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Chapitre 17 : Equations di�érentielles linéaires scalaires ;

Fonctions de la variable réelle à valeurs dans Rn

Remarque. Les fonctions considérées dans ce chapitre, sont à valeurs dans K avec K = R ou K = C.

Préliminaire : équation linéaire

Soit E et F deux K espace vectoriel et f ∈ L(E,F ) une application linéaire de E dans F . Soit b ∈ F . Alors on
considère l'équation Eq ⇔ f(x) = b d'inconnue x ∈ E

On dit que f(x) = b est une équation linéaire.

CAS 1 : b /∈ Im(f)
Alors Eq n'admet pas de solution.

CAS 2 : b ∈ Im(f)
Alors ∃xp ∈ E tel que f(xp) = b, on dit que xp est une solution particulière de Eq.
On a alors :

f(x) = b
⇔ f(x) = f(xp)
⇔ f(x)− f(xp) = 0F par linéarité de f
⇔ f(x− xp) = 0F
⇔ x− xp ∈ ker(f)
⇔ x = xp + xk avec xk ∈ ker(f)

Les solutions de Eq s'écrivent donc comme la somme d'une solution particulière et d'une solution de f(x) = 0F .
f(x) = 0F est appelée équation homogène associée à Eq.

BILAN : L'ensemble des solutions de Eq est donc, soit vide, soit de la forme xp+ker(f) (on parle d'espace a�ne)

Complément : si x1 est solution de f(x) = b1 et si x2 est solution de f(x) = b2
Alors ∀λ ∈ K f(x1 + λx2) = f(x1) + λf(x2) = b1 + λb2
et donc x1 + λx2 est solution de f(x) = b1 + λb2
On parle de principe de superposition.
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1 Equations di�érentielles linéaires scalaires d'ordre 1

1.1 Résolution de l'équation homogène

1.1.1 Théorème

Théorème . Soit a une fonction continue sur I un intervalle non vide de R.
Alors les solutions de (E) ⇔ y′(x) + a(x)y(x) = 0 s'écrivent sous la forme :
y(x) = αexp(A(x)) ou A est une primitive sur I de x 7→ −a(x) et α ∈ K.

preuve :

1.1.2 Exemple important : décharge du condensateur

Alors d'un coté U = Ri et d'autre part i = −C dU
dt

On a donc U
R = −C dU

dt ⇔ dU
dt + 1

RCU = 0
On pose τ = RC, et alors U est solution de l'équation di�érentielle linéaire d'ordre 1 homogène à coe�cients
constants :
dU
dt + 1

τU = 0
dont la solution s'écrit : U(t) = U(0)exp(−t

τ )
Représentation graphique :

1.2 Résolution de l'équation avec second membre : méthode de variation de la
constante

1.2.1 Cadre

On considère a et b deux fonctions continues sur un intervalle I de R.
Soit (E) ⇔ y′(x) + a(x)y(x) = b(x).

1.2.2 Résolution de (E)

On suppose que y0 est une solution de (E0) NE S'ANNULANT PAS sur I
Alors pour chercher toutes les solutions de (E) on pose y(x) = λ(x)y0(x).
C'est un changement de fonction inconnue, licite car : ∀x ∈ I y0(x) ̸= 0

1.2.3 Problème de Cauchy

Théorème . (cas particulier du Théorème de Cauchy linéaire)
Soit a et b deux fonctions continue sur I un intervalle de R.
Soit x0 ∈ I et y0 ∈ K. Alors le problème de Cauchy :{
y′(x) + a(x)y(x) = b(x)

y(x0) = y0
admet une unique solution sur I.

preuve : voir paragraphe précédent

1.2.4 Exemple

Résolution de : (E) ⇔ (x+ 1)y′(x)− xy(x) = ex

x sur ]0; +∞[.
solution (ln(x) + C1)*exp(x)/(1 + x)
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1.3 Propriétés algébriques

Théorème . Structure de l'ensemble des solutions
Soit a et b deux fonctions continues sur I un intervalle de R.
Soit l'EDL1 (E) ⇔ y′(x) + a(x)y(x) = b(x) et l'équation homogène associée (E0) ⇔ y′(x) + a(x)y(x).
Alors l'ensemble S0 des solutions de (E0) est un espace vectoriel de dimension 1.
Les solutions de (E) s'écrivent comme la somme d'une solution particulière de (E) et d'une solution de (E0).
Si S0 est l'ensemble des solutions de (E0) alors l'ensemble S des solution de (E) s'écrit :
S = {yp}+ S0 = {yp + y0 , y0 ∈ S0} avec yp une solution particulière de (E).

Remarques. On écrit :

solution générale = solution particulière + solution de l'équation homogène

S est un K espace vectoriel de dimension 1 translaté d'une solution particulière (on parle d'espace a�ne).
Si a et b ne sont pas continues on a que S0 est un espace vectoriel mais on ne connaît pas la dimension, on peut
éventuellement avoir S0 = ∅.

preuve : cf préliminaires

Théorème . Principe de superposition
Si y1 est une solution particulière de E1 ⇔ a(x)y′(x) + b(x)y(x) = c1(x) et si y2 est une solution particulière de
E2 ⇔ a(x)y′(x) + b(x)y(x) = c2(x) alors :
∀λ ∈ K y1 + λy2 est une solution particulière de E3 ⇔ a(x)y′(x) + b(x)y(x) = c1(x) + λc2(x)

preuve : cf préliminaires

2 Equations di�érentielles linéaires scalaire d'ordre 2

On rappelle que les fonctions considérées sont à valeurs dans K avec K = R ou C.

2.1 Cadre

Dé�nitions. Soit I un intervalle de R. Soit α, β, γ et δ quatre fonctions dé�nies sur I. On appelle équation
di�érentielle scalaire linéaire d'ordre 2, une équation di�érentielle de la forme :

(E) ⇔ α(x)y′′(x) + β(x)y′(x) + γ(x)y(x) = δ(x)

d'inconnue une fonction y dérivable sur I.
L'équation di�érentielle : (E0) ⇔ α(x)y′′(x) + β(x)y′(x) + γ(x)y(x) = 0
est appelée équation homogène associée à (E) ou équation sans second membre

On dira qu'une fonction y dé�nie sur I est solution de (E) sur I si et seulement si y est deux fois dérivable sur
I et véri�e ∀x ∈ I , α(x)y′′(x) + β(x)y′(x) + γ(x)y(x) = δ(x).

Remarque. Comme pour les EDL1 on étudiera : y′′(x) + a(x)y′(x) + b(x)y(x) = c(x).

2.2 Résolution théorique

2.2.1 Théorème d'analyse

Théorème . (cas particulier du Théorème de Cauchy linéaire)
Soit a, b et c trois fonctions continues sur I un intervalle de R.
Soit x0 ∈ I et (y0, y

′
0) ∈ K2.

Alors le problème de Cauchy :


y′′(x) + a(x)y′(x) + b(x)y(x) = c(x)

y(x0) = y0

y′(x0) = y′0
admet une unique solution sur I

preuve : hors programme
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2.2.2 Corollaires algébriques

Théorème . Soit a, b et c trois fonctions continues sur I un intervalle de R.
Soit l'EDL2 (E) ⇔ y′′(x) + a(x)y′(x) + b(x)y(x) = c(x) et l'équation homogène associée
(E0) ⇔ y′′(x) + a(x)y′(x) + b(x)y(x) = 0.
Alors l'ensemble S0 des solutions de (E0) est un espace vectoriel de dimension 2.
Les solutions de (E) s'écrivent comme la somme d'une solution particulière de (E) et d'une solution de (E0).
Si S0 est l'ensemble des solutions de (E0) alors l'ensemble S des solution de (E) s'écrit :
S = {yp}+ S0 = {yp + y0 , y0 ∈ S0} avec yp une solution particulière de (E).

Remarques. On écrit : solution générale = solution particulière + solution de l'équation homogène.
S est un K espace vectoriel de dimension 2 translaté d'une solution particulière (on parle d'espace a�ne).
Si a, b et c ne sont pas continues on a que S0 est un espace vectoriel mais on ne connaît pas la dimension, on peut
éventuellement avoir S0 = ∅.

2.2.3 Propriété

Théorème . Principe de superposition
Si y1 est une solution particulière de E1 ⇔ a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = d1(x) et si y2 est une solution
particulière de E2 ⇔ a(x)y′′(x)+b(x)y′(x)+c(x)y(x) = d2(x) alors : ∀λ ∈ K , y1+λy2 est une solution particulière
de E3 ⇔ a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = d1(x) + λd2(x)

2.3 Résolution pratique : cas général

Dans le cas général, on ne sait pas résoudre ...
Dans le cadre du programme, toute résolution doit comporter des indications ...

2.4 Cas particulier important : coe�cients constants

2.4.1 Equation di�érentielle scalaire linéaire homogène d'ordre 2 à coe�cients constants
(Voir cours de première année)

Dé�nition. On appelle équation di�érentielle linéaire scalaire d'ordre 2 homogène à coe�cients constants,
une équation di�érentielle de la forme :

E ⇔ y′′(t) + ay′(t) + by(t) = 0

avec (a, b) ∈ C2.
L'équation scalaire d'inconnue r : r2 + ar + b = 0 est appelée équation caractéristique de E.

Remarques. On résoudra sur R.

Théorème de résolution : solutions à valeurs complexes

Soit (a, b) ∈ C2. Soit E ⇔ y′′(t) + ay′(t) + by(t) = 0.
Si l'équation caractéristique de E admet deux racines distinctes r1 et r2, alors les solutions de E s'écrivent :
y(t) = Aexp(r1t) +Bexp(r2t) avec (A,B) ∈ C2.
Si l'équation caractéristique de E admet une racine double r0, alors les solutions de E s'écrivent :
y(x) = exp(r0t)(A+Bt) avec (A,B) ∈ C2.

Théorème de résolution : solutions à valeurs réelles

Soit (a, b) ∈ R2. Soit E ⇔ y′′(t) + ay′(t) + by(t) = 0.
Si l'équation caractéristique de E admet deux racines réelles distinctes r1 et r2, alors les solutions de E s'écrivent :
y(t) = αexp(r1t) + βexp(r2t) avec (A,B) ∈ R2.
Si l'équation caractéristique de E admet une racine réelle double r0, alors les solutions de E s'écrivent :
y(t) = exp(r0t)(A+Bt) avec (A,B) ∈ R2.
Si l'équation caractéristique de E admet deux racines complexes conjuguées α+ iδ et α− iδ, alors les solutions de
E s'écrivent : y(x) = exp(αt)(Acos(δt) +Bsin(δt)) avec (A,B) ∈ R2.

Remarque. On peut écrire y(t) = exp(αt)(Acos(δt)+Bsin(δt)) = Mexp(αt)cos(δt+φ) avec M > 0 et φ ∈]−π;π]
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Cas particulier : Si ω > 0 alors les solutions de y′′(t) + ω2y(t) = 0 s'écrivent
y(t) = Acos(ωt) +Bsin(ωt) avec (A,B) ∈ R2 ou encore y(t) = Msin(ωt+ φ) avec M > 0 et φ ∈]− π;π]

Rappel : Si l'équation est de la forme y′′(t) + ay′(t) + by(t) = f(t), alors la solution générale s'écrit comme
la somme d'une solution particulière et d'une solution de l'équation homogène y′′(t) + ay′(t) + by(t) = 0

2.4.2 Exemples

Solutions à valeurs réelles sur R de


y′′(x) + y′(x)− 2y(x) = 0

y′′(x)− 8y′(x) + 16y(x) = 0

y′′(x)− 6y′(x) + 10y(x) = sh(x)

.

2.5 Exemples

Exemple 1 : Résolution sur ]
√
3,+∞[ de : (E1) ⇔ (x2 − 3)y′′ − 4xy′ + 6y = 0

Solutions : y(x) = a(x3 + 9x) + b(x2 + 1)

Exemple 2 : Solution sur I =]0;+∞[ de E ⇔ x2y′′(x)− xy′(x) + y(x) = 0.

Réponse : y(x) = αx+ βxln(x)
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3 Fonctions de la variable réelle à valeurs dans Rn

Dans ce paragraphe on considère f une fonction d'un intervalle I de R et à valeurs dans Rn.

3.1 Fonctions coordonnées

Dé�nition. Pour x ∈ I on note f(x) = (f1(x), f2(x), . . . , f3(x)).
Les fonctions fi ainsi dé�nie de I dans R sont appelées fonctions coordonnées de f .

Exemple. Soit f de R dans R2 dé�nie par ∀x ∈ R , f(x) = (x2 + x, cos(x2)).
Alors f est composée de deux fonctions coordonnées x 7→ x2 + x et x 7→ cos(x2).

3.2 Interprétation comme courbe

Si f est su�samment régulière alors Γ = f(I) peut-être vu comme un objet de dimension 1.

Exemple :
f : [0; 2π] −→ R2

t 7→ (cos(t), sin(t))

3.3 Continuité (Rappel)

Théorème . f est continue sur I si et seulement si les applications coordonnées de f sont continues sur I.

3.4 Dérivabilité

3.4.1 Dérivabilité en un point

Dé�nition. Soit a ∈ I, alors on dit que :

f est dérivable en a si et seulement lim
t→a

f(t)−f(a)
t−a existe dans Rn

On note f ′(a) cette limite.

Lemme. f est dérivable en a si et seulement si les applications coordonnées de f sont dérivables en a

Remarque. Si f est dérivable en a on note f ′(a) = (f ′
1(a), f

′
2(a)) ou f ′(a) = (f ′

1(a), f
′
2(a), f

′
3(a)).

On peut alors écrire lim
x→a

f(x)−f(a)
x−a = f ′(a)

3.4.2 Caractérisation par le DL à l'ordre 1

Lemme. f est dérivable en a si et seulement si ∃V ∈ Rn , f(a+ h) = f(a) + hV + o(h)

Remarque. V = f ′(a)

3.4.3 Interprétation cinématique
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3.4.4 Continuité et dérivabilité sur I

Dé�nitions. : Si f est continue en tout point de I, on dit que f est continue sur I.
Si f est dérivable en tout point de I, on dit que f est dérivable sur I

3.4.5 Lemme

Lemme. Si f est dérivable sur I alors f est continue sur I.

Remarque. : La réciproque est évidement fausse.

3.4.6 Fonctions dérivées

Dé�nition. Si f est dé�nie sur I et si f est dérivable sur I alors on dé�nit f ′ comme étant la fonction de I dans
E qui à a ∈ I associe f ′(a)
f ′ est appelée fonction dérivée de f .

Dé�nition. Si f est dé�nie sur I et si f est dérivable alors on peut éventuellement dériver f ′. La fonction ainsi
obtenue (dérivée seconde) est notée f ′′ ou f (2).

Par itération on dé�nit, éventuellement, la dérivée kième par f (k) = (f (k−1))
′
.

3.5 Structure vectorielle, fonctions de classe Ck

Dé�nitions. On dit qu'une fonction f est de classe Ck sur une partie I de R si et seulement si elle est k fois
dérivable et si sa dérivée kième est continue sur I. Si f est de classe Ck pour tout k on dit que f est de classe C∞

Lemme. L'ensemble des fonctions de classe Ck sur I, que l'on note, Ck(I,Rn) est un R espace vectoriel.

Remarque. Autrement dit, si f et g sont deux fonctions de Ck(I,Rn) et si λ est un nombre réel, alors f + λg est
une fonction de Ck(I,Rn).

3.6 Quelques dérivations particulières

3.6.1 Composée avec une application linéaire

Soit L une application linéaire de Rn dans Rp et f une fonction de I dans Rn dérivable au point a ∈ I.
Alors L ◦ f est dérivable au point a et : (L ◦ f)′(a) = L

(
f ′(a)

)
3.6.2 Dérivation d'un produit (Formule de Leibniz)

Soit f une fonction de classe Cn de I dans E et λ une fonction de classe Cn de I dans R. Alors :

∀t ∈ I , (λf)(n)(t) =
n∑

k=0

(
n

k

)
λ(k)(t)f (n−k)(t)

3.6.3 Bilinéarité

Soient n, p et q dans N∗. Soit I un intervalle de R, f une application de I dans Rn, g une application de I dans Rp

et B une application bilinéaire de Rn × Rp dans Rq.

On dé�nit l'application B(f, g) par : B(f, g) : I −→ Rq par ∀t ∈ I B(f, g)(t) = B
(
f(t), g(t)

)
On suppose que f et g sont dérivables au point a de I.

Alors l'application B(f, g) est dérivable au point a et :
(
B(f, g)

)′
(a) = B

(
f ′(a), g(a)

)
+B

(
f(a), g′(a)

)
3.6.4 Multilinéarité

On suppose que ∀k ∈ J1; pK, fk est une application dérivable de I dans Rnk .
On suppose que B est une application multi-linéaire de Rn1 × · · · × Rnp dans Rq.
Alors l'application g = B(f1, . . . , fp) est dérivable sur I et

g′ =
p∑

k=1

B(f1, . . . , fk−1, f
′
k, fk+1, . . . , fp)
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3.6.5 Dérivation d'un produit scalaire

On se place dans E = R2 ou R3 muni d'un produit scalaire noté < , >. Soit f et g deux fonctions de classe Cn de
I dans E. Alors:

∀t ∈ I , dn

dtn (< f(t), g(t) >) =
n∑

k=0

(
n

k

)
< f (k)(t), g(n−k)(t) >

3.6.6 Dérivation d'un produit vectoriel

On se place dans R3 et on note ∧ le produit vectoriel. Soit f et g deux fonctions de classe Cn de I dans R3. Alors :

∀t ∈ I , (f ∧ g)(n)(t) =
n∑

k=0

(
n

k

)
f (k)(t) ∧ g(n−k)(t)

3.6.7 Dérivation d'une norme

On se place dans E = R2 ou R3 muni d'un produit scalaire noté < , > et de || || la norme euclidienne associée.
Soit f une fonction de classe C1 de I dans E. Alors, ∀t ∈ I, si ||f(t)|| ≠ 0

d

dt
||f(t)|| = < f(t), f ′(t) >

||f(t)||

3.6.8 Dérivation d'un déterminant

Dans R2

On se place dans R2 muni d'une base B.
Soit I un intervalle de R, soit u⃗ et v⃗ deux fonctions de I dans R2. Alors :

∀t ∈ I ,
d

dt
detB(u⃗(t), v⃗(t)) = detB(

du⃗

dt
(t), v⃗(t)) + detB(u⃗(t),

dv⃗

dt
(t))

Dans R3

On se place dans R3 muni d'une base B.
Soit I un intervalle de R, soit u⃗, v⃗ et w⃗ trois fonctions de I dans R3. Alors :

∀t ∈ I ,
d

dt
detB(u⃗(t), v⃗(t), w⃗(t)) = detB(

du⃗

dt
(t), v⃗(t), w⃗(t)) + detB(u⃗(t),

dv⃗

dt
(t), w⃗(t)) + detB(u⃗(t), v⃗(t),

dw⃗

dt
(t))

3.6.9 Dérivation d'une composée

Soit une application f : I −→ Rn, dérivable. Soit par ailleurs une application φ : J −→ I dérivable (J est aussi un
intervalle de R). Alors f ◦ φ est dérivable sur J et (f ◦ φ)′ = φ′ · (f ′ ◦ φ)

4 Application aux systèmes di�érentiels à coe�cients constants : Exemples

4.1 Exemple

4.2 Système di�érentiel à coe�cients constants

Dé�nitions. Un système di�érentiel linéaire à coe�cients constants est un système s'écrivant :
x′
1(t) = a1,1x1(t) + a1,2x2(t) + · · ·+ a1,nxn(t)

...

x′
n(t) = an,1x1(t) + an,2x2(t) + · · ·+ an,nxn(t)

⇔ X ′(t) = AX(t)

avec A = (ai,j) ∈ Mn(K) et X(t) =

x1(t)
...

xn(t)

 ou X est une fonction inconnue de R dans Mn,1(K).

On dit que X est solution de (S) sur I (une partie de R) si et seulement si ∀t ∈ I , X ′(t) = AX(t)
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4.3 Résolution dans le cas A diagonalisable

Soit A est diagonalisable et semblable à D =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn

.

Soit B = (e1, .., en) une base de vecteurs propres de A telle que : ∀k ∈ {1..n} Aek = λkek. Soit P la matrice de
passage de la base canonique à la base B. Alors A = PDP−1.
Pour résoudre (S) ⇔ X ′(t) = AX(t) On pose Y (t) = P−1X(t).

Alors : (S) ⇔ Y ′(t) = DY (t) ⇔ Y (t) =

α1exp(λ1t)
...

αnexp(λnt)

 ⇔ X(t) =
n∑

k=1

αkexp(λkt)ek

4.4 Exemple

Résolution de y′′′ + 3y′′ − y′ − 3y = 0
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