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EXERCICE 1

� On a : A ∩B ⊂ B ⇒ P(A ∩B) ≤ P(B) De même : A ∩B ⊂ A⇒ P(A ∩B) ≤ P(A)

On a alors :

{
P(A ∩B) ≤ P(B)

P(A ∩B) ≤ P(A)
⇒ P(A ∩B) ≤ min(P(A),P(B))

� On a : P(A ∪B) = P(A) + P(B)− P(A ∩B) donc P(A ∩B) = P(A) + P(B)− P(A ∪B)
Comme P(A ∪B) ≤ 1⇒ −1 ≤ −P(A ∪B)⇒ P(A) + P(B)− 1 ≤ P(A) + P(B)− P(A ∪B) = P(A ∩B)
De plus 0 ≤ P(A ∪B) est évident.

On a alors :

{
0 ≤ P(A ∩B)

P(A) + P(B)− 1 ≤ P(A ∩B)
⇒ max(0,P(A) + P(B)− p(A ∪B)) ≤ P(A ∩B)

� Bilan : max(0,P(A) + P(B)− P(A ∪B)) ≤ P(A ∩B) ≤ min(P(A),P(B))

EXERCICE 2

1°) a) Si φ est une surjection de J1, nK dans J1, pK alors φ(J1, nK) = J1, pK et donc n ≤ p
Il n'y a donc pas de bijection de J1, nK dans J1, pK si p > n

Bilan : p > n⇒ S(n, p) = 0

1°) b) Ci-dessous φ désigne une application de J1, nK dans J1, pK

� Si p = 1 alors il n'y a qu'une image possible pour un élément de J1, nK donc φ est la fonction constante
égale à 1 sur J1, nK et donc S(n, 1) = 1

� Si p = 2
Pour commencer, il y a : 2n applications de J1, nK dans J1, 2K.
Presque toutes sont surjectives, sauf celle constante égale à 1 et celle constante égale à 2. Car une application
qui n'est pas constante prend deux valeurs, donc toutes les valeurs de J1, 2K
On ainsi : S(n, 2) = 2n − 2 (on remarque que si n = 1 alors S(n, 2) = S(1, 2) = 0, on retrouve le a))

� Si p = n, alors comme card(J1, nK) = card(J1, pK), une surjection est une bijection et à l'aide du cours,
on en déduit : S(n, n) = n!

� Résumé :


S(n, 1) = 1

S(n, 2) = 2n − 2

S(n, n) = n!

1°) c) Si φ est une surjection de J1, n+ 1K dans J1, nK alors on a :
n∑

k=1

card(f−1({k}) = n+ 1 avec card(f−1({k}) ≥ 1

donc
n∑

k=1

[card(f−1({k})− 1] = 1 avec card(f−1({k})− 1 ≥ 0 et card(f−1({k})− 1 ∈ N

On a donc ∃k0 ∈ J1, nK tel que card(f−1({k0})− 1 = 1⇒ card(f−1({k0}) = 2
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Pour choisir une surjection φ de J1, n+ 1K dans J1, nK il faut choisir :
# l'élément de J1, nK qui aura 2 antécédents (n choix)
# le couple d'éléments de J1, n+ 1K (n,m) qui sera envoyé sur cette élément (

(
n+1
2

)
choix)

# La restriction de φ à J1, nK\{n,m} qui est une bijection vers J1, nK\{k0} ((n− 2)! possibilités).

Donc : S(n+ 1, n) = n
(
n+1
2

)
(n− 2)! = n (n+1)!

2!(n−2)!
(n− 2)! = n(n+ 1)!

On a donc S(n+ 1, n) = n(n+ 1)!

2°) Soit φ est une surjection de J1, nK dans J1, pK.
Alors, il y a p possibilités pour la valeur de φ(n)
La restriction de φ1 de φ à J1, n− 1K atteint donc tout les éléments de J1, pK\{φ(n)}
On a alors 2 cas :

Cas 1 : φ(n) ∈ φ1(J1, n− 1K)
Alors φ1 est une surjection de J1, n− 1K vers J1, pK, il y a donc S(n− 1, p) possibilités.

Cas 2 : φ(n) /∈ φ1(J1, n− 1K)
Alors φ1 est une surjection de J1, n− 1K vers J1, pK\{φ(n)}, il y a donc S(n− 1, p− 1) possibilités.

On a donc : S(n, p) = p
(
S(n− 1, p) + S(n− 1, p− 1)

)
3°) a)

def S(n,p):

if p>n:

return 0

if p==1:

return 1

if p==2:

return 2**n-2

return p*(S(n-1,p)+S(n-1,p-1))

3°) b) � Montrons par récurrence sur n ∈ N∗ que : ∀n ∈ N∗ , ∀p ∈ N∗ , S(n, p) =
p∑

k=0

(−1)p−k
(
p
k

)
kn

� Initialisation pour n = 1

On veut montrer que : ∀p ∈ N∗ , S(1, p) =
p∑

k=0

(−1)p−k
(
p
k

)
k

Si p = 1 alors S(1, 1) = 1 et
p∑

k=0

(−1)p−k
(
p
k

)
k =

1∑
k=1

(−1)p−k
(
p
k

)
k = (−1)01 = 1

La relation est véri�é.

Si p > 1
On remarque que :

(
p
k

)
k = p!

k!(p−k)!
k = p(p−1)!

(k−1)!((p−1)−(k−1))!
= p

(
p−1
k−1

)
On a donc : S(1, p) =

p∑
k=1

(−1)p−kp
(
p−1
k−1

)
= p

p∑
k=1

(−1)p−k
(
p−1
k−1

)
= p

p−1∑
k′=0

(−1)p−1−k′
(
p−1
k′

)
= p(1− 1)p−1 = 0

Finalement la propriété est bien véri�ée si n = 1
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� Hérédité
On suppose la propriété vraie au rang n− 1 et on va la démontrer au rang n > 1.

Si p = 1 alors la formule se véri�e comme dans le cas n = 1 de l'initialisation.

Si p > 1, on peut alors utiliser le 2°) (puisque n > 1) et on a :
S(n, p) = p

(
S(n− 1, p) + S(n− 1, p− 1)

)
donc avec l'hypothèse au rang n− 1 :

S(n, p)

= p
( p∑

k=0

(−1)p−k
(
p
k

)
kn−1 +

p−1∑
k=0

(−1)p−1−k
(
p−1
k

)
kn−1

)
= p

(
pn−1︸︷︷︸

terme pour k=p

+
p−1∑
k=0

(−1)p−k[
(
p
k

)
−

(
p−1
k

)
]kn−1

)
triangle de Pascal

= p
(

pn−1︸︷︷︸
terme pour k=p

+
p−1∑
k=0

(−1)p−k
(
p−1
k−1

)
kn−1

)
= pn +

p−1∑
k=0

(−1)p−kp
(
p−1
k−1

)
kn−1

On réutilise la formule montrer dans l'initialisation :

S(n, p) = pn +
p−1∑
k=0

(−1)p−k
(
p
k

)
kn

p∑
k=0

(−1)p−k
(
p
k

)
kn

et on a bien la relation au rang n.

� Conclusion : ∀n ∈ N∗ , ∀p ∈ N∗ , S(n, p) =
p∑

k=0

(−1)p−k
(
p
k

)
kn

EXERCICE 3

� Notons Bk l'événement une boule blanche est tirée lors du k ième tirage (indépendamment du fait que ce
soit A ou B qui tire la boule) et Vk l'événement une deuxième boule blanche consécutive est tirée lors du k
ième tirage et ce, pour la première fois.
On remarque que : Bk est l'événement : tirer une boule rouge au k ième tirage.
On pose uk = P (Vk)
On notera aussi G l'événement A gagne.

� Par indépendance et équiprobabilité des tirages on a : P (Bk) = q avec q = 2
3
.

� Clairement u1 = P (V1) = 0 car deux boules ne peuvent pas être tirées en un seul tirage.

� On a aussi : V2 = B1 ∩B2, donc par indépendance : u2 = P (V2) = P (B1)P (B2) = q2

� Pour k ≥ 3, alors, par la formule des probabilités totales sur le système complet d'événements
(B1 ∩B2, B1 ∩B2, B1) :

uk = P (Vk) = P (Vk|B1 ∩B2)︸ ︷︷ ︸
=0

P (B1 ∩B2) + P (Vk|B1 ∩B2)︸ ︷︷ ︸
uk−2

P (B1 ∩B2)︸ ︷︷ ︸
q(1−q)

+P (Vk|B1)︸ ︷︷ ︸
uk−1

P (B1)︸ ︷︷ ︸
1−q
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En e�et on a :
* P (Vk|B1 ∩B2) = 0, en e�et B1 ∩B2 étant réalisé on a V2 réalisé donc Vk ne l'est pas puisque k > 2
* P (Vk|B1 ∩B2) = P (Vk−2) = uk−2 car c'est comme si les deux premiers tirages ne comptait pas
* P (B1 ∩B2) = q(1− q) par indépendance des deux événements.
* P (Vk|B1) = P (Vk−1) = uk−1, car c'est comme si le premier tirage n'avait pas compté.
* P (B1) = 1− q

On a donc : ∀k ≥ 3 , uk = (1− q)uk−1 + q(1− q)uk−2

� (uk)k≥1 suit une relation de récurrence linéaire d'ordre 2 à coe�cients constants homogène, d'équation
caractéristique : Ec ⇔ R2 − (1− q)R− q(1− q) = 0
Comme q = 2

3
alors : Ec ⇔ R2 − 1

3
R− 2

9
= 0⇔ r = 2

3
ou r = −1

3

On a alors, d'après le cours : ∀n ∈ N∗ , un = a
(
2
3
)n−1 + b

(−1
3
)n−1

Avec les conditions initiales :

{
u1 = 0

u2 =
4
9

⇔

{
a+ b = 0
2
3
a− 1

3
b = 4

9

⇔

{
a = 4

9

b = −4
9

� Donc un =
(
2
3

)n+1 − 4
(−1

3

)n+1

� Par somme des termes d'une suite géométrique :
+∞∑
n=1

uk =
4
9

1
1− 2

3

− 41
9

1
1+ 1

3

= 4
3
− 1

3
= 1

On a alors que la partie ne se termine pas est de probabilité nulle.

� Ensuite : G =
+∞⋃
n=1

V2n+1 donc, par incompatibilité :

P (G) =
+∞∑
n=1

u2n+1

=
+∞∑
n=1

[(
2
3

)2n+1+1 − 4
(−1

3

)2n+1+1]
par somme des termes d'une suite géométrique

=
+∞∑
n=1

[(
4
9

)n+1 − 4
(
1
9

)n+1]
= 16

81
1

1− 4
9

− 4
81

1
1− 1

9

= 16
5×9
− 1

2×9
= 32−5

90
= 27

90
= 3

10

La probabilité que A gagne est de 3
10

Exercice 4

On note M l'événement : la personne est malade
On note T l'événement : le test est positif
On traduit les données de l'énoncé par : P (M) = 3

100
, P (T |M) = 95

100
et P (T |M) = 10

100

1°) On cherche P (M |T )
Par la formule de Bayes on a : P (M |T ) = P (T |M)P (M)

P (T )

On applique la formule des probabilités totales sur le système complet d'événement (M,M) ce qui donne :
P (T ) = P (T |M)P (M) + P (T |M)P (M) = P (T |M)P (M) + P (T |M)(1− P (M))
On a donc P (T ) = 95

100
3

100
+ 10

100
97
100

= 285+970
10000

= 1255
10000

Reporté dans la formule de Bayes ci-dessus : P (M |T ) =
95
100

3
100

1255
10000

= 285
1255

= 57
251

La probabilité pour une personne d'être malade si son test est positif probabilité est de 57
251
≈ 0, 227
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2°) On cherche maintenant P (M |T )
Comme A 7→ P (A|T ) est une probabilité on a : P (M |T ) = 1− P (M |T ) = 194

251

La probabilité pour une personne d'être saine si son test est positif est de 194
251
≈ 0, 773

3°) On cherche P (M |T )
Par la formule de Bayes on a : P (M |T ) = P (T |M)P (M)

P (T )
= (1−P (T |M))P (M)

1−P (T )

Donc P (M |T ) =
5

100
3

100
8745
10000

= 15
8745

= 1
583

La probabilité pour une personne d'être malade si son test est négatif est de 1
583
≈ 0, 00172

4°) On cherche P (M |T )
Comme au 2°) : P (M |T ) = 1− P (M |T ), donc P (M |T ) = 582

583

La probabilité pour une personne d'être saine si son test est négatif est de 582
583
≈ 0, 999

Exercice 5 : Oral ccINP 2024 et 2025

1) A inversible ⇔ det(A) ̸= 0⇔ χA(0) = (−1)ndet(A) ̸= 0⇔ 0 /∈ sp(A)

Donc : A inversible ⇔ 0 /∈ sp(A)

2) Si on note (e1, . . . , en, en+1, . . . , e2n) la base canonique de R2n, alors les colonnes n+1, 2n de B engendre
un sous espace vectoriel F ⊂ vect(e1, . . . , en) et les colonnes n + 1, n de B engendre le sous espace vectoriel
G = vect(en+1, . . . , e2n)
On a alors Im(B) = F ⊕G et donc rg(B) = dim(F ) + dim(G) = rg(A) + n

On a donc : rg(B) = rg(A) + n

3) χB(X) =

∣∣∣∣XIn −A
−In XIn

∣∣∣∣ On e�ectue Cn+k ←− Cn+k +XCk pour k ∈ J1, nK

χB(X) =

∣∣∣∣XIn X2In − A
−In 0n

∣∣∣∣ On e�ectue Cn+k ←→ Cn+k pour k ∈ J1, nK

χB(X) = (−1)n
∣∣∣∣X2In − A XIn

0n −In

∣∣∣∣ = (−1)n(−1)nχA(X
2) par blocs puisque det(−In) = (−1)n

On a donc : χB(X) = χA(X
2)

4) x2 ∈ sp(A)⇔ χA(x
2) = 0 ⇔︸︷︷︸

3)

χB(x) = 0⇔ x ∈ sp(B)

On a bien : x2 ∈ sp(A)⇔ x ∈ sp(B)

5) Si A est inversible avec n valeurs propres distinctes, on sait alors que A est diagonalisable et qu'il existe
(λ1, . . . , λn) ∈ (R\{0})n avec les λi distincts deux à deux tel que A soit semblable à diag(λ1, . . . , λn)

On a ainsi que le polynôme caractéristique de A s'écrit : χA(X) =
n∏

k=1

(X − λk)

Comme on est dans C, on peut choisir, pour tout k ∈ J1, nK , µk ∈ C tel que µ2
k = λk

Avec la relation du 3) on obtient :

χB(X) = χA(X
2) =

n∏
k=1

(X2 − λk) =
n∏

k=1

(X2 − µ2
k) =

n∏
k=1

(X − µk)(X + µk)
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Comme µk est non nul (car λk ̸= 0) alors µk ̸= −µk et comme les λk sont distincts deux à deux alors �nalement

χB(X) est scindé simple donc, d'après le cours : B est diagonalisable.

Remarque : autre méthode, avec les mêmes notations, plus lourde mais qui permet de trouver une base
diagonalisant B
On a il existe une base BA = (X1, . . . , Xn) de Rn tels que : ∀k ∈ J1, kK , AXk = λkXk et λk ̸= 0

On pose alors : ∀k ∈ J1, nK , Y +
k =

(
µkXk

Xk

)
et Y −

k =

(
−µkXk

Xk

)
Alors BY +

k =

(
AXk

µkXk

)
=

(
λkXk

µkXk

)
=

(
µ2
kXk

µkXk

)
= µk

(
µkXk

Xk

)
On a donc : BY +

k = µkBY +
k et de même BY −

k = −µkBY +
k

Posons BB = (Y +
1 , . . . , Y +

n , Y −
1 , . . . , Y −

n )
BB est alors une famille de vecteurs propres de R2n

Soit (a1, . . . , an, b1, . . . , bn) ∈ R2n tel que :
n∑

k=1

(akY
+
k bkY

−
k ) = 0

On a alors, en regardant par blocs :
n∑

k=1

(ak − bk)µkXk = 0 et
n∑

k=1

(ak + bk)Xk = 0

Comme BA est une base, on a ∀k ∈ J1, nK ,

{
(ak − bk)µk = 0

ak + bk = 0
et comme µk ̸= 0 :

∀k ∈ J1, nK ,

{
ak − bk = 0

ak + bk = 0

On en déduit : ∀k ∈ J1, nK , ak = bk = 0 et donc BB libre.
Comme on a le bon nombre de vecteurs alors BB est une base de R2n

On a une base formée de vecteurs propres de B donc : B est diagonalisable.

Exercice 6 : Oral ccINP 2025

1) Puisque f est dérivable et que : ∀x ∈ R∗ , f ′(x) = f( 3
16x

), alors f ′ est dérivable et donc f est deux fois
dérivable sur R∗.
En dérivant le relation sur R∗ alors : f ′′(x) = −3

16x2f
′( 3

16x
)

Mais en reprenant la relation initiale : f ′( 3
16x

) = f( 3
16 3

16x

) = f(x)

On a donc f ′′(x) = −3
16x2f(x)

f est solution sur R∗ de (E)⇔ 16x2f ′′(x) + 3f(x) = 0

2) � On va commencer par chercher les solutions sur R∗
+

Pour α ∈ R on a :
x 7→ xα solution de (E) sur R+

⇔ ∀x ∈ R+ , 16x2α(α− 1)xα−2 + 3xα = 0
⇔ ∀x ∈ R+ ,

(
16α(α− 1) + 3

)
xα = 0

⇔ ∀x ∈ R+ , 16α(α− 1) + 3 = 0
⇔ ∀x ∈ R+ , 16α2 − 16α + 3 = 0 ∆ = 162 − 4.16.3 = 4.16 = 64 = 82

⇔ ∀x ∈ R+ , α = 16−8
32

ou α = 16+8
32

⇔ ∀x ∈ R+ , α = 1
4
ou α = 3

4
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(E) est une équation di�érentielle linéaire d'ordre 2 homogène à coe�cients continues sur R∗
+.

Donc, d'après le cours, l'ensemble des solutions de (E) est un R espace vectoriel de dimension 2.

Comme (x 7→ x1/4, x 7→ x3/4) est une famille libre de solutions de (E) sur R∗
+ alors :

Les solutions de (E) sur R∗
+ s'écrivent : x 7→ ax1/4 + bx3/4 avec (a, b) ∈ R2

3) Grâce au 1) on cherche les solutions de (E) sur R∗
+ parmi les solutions de (E).

Si ∀x > 0 , f(x) = ax1/4 + bx3/4 véri�e : f ′(x) = f( 3
16x

) alors :
a1
4
x−3/4 + b3

4
x−1/4 = a( 3

16
)1/4x−1/4 + b( 3

16
)3/4x−3/4

Comme (x 7→ x−1/4, x 7→ x−3/4) est libre, alors :{
1
4
a = b( 3

16
)3/4

3
4
b = a( 3

16
)1/4

⇔

{
a = 4b( 3

16
)3/4

3
4
b = b4( 3

16
)3/4( 3

16
)1/4

⇔

{
a = 4b( 3

16
)3/4

3
4
b = 3

4
b

⇔ a = 4b( 3
16
)3/4

⇔ a = b3
3/4

2

Finalement les solutions du problème s'écrivent sur R∗
+: x 7→ b

(
33/4

2
x1/4 + x3/4

)
4) Si on veut les solutions sur R, alors il faut qu'elle soit dérivable en 0, donc dérivable à droite en 0.

Si f est solution du problème sur R alors ∃(a, b) ∈ R2 , ∀x > 0 , f(x) = b
(

33/4

2
x1/4 + x3/4

On remarque alors que : lim
x→0+

f(x) = 0 et donc f(0) = 0 car f est continue en 0.

On a alors pour x > 0 : f(x)−f(0)
x−0

= f(x)
x

= b
(

33/4

2
x−3/4 + x−1/4

)
mais lim

x→0+

33/4

2
x−3/4 + x−1/4 = +∞ donc pour que lim

x→0+

f(x)−f(0)
x−0

existe dans R il faut b = 0, donc f nulle sur

[0,+∞[

On peut faire le même type de raisonnement sur R−.

On a donc : La fonction nulle est la seule solution du problème sur R.
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