+ N donc (Jn()\))*lzﬁzi ¥ =3 Z car N" =0
)\
n—1 )
e On pose alors : J' = > (—1)* ¥ alors :
k=0
Tu(A).T"
n—1
= (ML + N)(X (—1)F535)
k=0

( )R — S (—1)R4e
k=1
=1, car N™ est nulle

=”§< DHE + T (1)

n—1
On a donc | J,,(\) inversible et (.J,,(\ o i1, + N avec N' = -1 kjkv—fl
A k=1 A

12



Q16) N'™ est une matrice triangulaire supérieure de trace nulle, donc N = (0)
De plus, comme la premiére surdiagonale n’est pas nulle, alors N'*~! n’est pas nulle.
En utilisant Q14), N’ est semblable & N, donc i[n + N’ est semblable & %[n + N et donc

(Jo(A))~! est semblable a Jn(%)

Q17) Clairement | s? = s3 = Idg |avec E = C,_;[X]
On pose @ = s9(P) donc Q(X) = P(1 — X), alors :
((s1052)(P)) (X)
=51(Q)(X) =Q(=X) = P(1 - (=X)) = P(X +1) = P(X +1) = P(X) + P(X) = (9 + Idg)(P)(X)

Donc’31052=g+IdE‘

d
Q18) Si d, le degré de P, est supérieur ou égal a 1, on écrit P = > ap X*
k=0
d
Alors g(P)(X) = > ap[(X + 1)F — X*]
k=0

= ag[(X + 1% — X9 + a4 1[(X +1)%71 — X971] 4+ élément de Cy_o[X]

= ag[X? +dX — X + ag [ X9 — X1 + élément de Cy_o[X]

= dag X! + éléement de Cy_o[X]

Donc g(P) est de degré d — 1.

Donc | P non constant = deg(g(P)) = deg(P) — 1

Q19) Posons Q = X" qlors, par Q18) : B = (Q,,, 9(Q,), 3*(Q), - .., g" 1 (Q,)) est une famille de polynoéme
échelonée en degré. C’est donc une base de E et on remarque que la matrice de g relativement & B est N.

La matrice de sy 0 5 = g + Idg est donc J,(1), comme c’est aussi celle de s; 0 s9 et que s; et so sont des

symeétries, alors on a : | J,(1) est le produit de deux matrices de symétries.

(Jny (A1) 0 0
Q20) Par blocs : A"~ = Q (JM('AQ))A .
: 0 e
D’aprés Q16) : (J,, (Ax)) ™! est semblable & Jnk(i)
Ju(x) 0 0
Donc, par blocs : A'~! est semblable a 0 an(%) |
0 0
J(x) 0 0
Comme A~! est semblable & A’~! alors : | A~! est semblable & 0 Jng(%)
" 0 ()
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Q21) A étant semblable & son inverse, alors ses valeurs propres sont, soit 1, soit —1, soit \; ¢ {—1,1}
d’ordre n; avec )\i qui est aussi valeur propre d’ordre n;.

J(\) 0
0 )

7

A est semblable & une matrice diagonale par blocs, avec pour blocs @ Ji(1), Ji(—1) ou K; = <

On a déja vu que Ji(1) et Jp(—1) était le produit de deux matrices de symétries.

On peut appliquer a K; la question Q13) car J,,(\;) et Jn(/\i) sont semblables par Q16).
Alors K; est le produit de deux matrices de symétries. '

En raisonnant par bloc, on peut alors conclure que ’A est le produit de deux matrices de symétries.
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