PSI* 2025-2026, Mathématiques DS n°5 TYPE ccINP: Correction

EXERCICE 1

Pour x # 0 au voisinage de 0 :
4
1—cos(x? 1*(1*L+0(I4))
f(x) = o 2 =5 +o(1)

z4 x4
Comme f est continue en 0 alors : liII(l) f(x) = f(0) =Adonc|A=1
z—

+

On sait d’apreés le cours que : VX € R, cos(X) = z 2:5,{2”

On a alors pour x # 0 (en posant X = z?) :

o0 n(.2\2n 00 n_4n
(=" (=% (=)™
1- Z (2n)! 1-1- Z (2n)! 1 npdn—4 71 p+1,4p

= ! = ! 1 D dp
fla)= =2t = S o S S = Gy
On remarque que la relation ci-dessus est Valable sur R, y comprls en r = O a cause de la valeur de .
On a donc f développable en série entiére en 0, de rayon de convergence 400, et on a donc :
’f est de classe C'* sur R‘

EXERCICE 2

1°) En tant que série entiére, y est C*° sur | — R; R[ et dérivable terme a terme.

+oo “+o00
On adonc: Vr €] — Ry R, ¢/(z) = Y na,a™ et y’(z) = 3 n(n — 1)a,z" >
n=0 n=0

(1) < y solution de Eq sur | — R; R|
& Vo €] = BiR[, 2%/ (o) + 427/ (o) + (2+ a)y(a) = 1

+oo +oo
& Vo €] - R;R[, 2? Z n(n —1)a,x" 2 +4z > na,a™ ' + 2+ 2%) Y aa” =1
n=0

n=0 n=0
+oo +oo +oo +o00o
S Ve €)= RyR[, > n(n—1)a,z"+ > 4na,z" + > 2a,2" + Y aa"t? =1
n=0 n=0 n=0 n=0

On peut regrouper les premiéres séries entiéres car elles convergent puisque leur rayon de convergence
est le méme a savoir R.

+o0 too
(1) &Vz el —R,R[, Y. [n(n—1)+4n+2Ja,z" + Y apz™? =1

On effectue le changement d’indice p = n dans la premiére somme et p = n + 2 dans la deuxiéme.
+oo +oo

(1) Ve e]|—R;R[, Y [p(p—1)+4p+2)ana? + > a,o2? =1
p=0 p=2

& Vo €] — R; R, 2ag + 6ayz + Z[p +3p + 2]a,x? + E a, oa? =1

p=2 p=
On a sorti les termes pour p = 0 et p = 1. On peut regrouper les premiéres séries entiéres car elles

convergent puisque leur rayon de convergence est le méme a savoir R.
+o00

(1) &Vz €] — R;R[, (2a0 — 1) + 6ayz + >_[(p* + 3p + 2)a, + a,_2]a? = 0
p=2

Par unicité du développement en série entiére en 0, comme R > 0.
(I)ea=3u=0¥%>2 a,= Sa=3a=0Y>2 a=—7

-1
p2+3p+2 (p+1)(p+2)

-1

On a donc : aozéetm:OGtVnZQ n = GFD(nt2)




2°) Démontrons par récurrence la propriété HR, < ag, = (é;—i);)! et agpy1 =0

Initialisation : HRy < ag = % = % et a; = 0 par le 1°). On a donc HR,

Hérédité : on suppose HR,_; vraie et on démontre H R,

Draprés le 17) : az) = G579 ©F 021 = mrai(apry
1 : _ —1 (Pt (=P _ 0 —
On utilise HFp1 : Gz = e @or — @t ©0 9204 = G —
Conclusion : |Vp € N, ag, = % et agpr1 =0
; : &y o
3°) A partir du 2°°, il reste : y(z) = > T

+o0o +o00 n
On a donc : Vr €] — RB; R[ , 2%y(z) = > (g;i);)!x%“ =—3 %xzn (on a fait n =p+ 1)
p:O n=1

“+oo
—1)"
Donc z?y(z) =1 — Z (=) 2" On reconnait alors le développement en série entiére en 0 de cos

o (2n)!
cos(x)
o 1 sixz=0
On en déduit : |[R=+ocetVz eR | y(x) = %—cos(:r) .
= siz#0

EXERCICE 3

1°) Notons C, Cy et Cj les colonnes de A alors :

[|Cy|| = %(22+12—|—22) =1, ||Cy|| = %(224—224—12) =1,C,.Cy = %(4—2—2) =0 De plus C; ACy = C5
On en déduit que les colonnes de A forment une base orthonormée directe et donc que A € SO3(R).

On en déduit que ¢ est une rotation puisque les seules isométries vectorielles de R? sont les rotations.

Recherche de axe :

T T —r+4+2y—2=0 Yy==z 1
Alyl =yl {—2—-y+22=0 &<ax=z Szr=y=2z Posonsu=|1
z z 2 —y—2=0 0=0 1

v est donc une rotation d’axe orienté Ru et d’angle 6.

0
Soit # = | 1 [ alors z L u et donc d’aprés le cours : () = cos(0)z + sin(0) pm A @
-1
0 0 1 0
Al 1 | =cos@) | 1 | + sin(@)\/ig 1Al 1l
-1 —1 1 —1
3 0 —2 sin(f) = =3
S5 0| =cos(0)| 1|+ Sm(Q)\/%;) 1| e o)1 2 On en déduit que § = —%
-3 1 1 cos(f) = 3
1
Bilan : | ¢ est la rotation d’axe orienté Ru et d’angle 6 avec u = [ 1| et 6 = =F
1




2°) L’axe de la rotation ® étant Ri la base B = (i, j, k) est adaptée a ¢ et donc

1 0 0 1 0 O 1 0 O
C=Mp(¢p)= |0 cos(3) —sin(3)] =10 0 —=1| Onadonc|C=|[0 0 -1
0 sin(3) cos(3) 01 0 01 0

3°) Soit (u,v) € E?. Montrons que F(uAv) = F(u) A F(v)

Soit w € E, alors comme F est bijective, il existe x € E tel que w = F(x) Alors :
(F(u) A F(v))w

= (F(u) A F(v)).F(x) car w = F(x)

= Det(F(u), F(v), F(z)) par définition du produit vectoriel

= det(F')Det(u, v, x) par propriété du déterminant

= Det(u,v,x) car det(F') = 1 puisque F' est une rotation.

= (u A v).z par définition du produit vectoriel

= F(uAv).F(x) car F conserve le produit scalaire

=F(uNv)w car F(z) =w

Donc : Yw € E, (F(u) AN F(v))w=FuAv)w < (F(u) N F(v) — F(uAv)).w
En prenant w = F(u) A F(v)— F(uAv) on obtient w.w = 0 donc w = Og et donc F(u) A F(v) = F(uAv)
Ceci pour tout u et v, donc F' conserve le produit vectoriel.

Bilan : |Dans R3, les rotations conservent le produit vectoriel.

4°) h est une isométrie vectorielle car ¢’est une composée d’isométries vectorielles.
De plus det(H) = det(f)det(g)det(f)™' = det(g) = 1 et donc h est une rotation puisque les seules
isométries directes de R? sont les rotations.

h(f()) = Flg(f~(f () = fg(v)) = f(v) car g(v) = v.

Donc h(f(v)) = f(v) et donc f(v) # 0 est un vecteur directeur de I’axe de h.

On a donc | h est une rotation d’axe orienté R f(v)

Remarque f(v) est unitaire car v l'est et que f conserve la norme.
5°) a) f est une isométrie, donc f est inversible, donc y = f(z) avec x = f~(y)

5°) b) y L f(v) axe de h, donc, d’apres le cours : h(y) = cos(8)y + sin(B)f(v) Ay
& |My) = cos(B)f(x) + sin(B)f(v) A f(x)

5%) ¢) h(y) = h(f(x)) = f(g(f 7 (f(2)))) = f(g(x))
Comme on sait que < y, f(v) >= 0 alors < f(z), f(v) >= 0 et comme f conserve le produit scalaire
alors a < z,v >=0
x est donc orthogonal & I'axe de ¢ et on a par le cours : g(z) = cos(0)x + sin(0)v A
Donc h(y) = f(g(z)) = f(cos(8)x + sin(0)v A z) et comme f est linéaire :
h(y) = cos(0) f(x) + sin(0) f(v A x) et comme f conserve le produit vectoriel (cf 3°) alors :

h(y) = cos(0)f(x) + sin(0)f(v) A f(x)




5°) d) Avec le b) et le ¢), on a :
cos(8)y + sin(0) f(v) Ay = cos(B)y + sin(B) [ (v) Ay
= (cos(0) — cos(8))y + (sin(6) — sin(B)) f(v) Ay = O

On peut choisir y pour que (f(v) A y,y) soit libre et on a alors cos(f) = cos(B) et sin(f) = sin(B)
et donc (a 27 pres)

6°) On applique ce qui précéde avec g = ¢ et f = ¢, on a donc :

1 1
9:%“,1):\% 1 etgzﬁ(v):\/ig -1
1 1
1
o pod ! est donc la rotation d’axe orienté ]R\/Lg —11 et d’angle —=*

Probléme 1 : Dunford

1)a) On a : i) A; = Ay + Ny de maniére directe.
ii) A; est diagonalisable puisqu’elle est diagonale
iii) (N1)? = 05 donc N est nilpotente

iv) AN; = N A = (8 8) donc N; et A; commutent

(A1, N1) est une donc une décomposition de Dunford de A;.

00 00
(Ag, N3) n’est donc pas une décomposition de Dunford de As.
2) Az est diagonalisable, donc si on pose Az = Az et N3 = 0, alors :
(A3, N3) est une décomposition de Dunford évidente de Aj

1)b) AgNy = (O 3) et NoAy = (O 2) donc Ay Ny # Ny Ay et donc le point iii) n’est pas vérifié,

3) A4 et nilpotente, done si on pose Ny = Ay et Ay =0, alors :
(A4, Ny) est une décomposition de Dunford évidente de A4

4) AA=A(N + A) = AN + A? mais comme A et N commutent alors :
AA=NA+A?=(N+A)A=AA [Donc A et A commutent. ]
De méme NA= N(N+A) = N2+ NA=N?+AN = N(N+A) = NA et donc | N et A commutent.

5)a) Soit P le polynome caractéristique de A alors :
X -2 0 0
P(X)=det(XI3—A)=| 1 X —3 —1 | En développant par rapport a la premiére ligne :
1 -1 X-3
P(X) = (X —2)((X =3 — 1) = (X — 2)(X — 4)(X — 2) = (X — 2(X — 4)
Comme A € sp(A) < P(A) = 0 alors on en déduit que sp(A) = {2;4}

e Cherchons les sous espaces propres



x 0=0
y| € Ey=ker(A-2;)< ¢ —o+y+2=0
z —r+y+z2=0

< -—r+y+z2=0

1 1
On peut écrire By = Vect([1],(0])
0 1

T —2x =0
y| € By =ker(A—4l) < —ax—y+2=0 @{x:o
< —r+y—2=0 ve=e
0
On peut écrire By = Vect(|1])

1

dim(Es) + dim(Es) =2+ 1 =3 et A € M3(R) donc A est diagonalisable.
On obtient une base diagonalisant A par réunion des bases des sous espaces propres.
Par la formule de changement de bases :

1 1 0 2 00
A=PDPltavecP=1[1 0 1letD=1[0 2 0
01 1 0 0 4

5)b) det(A) =4 x 2x 2=16# 0 et donc | A et inversible. |

5)c) A=PDP™' = A~' = PD' P!

100
Donc : |A~! est diagonalisable et A~'PD P~ avec D, = D! = (2) 10
00 !
6)a) Cherchons @) le polynéme caractéristique de A.
X -3 1 -1
QX)=det(XI;—A)=| 0 X -2 —2 |Onfait Cy « Cy +Cy
1 -1 X-3
X -2 1 -1
QX)=|X—-2 X—2 —2 |onfait Ly« Lo — I
0 -1 X-3
X -2 1 -1
QX)=1] 0 X —3 —1 | on développe par rapport a la premiére colonne :
0 -1 X-3

Qr) = (X -2)(X?-6X+9—-1)= (X —-2)(X?—6X+8) = (X —2)(X —2)(X —4) = (X —4)(X —2)?

y | € EY =ker(A—210;) <

z

r—y—+2z=0
2z=0
—r+y+z=0

r=1y

On a dim(E%) = 1 # 2 est de dimension alors que 2 est une valeur propre double.

Donc :

A n’est pas diagonalisable dans M3(R)

6)b) N? = 03 et donc : ’N est nilpotente.‘




6)c) Montrons par récurrence sur k € N* que Vk > 1, A*N =2kN

2 =2 2 2 =2 2
Initialisation au rang 1 : AN = |2 -2 2| , NA=|2 -2 2| Donc AN = NA=2N
0 0 O 0 0 O

Hérédité : supposons A*N = 28N alors AN = AAFN = A2FN = 2FAN = 28 2N = 2F+1IN

Conclusion : on a montrer par récurrence que : |Vk > 1, A*N = 2FN

6)d) On a de maniére directe A = A+ N, on a A diagonalisable , N nilpotente et A et N commutent,
donc : | (A, N) est une décomposition de Dunford de A

Ta) AN = A7'2N car AN = 2N et doncA IN =
NA™' = 28A~! car NA—ZNet donc NA™! =

Finalement on a bien : |A~!N = NA~!]

2
2

7)b) N = (A7'N)? mais comme, par le a), A~! et N commutent alors N? = (A71)2N? = 03 car
N? =03 Donc : ’Nl et nilpotente.‘

7)C) ([3 + Nl)(lg — Nl) = [3 — N1 + Nl — N2 = [3 car N12 = 03 et donc :
I3 + Nj est inversible et (I3 + N;)™' = I3 — N}

7)d) D’aprés son polynome caractéristique : det(A) = 16 # 0 et donc | A est inversible. |

T)e) A=A+ N=A+ AN, car N =AN; et donc A =A(I3+ Ny) et A~t = (I3 + N;)tA™?
Aveclec): A= (3= N)AT'=ATT— N A =5+ M avec § = A~ et M = NJA™! ( DN
i) 6 = A~! est diagonalisable (5)c))

ii) M? = (A71)2N? = 03 car N est nilpotente et commutent avec A~*

iii) 6M = M6 car N commutent avec A~!

iv) At =5+ M

Donc | (6, M) est une décomposition de Dunford de A~

Probléme 2

+o0o

1°) ® S(x) a méme rayon de convergence que sa série dérivée S'(z) =

+00
n . s LN
convergence que ) “- qui est une série entiére du cours (—(n(1 — z)) de rayon de convergence 1.

n=1
On en déduit Rg =1

e Pour z # 0 on POS@ Up(z) = hya™ # 0. On a donc “ZIEQE)) = "“ |x|
Mais A1 = hy + —5 donc e —1+h(+1) (Carh #0)
De maniére ev1dente on a h, > 1 et donc 0 < W < #1 — 0
n—4o00
PR S 7L+1
Donc par encadrement : e (n+1) njoo 0 et donc ot njoo 1
On a alors : [“218)) 5 |g]
un(a:) n—-+oo




|z| < 1= > u,(x) convergente

Par la régle de D’Alembert on a : )
|z] > 1 =5 u,(x) divergente

Comme R = sup({x € R, > u,(x) convergente }) alors on en déduit : R =1

+o0
e T'(x) a méme rayon de convergence que sa série dérivée T"(z) = > h,2" ! qui est de rayon de

convergence R = 1 puisque c’est la dérivée de H. On en déduit Ry =1

o Bilan : [R =Ry = Rg =1

2°) Pour x € I et n > 1, on reprend la relation h,1 = h, + #1 et on on la multiplie par z".

n+1
Ona: hyp2™tt = ha™tt + 2 — o

+o0o
. $"7« _
On sait que Ve € I ) == = —In(l — )
n=1
On peut donc sommer la relation ci-dessus pour n = 1 & +oo car les séries convergent sur [ et on
+o00 1 +o0o +oo ntl
1 . n — n X"
obtient : 21 hpix™ =2 > a2 + Zl o
n= = n=

= H(z) — hya' = eH(z) + (~In(1 — ) — )

Comme |h; =1 on en déduit : Ve € I, H(x) = 712(71;1)

3°) d(M): ﬁln(l—x):H(X)etdeplusenx:OonaM:O

NN

(in(1—x))?

Alors : L, la primitive de H s’annulant en 0 est donnée par |Vx € I |, L(z) = 5

T +oo

4°) Par définition : Vo € I, L(z) = [ H(y)dy = f(z hoy™)dy
0 n=

Or, d’aprés le cours, on peut intégrer une série entiére sur tout segment inclus dans l'intervalle ouvert

+oo T
de convergence. Comme Vo € I, [0;2] C [ alors: L(z) = > ([ hyy"dy) = Z Dy

n=10 n+1
L est donc développable en série entiére en 0 et Vo € [ | L(z) = Z hy, f:f
+o0 400
5)Veel, T(x)— S(x) = E%xn_ Z#wn
n=1 n=1

Comme les séries ont méme rayon de convergence on a : (par convention on prendra hy = 0)

T h 1 P hp—1+1 1 Py Ry T h 1
Vo e T, T(a) = S(a) = 3t — d)ar = S (tth - dyen = $¥ hagn - $¥ e g
n=1

n=1 n=1 p=1

On a donc bien : |Vx € I, T'(z) — S(x) = L(x)

+o0o
6°)a) Ve el, —in(l—z)=) &

=) _ 1 donc u — est

In(1—u)
u—0 u

6°) b) u — @ est continue sur |0;y] (car y < 1) et

y
prolongeable par continuité en 0, donc | [ ll—"du est convergente.
0




On va utiliser le a) et le fait que 'on peut intégrer terme a terme une série entiére sur tout segment
inclus dans son intervalle de convergence. Alors :

In(1— & &
f”< “%zu_fz*u du=Y [ = dy = — 3 4 = —S(y)
0 0 n=1 n=10 n=1
y
On a donc |Vy € [0; 1] ,fl du+S()

0

1
6°) c)u — M est continue sur |0,1] A= [ @du pose probléme en 0 et en 1.
0

En 0 le probléme a été réglé en 6°) a).
1

En 1 : M ~ In(1 —u) <0 donc A est de méme nature que [ In(l —u)du qui est de méme nature
0

que f In(v)dv par le changement de variable C'! bijectif v = 1 — u. La derniére intégrale est convergente

1

: In(1
par le cours. Bilan : | [ udu est convergente.
0

6°) d) e« Commengons par montrer que S est continue sur [—1, 1]

Posons : Vn € N : fooo 2L R
X — n—
On peut alors définir : ||f, ]|, = sup |fu(x)| et remarquer que : |[f,]|.. = =5
z€[—1,1]

On a donc ) || f||,, qui est convergente par Riemann et donc ) f, converge normalement sur [—1, 1].
Donc > f,, converge uniformément sur [—1, 1]. Comme, de plus, les f,, sont continues sur [—1, 1], alors,
par transfert de continuité, on en déduit : S est continue sur [—1, 1]

S(1)y=3% 5= %2 est admis. En passant a la limite dans le 6°)b) avec la continuité de S en 1 et
1

1
le 6°) ¢) on obtient : | [ l”(lu_“) duy = ==2
0

7°) a) Intégrons par parties f =) Ju, IPP justifiée car lim ln( )in(l —u) = lim in(u)(—u) =0 :

0 u—0 u—0
Y

ln(lu—U)du = [In(w)in(1 —w)f§ — [ In(u)=du = In(y)in(1 —
0

n fait le changement de Variable C' bijectif : U =1 — u dans la dernlere intégrale :

@du: In(y)in(l —y) + f lnl W) (—du)

On remet les bornes dans I’ ordre et on utilise Chasles puisque toutes les intégrales convergent :
1—

/ln(lu— u)du ~ In(y)in(1 — ) _/ln(lU— U)dU— / ln(lU— U)dU

0 1 0
N

J/ [ S/

C—me OCP—=«

*g?y) :6;2 -8 Elrfy)

En utilisant le 6°)d) et le 6°)b) on obtient : |Vy € [0,1] , = = S(y) + S(1 — y) + In(y)in(1 — y)

7°) b) En prenant y = 5 au a) on obtient : S(3) = 5 —

2

Avec la relation du 5°) et le 3°) : T(%) =z




