PSI* 2025-2026

Chapitre 17 : Equations différentielles linéaires scalaires ;
Fonctions de la variable réelle a valeurs dans R”
Remarque. Les fonctions considérées dans ce chapitre, sont & valeurs dans K avec K =R ou K = C.
Préliminaire : équation linéaire

Soit E et F' deux K espace vectoriel et f € L(E, F) une application linéaire de E dans F'. Soit b € F. Alors on
considére I’équation Fq < f(z) = b d’inconnue z € E

On dit que f(x) = b est une équation linéaire.

CAS1:b¢ Im(f)

Alors Eq n’admet pas de solution.

CAS 2: be Im(f)
Alors 3z, € E tel que f(x,) = b, on dit que x,, est une solution particuliére de Eq.
On a alors :

& —xp € ker(f)
& x = xp, + x) avec xy, € ker(f)

Les solutions de Eq s’écrivent donc comme la somme d’une solution particuliére et d’une solution de f(z) = Op.
f(x) = 0p est appelée équation homogéne associée a Eq.

BILAN : L’ensemble des solutions de Eq est donc, soit vide, soit de la forme z,+ker(f) (on parle d’espace affine)

Complément : si 1 est solution de f(x) = by et si z2 est solution de f(z) = bo
Alors VA € K f(x1 + Az2) = f(x1) + Af(72) = b1 + A\bo
et donc 1 + Azq est solution de f(x) = by + A\bo
On parle de principe de superposition.



1 Equations différentielles linéaires scalaires d’ordre 1

1.1 Reésolution de I’équation homogéne
1.1.1 Théoréme

Théoréme . Soit a une fonction continue sur I un intervalle non vide de R.
Alors les solutions de (E) < y'(x) + a(x)y(z) = 0 s’écrivent sous la forme :
y(x) = aexp(A(x)) ou A est une primitive sur I de x — —a(zx) et o € K.

preuve :

1.1.2 Exemple important : décharge du condensateur

Fig. 4. - Décharge d'un condensateur.

Alors d’un coté U = Ri et d’autre part i = —C’%
Onadonc%:—C%@%ﬁ-%U:O
On pose 7 = RC, et alors U est solution de I’équation différentielle linéaire d’ordre 1 homogéne & coefficients

constants :

g +1iu=0

dont la solution s’écrit : U(t) = U(0)exp(=)
Représentation graphique :

1.2 Résolution de I’équation avec second membre : méthode de variation de la
constante

1.2.1 Cadre

On considére a et b deux fonctions continues sur un intervalle I de R.
Soit (E) < y'(z) + a(z)y(x) = b(x).

1.2.2 Résolution de (F)

On suppose que yp est une solution de (Ey) NE SSANNULANT PAS sur [
Alors pour chercher toutes les solutions de (E) on pose y(x) = A(z)yo(x).
C’est un changement de fonction inconnue, licite car : Vo € I yo(x) #0

1.2.3 Probléme de Cauchy

Théoréme . (cas particulier du Théoréme de Cauchy linéaire)
Soit a et b deux fonctions continue sur I un intervalle de R.
Soit xg € I et yo € K. Alors le probléme de Cauchy :
’/II?+ :b,
y'(x) +alz)y(w) (z) admet une wunique solution sur I.
y(zo) = yo
preuve : voir paragraphe précédent

1.2.4 Exemple

Résolution de : (F) & (z + 1)y/(z) — zy(x) = % sur ]0; +o0].
solution (In(x) + C1)*exp(x)/(1 + x)



1.3 Propriétés algébriques

Théoréme . Structure de ’ensemble des solutions

Soit a et b deux fonctions continues sur I un intervalle de R.

Soit 'EDL, (F) < y'(z) + a(z)y(x) = b(x) et I’équation homogéne associée (Ey) < y'(z) + a(x)y(x).

Alors Uensemble Sy des solutions de (Ey) est un espace vectoriel de dimension 1.

Les solutions de (E) s’écrivent comme la somme d’une solution particuliére de (E) et d’une solution de (Ep).
Si So est ensemble des solutions de (Fy) alors l'ensemble S des solution de (E) s’écrit :
S={yp}+So=1{yp +v0, Yo € So} avec y, une solution particuli¢re de (E).

Remarques. On écrit :
solution générale = solution particuliére + solution de l’équation homogéne

S est un K espace vectoriel de dimension 1 translaté d’une solution particuliére (on parle d’espace affine).
Si a et b ne sont pas continues on a que Sy est un espace vectoriel mais on ne connait pas la dimension, on peut
éventuellement avoir Sy = 0.

preuve : cf préliminaires

Théoréme . Principe de superposition

Si y1 est une solution particuliere de E1 < a(x)y' (x) + b(x)y(x) = c1(x) et si yo est une solution particuliere de
Ey < a(x)y'(z) + b(z)y(z) = ca(x) alors :

YA € K y1 + A\ys est une solution particuliere de E3 < a(x)y' (z) + b(x)y(z) = c1(x) + Aea ()

preuve : cf préliminaires

2 Equations différentielles linéaires scalaire d’ordre 2

On rappelle que les fonctions considérées sont & valeurs dans K avec K =R ou C.

2.1 Cadre

Définitions. Soit I un intervalle de R. Soit «, B, v et 0 quatre fonctions définies sur I. On appelle équation
différentielle scalaire linéaire d’ordre 2, une équation différentielle de la forme :

(B) < a(z)y"(z) + B(x)y' (z) + y(2)y(z) = d(x)
d’inconnue une fonction y dérivable sur I.
L’équation différentielle : (Fy) < a(x)y”(z) + B(z)y' (x) + y(x)y(x) =0
est appelée équation homogene associée o (E) ou équation sans second membre

On dira qu’une fonction y définie sur I est solution de (E) sur I si et seulement siy est deux fois dérivable sur
I et vérifieVr € I, a(z)y”(z) + B(x)y (z) +v(z)y(z) = §(x).

Remarque. Comme pour les EDL; on étudiera : y" (x) + a(x)y'(z) + b(x)y(x) = c(x).

2.2 Reésolution théorique
2.2.1 Théoréme d’analyse

Théoréme . (cas particulier du Théoréeme de Cauchy linéaire)
Soit a, b et ¢ trois fonctions continues sur I un intervalle de R.
Soit xg € I et (yo,y)) € K2.

¥ (@) + o)y (2) + bl@)y(x) = ()
Alors le probléme de Cauchy : < y(zo) = Yo

y'(z0) = o
admet une unique solution sur [

preuve : hors programme



2.2.2 Corollaires algébriques

Théoréme . Soit a, b et ¢ trois fonctions continues sur I un intervalle de R.

Soit 'EDLy (F) < y"(z) + a(z)y' (x) + b(x)y(z) = c(x) et I'équation homogéne associée

(o) 4"'(2) + ala)y (z) + b(z)y(z) = 0,

Alors Uensemble Sy des solutions de (Ey) est un espace vectoriel de dimension 2.

Les solutions de (E) s’écrivent comme la somme d’une solution particuliére de (E) et d’une solution de (Ep).
Si So est ensemble des solutions de (Fy) alors l'ensemble S des solution de (E) s’écrit :
S={yp}+So={yp+v0, Yo € So} avec y, une solution particuli¢re de (E).

Remarques. On écrit : solution générale = solution particuliére + solution de l’équation homogeéne.

S est un K espace vectoriel de dimension 2 translaté d’une solution particuliére (on parle d’espace affine).

Si a, b et c ne sont pas continues on a que Sy est un espace vectoriel mais on ne connait pas la dimension, on peut
éventuellement avoir Sy = 0.

2.2.3 Propriété

Théoréme . Principe de superposition

Si y1 est une solution particuliere de By < a(x)y”(x) + b(x)y'(z) + c(x)y(z) = di(z) et si y2 est une solution
particuliere de Es < a(x)y" (z) +b(2)y'(z) +c(z)y(z) = da(z) alors : YA € K, y1+ Ay2 est une solution particuliére
de By © a()y" () + b(@)y (z) + c()y(z) = dy (2) + Ada(2)

2.3 Reésolution pratique : cas général

Dans le cas général, on ne sait pas résoudre ...
Dans le cadre du programme, toute résolution doit comporter des indications ...

2.4 Cas particulier important : coefficients constants

2.4.1 Equation différentielle scalaire linéaire homogéne d’ordre 2 a coefficients constants

(Voir cours de premiére année)

Définition. On appelle équation différentielle linéaire scalaire d’ordre 2 homogeéne a coefficients constants,
une équation différentielle de la forme :

E<y't)+ay(t)+by(t) =0

avec (a,b) € C2.
L’équation scalaire d’inconnue r : r? 4+ ar +b = 0 est appelée équation caractéristique de E.

Remarques. On résoudra sur R.

Théoréme de résolution : solutions a valeurs complexes

Soit (a,b) € C%. Soit E < y"(t) + ay’(t) + by(t) = 0.
Si ’équation caractéristique de E admet deux racines distinctes ri et ro, alors les solutions de E s’écrivent :
y(t) = Aexp(rit) + Bexp(rat) avec (A, B) € C2.
Si I’équation caractéristique de E admet une racine double rq, alors les solutions de E s’écrivent :
y(z) = exp(rot) (A + Bt) avec (A, B) € C2.

Théoréme de résolution : solutions a valeurs réelles

Soit (a,b) € R2. Soit E < 3" (t) + ay’(t) + by(t) = 0.
Si I’équation caractéristique de E admet deux racines réelles distinctes ry et ro, alors les solutions de E s’écrivent :
y(t) = cexp(rit) + Bexp(rat) avec (A, B) € R2.
Si ’équation caractéristique de E admet une racine réelle double ry, alors les solutions de F s’écrivent :
y(t) = exp(rot)(A + Bt) avec (A, B) € R2.
Si ’équation caractéristique de E' admet deux racines complexes conjuguées o + id et a — 79, alors les solutions de
E s’écrivent : y(z) = exp(at)(Acos(6t) + Bsin(dt)) avec (A, B) € R

Remarque. On peut écrire y(t) = exp(at)(Acos(dt) + Bsin(dt)) = Mexp(at)cos(dt+ @) avec M > 0 et ¢ €] — ;7]



Cas particulier : Si w > 0 alors les solutions de y”(t) + w?y(t) = 0 s’écrivent
y(t) = Acos(wt) + Bsin(wt) avec (A, B) € R? ou encore y(t) = Msin(wt + ¢) avec M > 0 et ¢ €] — ;7]

Rappel : Si I’équation est de la forme y”(¢) + ay’(t) + by(t) = f(t), alors la solution générale s’écrit comme

la somme d’une solution particuliére et d’une solution de 1’équation homogene y” (t) + ay’(t) + by(t) =0

2.4.2 Exemples
y" (@) +y' () = 2y(x) = 0
Solutions & valeurs réelles sur R de ¢ y”(z) — 8y'(z) + 16y(z) =0
y"(z) = 6y'(z) + 10y(z) = sh(z)
2.5 Exemples
Exemple 1 : Résolution sur |v/3, +oo[ de : (E;) < (22 — 3)y" — 4xy’ + 6y =0
Solutions : y(z) = a(z® + 9z) + b(z% + 1)

Exemple 2 : Solution sur I =]0; +oc[ de E < 2%y" () — xy/(z) + y(z) = 0.

Réponse : y(x) = ax + Bzin(zx)



3 Fonctions de la variable réelle & valeurs dans R"

Dans ce paragraphe on considére f une fonction d’un intervalle I de R et a valeurs dans R”.

3.1 Fonctions coordonnées

Définition. Pour x € I on note f(z) = (f1(z), f2(z), ..., f3(z)).
Les fonctions f; ainsi définie de I dans R sont appelées fonctions coordonnées de f.

Exemple. Soit f de R dans R? définie par Vz € R, f(z) = (22 + z, cos(x?)).
Alors f est composée de deux fonctions coordonnées x +— x° + x et x — cos(z?).

3.2 Interprétation comme courbe

Si f est suffisamment réguliére alors I' = f(I) peut-étre vu comme un objet de dimension 1.
o 02r — R?

Exemple : ; —  (cos(t), sin(t))

3.3 Continuité (Rappel)

Théoréme . f est continue sur I si et seulement si les applications coordonnées de f sont continues sur I.

3.4 Dérivabilité
3.4.1 Dérivabilité en un point

Définition. Soit a € I, alors on dit que :
f est dérivable en a si et seulement lim %i(a)

t—a
On note f'(a) cette limite.

existe dans R"

Lemme. f est dérivable en a si et seulement si les applications coordonnées de f sont dérivables en a

Remarque. Si f est dérivable en a on note f'(a) = (f1(a), f5(a)) ou f'(a) = (fi(a), fi(a), fi(a)).
On peut alors écrire lim W = f'(a)
Tr—a

3.4.2 Caractérisation par le DL a ’ordre 1

Lemme. [ est dérivable en a si et seulement si 3V € R™ | f(a+ h) = f(a) + RV + o(h)

Remarque. V = f/(a)

3.4.3 Interprétation cinématique



3.4.4 Continuité et dérivabilité sur [

Définitions. : Si f est continue en tout point de I, on dit que f est continue sur I.
Si f est dérivable en tout point de I, on dit que [ est dérivable sur I

3.4.5 Lemme

Lemme. Si f est dérivable sur I alors f est continue sur I.

Remarque. : La réciproque est évidement fausse.

3.4.6 Fonctions dérivées

Définition. Si f est définie sur I et si f est dérivable sur I alors on définit f' comme étant la fonction de I dans
E qui a a € I associe f'(a)
f' est appelée fonction dérivée de f.

Définition. Si f est définie sur I et si [ est dérivable alors on peut éventuellement dériver f’. La fonction ainsi
obtenue (dérivée seconde) est notée f" ou f(2),

Par itération on définit, éventuellement, la dérivée k™ par f*) = (f(kfl))/.

3.5 Structure vectorielle, fonctions de classe C*

Définitions. On dit qu’une fonction f est de classe C* sur une partie I de R si et seulement si elle est k fois
dérivable et si sa dérivée k**™¢ est continue sur I. Si f est de classe C* pour tout k on dit que f est de classe C>

Lemme. L’ensemble des fonctions de classe C* sur I, que l'on note, C*(I,R™) est un R espace vectoriel.
Remarque. Autrement dit, si f et g sont deuz fonctions de C*(I,R™) et si \ est un nombre réel, alors f + \g est
une fonction de C*(I,R™).
3.6 Quelques dérivations particuliéres
3.6.1 Composée avec une application linéaire
Soit L une application linéaire de R™ dans RP et f une fonction de I dans R™ dérivable au point a € [.
Alors Lo f est dérivable au point a et : (Lo f)/(a) = L(f'(a))
3.6.2 Dérivation d’un produit (Formule de Leibniz)

Soit f une fonction de classe C™ de I dans E et X une fonction de classe C™ de I dans R. Alors :

wer. ann0 = (P00 e

3.6.3 Bilinéarité

Soient n, p et ¢ dans N*. Soit I un intervalle de R, f une application de I dans R™, g une application de I dans R?
et B une application bilinéaire de R™ x RP dans RY.

On définit Papplication B(f, g) par : B(f,g): 1 — R par Vt € I B(f,g)(t) = B(f(t),g(t))
On suppose que f et g sont dérivables au point a de I.
Alors Papplication B(f, g) est dérivable au point a et : (B(f,¢)) (a) = B(f'(a),g(a)) + B(f(a), ¢ (a))

3.6.4 Multilinéarité

On suppose que Vk € [1;p], fr est une application dérivable de I dans R™*.
On suppose que B est une application multi-linéaire de R™ x --- x R™ dans RY.
Alors l'application g = B(f1,..., fp) est dérivable sur I et



3.6.5 Dérivation d’un produit scalaire

On se place dans E = R? ou R? muni d’un produit scalaire noté < , >. Soit f et g deux fonctions de classe C™ de
I dans E. Alors:

vtel, L(< f(t).g(t)>) = > (") < f®(1), g P (t) >

k=0 k

3.6.6 Dérivation d’un produit vectoriel

On se place dans R? et on note A le produit vectoriel. Soit f et g deux fonctions de classe C™ de I dans R3. Alors :

el (FAa™0 = (1)1 Ag 0

3.6.7 Dérivation d’une norme

On se place dans £ = R? ou R® muni d’un produit scalaire noté < , > et de || || la norme euclidienne associée.
Soit f une fonction de classe C! de I dans E. Alors, Vt € I, si ||f(t)|| #0

a4 _ < S, f'@®) >

3.6.8 Dérivation d’un déterminant

Dans R?
On se place dans R? muni d’une base B.
Soit I un intervalle de R, soit i et ¥ deux fonctions de I dans R2. Alors :

dv

d du
vtel, %detg(ﬁ(t), u(t)) = d(etB(d—:(t), 0(t)) + det g (u(t), E(f))
Dans R?
On se place dans R3 muni d’une base B.
Soit I un intervalle de R, soit i, ¥ et w0 trois fonctions de I dans R3. Alors :
d L R di . B Lo du . o L, du
Viel, Edet;g(u(t), o(t),w(t)) = detg(a(t), 0(t),w(t)) + det g (u(t), E(f) w(t)) + detp(u(t), v(t), = (1))
C ‘ ¢

3.6.9 Dérivation d’une composée

Soit une application f : I — R™, dérivable. Soit par ailleurs une application ¢ : J — I dérivable (J est aussi un
intervalle de R). Alors f o ¢ est dérivable sur J et (fop) = ¢ - (f op)

4 Application aux systémes différentiels & coefficients constants : Exemples

4.1 Exemple

4.2 Systéme différentiel & coefficients constants
Définitions. Un systéme différentiel linéaire a coefficients constants est un systéme s’écrivant :
Jfll(t) = a1711:1(t) + a172x2(t) + -+ (Ilmiﬁn(t)
: < X'(t) = AX(¢)
T () = ana121(t) + an2@2(t) + - + anpan(t)
1 ()
avec A = (a;;) € M, (K) et X(t) = ou X est une fonction inconnue de R dans M, 1(K).

Tn(t)
On dit que X est solution de (S) sur I (une partie de R) si et seulement siVt € I , X'(t) = AX(t)



4.3 Reésolution dans le cas A diagonalisable

M O -0
. . : R 0 X ;
Soit A est diagonalisable et semblable & D =
: . -0
0 -~ 0 M\

Soit B = (ey, .., €,) une base de vecteurs propres de A telle que : Vk € {1..n} Aep = Ageg. Soit P la matrice de
passage de la base canonique & la base B. Alors A = PDP~!.
Pour résoudre (S) < X'(t) = AX(t) On pose Y (t) = P71X(¢).
arexp(Art)
Alors: (S) e Y'(t)=DY(t) & Y(t) = < X(t) =Y, agexp(Agt)eg
anexp(Ant) k=t

4.4 Exemple
Résolution de 3y +3y”" — ¢y — 3y =0
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