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EXERCICE 1

Pour x ̸= 0 au voisinage de 0 :

f(x) = 1−cos(x2)
x4 =

1−(1−x4

2
+o(x4))

x4 = 1
2
+ o(1)

Comme f est continue en 0 alors : lim
x→0

f(x) = f(0) = λ donc λ = 1
2

On sait d'après le cours que : ∀X ∈ R , cos(X) =
+∞∑
n=0

(−1)nX2n

(2n)!

On a alors pour x ̸= 0 (en posant X = x2) :

f(x) =
1−

+∞∑
n=0

(−1)n(x2)2n

(2n)!

x4 =
1−1−

+∞∑
n=1

(−1)nx4n

(2n)!

x4 = −
+∞∑
n=1

(−1)nx4n−4

(2n)!
= −

+∞∑
p=0

(−1)p+1x4p

(2p+2)!
=

+∞∑
p=0

(−1)px4p

(2p+2)!

On remarque que la relation ci-dessus est valable sur R, y compris en x = 0 à cause de la valeur de λ.
On a donc f développable en série entière en 0, de rayon de convergence +∞, et on a donc :
f est de classe C∞ sur R

EXERCICE 2

1°) En tant que série entière, y est C∞ sur ]−R;R[ et dérivable terme à terme.

On a donc : ∀x ∈]−R;R[ , y′(x) =
+∞∑
n=0

nanx
n−1 et y′′(x) =

+∞∑
n=0

n(n− 1)anx
n−2

(1)⇔ y solution de Eq sur ]−R;R[
⇔ ∀x ∈]−R;R[ , x2y′′(x) + 4xy′(x) + (2 + x2)y(x) = 1

⇔ ∀x ∈]−R;R[ , x2
+∞∑
n=0

n(n− 1)anx
n−2 + 4x

+∞∑
n=0

nanx
n−1 + (2 + x2)

+∞∑
n=0

anx
n = 1

⇔ ∀x ∈]−R;R[ ,
+∞∑
n=0

n(n− 1)anx
n +

+∞∑
n=0

4nanx
n +

+∞∑
n=0

2anx
n +

+∞∑
n=0

anx
n+2 = 1

On peut regrouper les premières séries entières car elles convergent puisque leur rayon de convergence
est le même à savoir R.

(1)⇔ ∀x ∈]−R;R[ ,
+∞∑
n=0

[n(n− 1) + 4n+ 2]anx
n +

+∞∑
n=0

anx
n+2 = 1

On e�ectue le changement d'indice p = n dans la première somme et p = n+ 2 dans la deuxième.

(1)⇔ ∀x ∈]−R;R[ ,
+∞∑
p=0

[p(p− 1) + 4p+ 2]anx
p +

+∞∑
p=2

ap−2x
p = 1

⇔ ∀x ∈]−R;R[ , 2a0 + 6a1x+
+∞∑
p=2

[p2 + 3p+ 2]apx
p +

+∞∑
p=2

ap−2x
p = 1

On a sorti les termes pour p = 0 et p = 1. On peut regrouper les premières séries entières car elles
convergent puisque leur rayon de convergence est le même à savoir R.

(1)⇔ ∀x ∈]−R;R[ , (2a0 − 1) + 6a1x+
+∞∑
p=2

[(p2 + 3p+ 2)ap + ap−2]x
p = 0

Par unicité du développement en série entière en 0, comme R > 0.
(1)⇔ a0 =

1
2
a1 = 0 ∀p ≥ 2 ap =

−1
p2+3p+2

⇔ a0 =
1
2
a1 = 0 ∀p ≥ 2 ap =

−1
(p+1)(p+2)

On a donc : a0 =
1
2
et a1 = 0 et ∀n ≥ 2 an = −1

(n+1)(n+2)
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2°) Démontrons par récurrence la propriété HRp ⇔ a2p =
(−1)p

(2p+2)!
et a2p+1 = 0

Initialisation : HR0 ⇔ a0 =
1
2!
= 1

2
et a1 = 0 par le 1°). On a donc HR0

Hérédité : on suppose HRp−1 vraie et on démontre HRp

D'après le 1°) : a2p =
−a2p−2

(2p+1)(2p+2)
et a2p+1 =

−a2p−1

(2p+2)(2p+3)

On utilise HRp−1 : a2p =
−1

(2p+1)(2p+2)
(−1)p−1

(2p)!
= (−1)p

(2p+2)!
et a2p+1 =

0
(2p+2)(2p+3)

= 0

Conclusion : ∀p ∈ N , a2p =
(−1)p

(2p+2)!
et a2p+1 = 0

3°) A partir du 2°°, il reste : y(x) =
+∞∑
p=0

(−1)p

(2p+2)!
x2p

On a donc : ∀x ∈]−R;R[ , x2y(x) =
+∞∑
p=0

(−1)p

(2p+2)!
x2p+2 = −

+∞∑
n=1

(−1)n

(2n)!
x2n (on a fait n = p+ 1)

Donc x2y(x) = 1−
+∞∑
n=0

(−1)n

(2n)!
x2n

︸ ︷︷ ︸
cos(x)

On reconnaît alors le développement en série entière en 0 de cos

On en déduit : R = +∞ et ∀x ∈ R , y(x) =

{
1
2

si x = 0
1−cos(x)

x2 si x ̸= 0

EXERCICE 3

1°) Notons C1, C2 et C3 les colonnes de A alors :
||C1|| = 1

9
(22+12+22) = 1, ||C2|| = 1

9
(22+22+12) = 1 , C1.C2 =

1
9
(4−2−2) = 0 De plus C1∧C2 = C3

On en déduit que les colonnes de A forment une base orthonormée directe et donc que A ∈ SO3(R).
On en déduit que φ est une rotation puisque les seules isométries vectorielles de R3 sont les rotations.

Recherche de l'axe :

A

x
y
z

 =

x
y
z

⇔

−x+ 2y − z = 0

−x− y + 2z = 0

2x− y − z = 0

⇔


y = z

x = z

0 = 0

⇔ x = y = z Posons u =

1
1
1

.

φ est donc une rotation d'axe orienté Ru et d'angle θ.

Soit x =

 0
1
−1

 alors x ⊥ u et donc d'après le cours : φ(x) = cos(θ)x+ sin(θ) u
||u|| ∧ x

A

 0
1
−1

 = cos(θ)

 0
1
−1

+ sin(θ) 1√
3

1
1
1

 ∧
 0

1
−1


⇔ 1

3

 3
0
−3

 = cos(θ)

 0
1
−1

+ sin(θ) 1√
3

−21
1

 ⇔ {
sin(θ) = −

√
3

2

cos(θ) = 1
2

On en déduit que θ = −π
3

Bilan : φ est la rotation d'axe orienté Ru et d'angle θ avec u =

1
1
1

 et θ = −π
3
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2°) L'axe de la rotation Φ étant Ri la base B = (i, j, k) est adaptée à ϕ et donc

C = MB(ϕ) =

1 0 0
0 cos(π

2
) −sin(π

2
)

0 sin(π
2
) cos(π

2
)

 =

1 0 0
0 0 −1
0 1 0

 On a donc C =

1 0 0
0 0 −1
0 1 0


3°) Soit (u, v) ∈ E2. Montrons que F (u ∧ v) = F (u) ∧ F (v)

Soit w ∈ E, alors comme F est bijective, il existe x ∈ E tel que w = F (x) Alors :
(F (u) ∧ F (v)).w

= (F (u) ∧ F (v)).F (x) car w = F (x)
= Det(F (u), F (v), F (x)) par dé�nition du produit vectoriel
= det(F )Det(u, v, x) par propriété du déterminant
= Det(u, v, x) car det(F ) = 1 puisque F est une rotation.
= (u ∧ v).x par dé�nition du produit vectoriel
= F (u ∧ v).F (x) car F conserve le produit scalaire
= F (u ∧ v).w car F (x) = w

Donc : ∀w ∈ E , (F (u) ∧ F (v)).w = F (u ∧ v).w ⇔ (F (u) ∧ F (v)− F (u ∧ v)).w
En prenant w = F (u)∧F (v)−F (u∧v) on obtient w.w = 0 donc w = 0E et donc F (u)∧F (v) = F (u∧v)
Ceci pour tout u et v, donc F conserve le produit vectoriel.

Bilan : Dans R3, les rotations conservent le produit vectoriel.

4°) h est une isométrie vectorielle car c'est une composée d'isométries vectorielles.
De plus det(H) = det(f)det(g)det(f)−1 = det(g) = 1 et donc h est une rotation puisque les seules
isométries directes de R3 sont les rotations.

h(f(v)) = f(g(f−1(f(v)))) = f(g(v)) = f(v) car g(v) = v.
Donc h(f(v)) = f(v) et donc f(v) ̸= 0 est un vecteur directeur de l'axe de h.

On a donc h est une rotation d'axe orienté Rf(v)

Remarque f(v) est unitaire car v l'est et que f conserve la norme.

5°) a) f est une isométrie, donc f est inversible, donc y = f(x) avec x = f−1(y)

5°) b) y ⊥ f(v) axe de h, donc, d'après le cours : h(y) = cos(β)y + sin(β)f(v) ∧ y

⇔ h(y) = cos(β)f(x) + sin(β)f(v) ∧ f(x)

5°) c) h(y) = h(f(x)) = f(g(f−1(f(x)))) = f(g(x))
Comme on sait que < y, f(v) >= 0 alors < f(x), f(v) >= 0 et comme f conserve le produit scalaire
alors a < x, v >= 0
x est donc orthogonal à l'axe de g et on a par le cours : g(x) = cos(θ)x+ sin(θ)v ∧ x
Donc h(y) = f(g(x)) = f(cos(θ)x+ sin(θ)v ∧ x) et comme f est linéaire :
h(y) = cos(θ)f(x) + sin(θ)f(v ∧ x) et comme f conserve le produit vectoriel (cf 3°) alors :

h(y) = cos(θ)f(x) + sin(θ)f(v) ∧ f(x)
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5°) d) Avec le b) et le c), on a :
cos(θ)y + sin(θ)f(v) ∧ y = cos(β)y + sin(β)f(v) ∧ y

⇒ (cos(θ)− cos(β))y + (sin(θ)− sin(β))f(v) ∧ y = 0E

On peut choisir y pour que (f(v) ∧ y, y) soit libre et on a alors cos(θ) = cos(β) et sin(θ) = sin(β)

et donc θ = β (à 2π près)

6°) On applique ce qui précède avec g = φ et f = ϕ, on a donc :

θ = −π
3
, v = 1√

3

1
1
1

 et ϕ(v) = 1√
3

 1
−1
1


ϕ ◦ φ ◦ ϕ−1 est donc la rotation d'axe orienté R 1√

3

 1
−1
1

 et d'angle −π
3

Problème 1 : Dunford

1)a) On a : i) A1 = ∆1 +N1 de manière directe.
ii) ∆1 est diagonalisable puisqu'elle est diagonale
iii) (N1)

2 = 02 donc N1 est nilpotente

iv) ∆N1 = N1∆ =

(
0 6
0 0

)
donc N1 et ∆1 commutent

(∆1, N1) est une donc une décomposition de Dunford de A1.

1)b) ∆2N2 =

(
0 3
0 0

)
et N2∆2 =

(
0 2
0 0

)
donc ∆2N2 ̸= N2∆2 et donc le point iii) n'est pas véri�é,

(∆2, N2) n'est donc pas une décomposition de Dunford de A2.

2) A3 est diagonalisable, donc si on pose ∆3 = A3 et N3 = 0n alors :

(∆3, N3) est une décomposition de Dunford évidente de A3

3) A4 et nilpotente, donc si on pose N4 = A4 et ∆4 = 0n alors :

(∆4, N4) est une décomposition de Dunford évidente de A4

4) ∆A = ∆(N +∆) = ∆N +∆2 mais comme ∆ et N commutent alors :

∆A = N∆+∆2 = (N +∆)∆ = A∆ Donc ∆ et A commutent.

De même NA = N(N +∆) = N2 +N∆ = N2 +∆N = N(N +∆) = NA et donc N et A commutent.

5)a) Soit P le polynôme caractéristique de ∆ alors :

P (X) = det(XI3 −∆) =

∣∣∣∣∣∣
X − 2 0 0

1 X − 3 −1
1 −1 X − 3

∣∣∣∣∣∣ En développant par rapport à la première ligne :

P (X) = (X − 2)((X − 3)2 − 1) = (X − 2)(X − 4)(X − 2) = (X − 2)2(X − 4)
Comme λ ∈ sp(∆)⇔ P (∆) = 0 alors on en déduit que sp(∆) = {2; 4}

� Cherchons les sous espaces propres
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x
y
z

 ∈ E2 = ker(∆− 2I3)⇔


0 = 0

−x+ y + z = 0

−x+ y + z = 0

⇔ −x+ y + z = 0

On peut écrire E2 = V ect(

1
1
0

 ,

1
0
1

)

x
y
z

 ∈ E2 = ker(∆− 4I3)⇔


−2x = 0

−x− y + z = 0

−x+ y − z = 0

⇔

{
x = 0

y = z

On peut écrire E4 = V ect(

0
1
1

)

dim(E2) + dim(E4) = 2 + 1 = 3 et ∆ ∈M3(R) donc ∆ est diagonalisable.
On obtient une base diagonalisant ∆ par réunion des bases des sous espaces propres.
Par la formule de changement de bases :

∆ = PDP−1 avec P =

1 1 0
1 0 1
0 1 1

 et D =

2 0 0
0 2 0
0 0 4


5)b) det(∆) = 4× 2× 2 = 16 ̸= 0 et donc ∆ et inversible.

5)c) ∆ = PDP−1 ⇒ ∆−1 = PD−1P−1

Donc : ∆−1 est diagonalisable et ∆−1PD1P
−1 avec D1 = D−1 =

1
2

0 0
0 1

2
0

0 0 1
4


6)a) Cherchons Q le polynôme caractéristique de A.

Q(X) = det(XI3 − A) =

∣∣∣∣∣∣
X − 3 1 −1

0 X − 2 −2
1 −1 X − 3

∣∣∣∣∣∣ On fait C1 ← C1 + C2

Q(X) =

∣∣∣∣∣∣
X − 2 1 −1
X − 2 X − 2 −2

0 −1 X − 3

∣∣∣∣∣∣ on fait L2 ← L2 − L1

Q(X) =

∣∣∣∣∣∣
X − 2 1 −1

0 X − 3 −1
0 −1 X − 3

∣∣∣∣∣∣ on développe par rapport à la première colonne :

Q(x) = (X− 2)(X2− 6X +9− 1) = (X− 2)(X2− 6X +8) = (X− 2)(X− 2)(X− 4) = (X− 4)(X− 2)2x
y
z

 ∈ E ′
2 = ker(A− 2I3)⇔


x− y + z = 0

2z = 0

−x+ y + z = 0

⇔

{
z = 0

x = y

On a dim(E ′
2) = 1 ̸= 2 est de dimension alors que 2 est une valeur propre double.

Donc : A n'est pas diagonalisable dans M3(R)

6)b) N2 = 03 et donc : N est nilpotente.
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6)c) Montrons par récurrence sur k ∈ N∗ que ∀k ≥ 1 , ∆kN = 2kN

Initialisation au rang 1 : ∆N =

2 −2 2
2 −2 2
0 0 0

 , N∆ =

2 −2 2
2 −2 2
0 0 0

 Donc ∆N = N∆ = 2N

Hérédité : supposons ∆kN = 2kN alors ∆k+1N = ∆∆kN = ∆2kN = 2k∆N = 2k.2N = 2k+1N

Conclusion : on a montrer par récurrence que : ∀k ≥ 1 , ∆kN = 2kN

6)d) On a de manière directe A = ∆+N , on a ∆ diagonalisable , N nilpotente et ∆ et N commutent,

donc : (∆, N) est une décomposition de Dunford de A

7)a) ∆−1N = ∆−1∆N
2

car ∆N = 2N et donc ∆−1N = N
2

N∆−1 = ∆N
2
∆−1 car N∆ = 2N et donc N∆−1 = N

2

Finalement on a bien : ∆−1N = N∆−1

7)b) N2
1 = (∆−1N)2 mais comme, par le a), ∆−1 et N commutent alors N2

1 = (∆−1)2N2 = 03 car

N2 = 03 Donc : N1 et nilpotente.

7)c) (I3 +N1)(I3 −N1) = I3 −N1 +N1 −N2
1 = I3 car N2

1 = 03 et donc :

I3 +N1 est inversible et (I3 +N1)
−1 = I3 −N1

7)d) D'après son polynôme caractéristique : det(A) = 16 ̸= 0 et donc A est inversible.

7)e) A = ∆+N = ∆+∆N1 car N = ∆N1 et donc A = ∆(I3 +N1) et A
−1 = (I3 +N1)

−1∆−1

Avec le c) : A−1 = (I3 −N1)∆
−1 = ∆−1 −N1∆

−1 = δ +M avec δ = ∆−1 et M = N1∆
−1 = (∆−1)2N

i) δ = ∆−1 est diagonalisable (5)c))
ii) M2 = (∆−1)2N2 = 03 car N est nilpotente et commutent avec ∆−1

iii) δM = Mδ car N commutent avec ∆−1

iv) A−1 = δ +M

Donc (δ,M) est une décomposition de Dunford de A−1

Problème 2

1°) � S(x) a même rayon de convergence que sa série dérivée S ′(x) =
+∞∑
n=1

xn−1

n
qui a même rayon de

convergence que
+∞∑
n=1

xn

n
qui est une série entière du cours (−ln(1− x)) de rayon de convergence 1.

On en déduit RS = 1

� Pour x ̸= 0 on pose un(x) = hnx
n ̸= 0. On a donc

∣∣∣un+1(x)
un(x)

∣∣∣ = hn+1

hn
|x|

Mais hn+1 = hn +
1

n+1
donc hn+1

hn
= 1 + 1

hn(n+1)
(car hn ̸= 0)

De manière évidente on a hn ≥ 1 et donc 0 ≤ 1
hn(n+1)

≤ 1
n+1

−→
n→+∞

0

Donc par encadrement : 1
hn(n+1)

−→
n→+∞

0 et donc hn+1

hn
−→

n→+∞
1

On a alors :
∣∣∣un+1(x)

un(x)

∣∣∣ −→
n→+∞

|x|
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Par la règle de D'Alembert on a :

{
|x| < 1⇒

∑
un(x) convergente

|x| > 1⇒
∑

un(x) divergente

Comme R = sup({x ∈ R ,
∑

un(x) convergente }) alors on en déduit : R = 1

� T (x) a même rayon de convergence que sa série dérivée T ′(x) =
+∞∑
n=1

hnx
n−1 qui est de rayon de

convergence R = 1 puisque c'est la dérivée de H. On en déduit RT = 1

� Bilan : R = RT = RS = 1

2°) Pour x ∈ I et n ≥ 1, on reprend la relation hn+1 = hn +
1

n+1
et on on la multiplie par xn.

On a : hn+1x
n+1 = hnx

n+1 + xn+1

n+1

On sait que ∀x ∈ I
+∞∑
n=1

xn

n
= −ln(1− x)

On peut donc sommer la relation ci-dessus pour n = 1 à +∞ car les séries convergent sur I et on

obtient :
+∞∑
n=1

hn+1x
n+1 = x

+∞∑
n=1

anx
n +

+∞∑
n=1

xn+1

n+1

⇒ H(x)− h1x
1 = xH(x) + (−ln(1− x)− x1

1
)

Comme h1 = 1 on en déduit : ∀x ∈ I , H(x) = −ln(1−x)
1−x

3°) d
dx
( (ln(1−x))2

2
) = 2

2
−1
1−x

ln(1− x) = H(X) et de plus en x = 0 on a (ln(1−x))2

2
= 0

Alors : L, la primitive de H s'annulant en 0 est donnée par ∀x ∈ I , L(x) = (ln(1−x))2

2

4°) Par dé�nition : ∀x ∈ I , L(x) =
x∫
0

H(y)dy =
x∫
0

(
+∞∑
n=1

hny
n)dy

Or, d'après le cours, on peut intégrer une série entière sur tout segment inclus dans l'intervalle ouvert

de convergence. Comme ∀x ∈ I , [0;x] ⊂ I alors : L(x) =
+∞∑
n=1

(
x∫
0

hny
ndy) =

+∞∑
n=1

hn
xn+1

n+1

L est donc développable en série entière en 0 et ∀x ∈ I , L(x) =
+∞∑
n=1

hn
xn+1

n+1

5°) ∀x ∈ I , T (x)− S(x) =
+∞∑
n=1

hn

n
xn −

+∞∑
n=1

1
n2x

n

Comme les séries ont même rayon de convergence on a : (par convention on prendra h0 = 0)

∀x ∈ I , T (x)− S(x) =
+∞∑
n=1

(hn

n
− 1

n2 )x
n =

+∞∑
n=1

(
hn−1+

1
n

n
− 1

n2 )x
n =

+∞∑
n=1

hn−1

n
xn =

+∞∑
p=1

hp

p+1
xp+1 = L(x)

On a donc bien : ∀x ∈ I , T (x)− S(x) = L(x)

6°) a) ∀x ∈ I , −ln(1− x) =
+∞∑
n=1

xn

n

6°) b) u 7→ ln(1−u)
u

est continue sur ]0; y] (car y < 1) et ln(1−u)
u

−→
u→0

= −1 donc u 7→ ln(1−u)
u

est

prolongeable par continuité en 0, donc
y∫
0

ln(1−u)
u

du est convergente.
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On va utiliser le a) et le fait que l'on peut intégrer terme à terme une série entière sur tout segment
inclus dans son intervalle de convergence. Alors :
y∫
0

ln(1−u)
u

du =
y∫
0

+∞∑
n=1

−un

nu
du =

+∞∑
n=1

y∫
0

−un−1

n
du = −

+∞∑
n=1

yn

n2 = −S(y)

On a donc ∀y ∈ [0; 1[ ,
y∫
0

ln(1−u)
u

du+ S(y) = 0

6°) c)u 7→ ln(1−u)
u

est continue sur ]0, 1[ A =
1∫
0

ln(1−u)
u

du pose problème en 0 et en 1.

En 0 le problème a été réglé en 6°) a).

En 1− : ln(1−u)
u
∼ ln(1− u) < 0 donc A est de même nature que

1∫
0

ln(1− u)du qui est de même nature

que
1∫
0

ln(v)dv par le changement de variable C1 bijectif v = 1−u. La dernière intégrale est convergente

par le cours. Bilan :
1∫
0

ln(1−u)
u

du est convergente.

6°) d) � Commençons par montrer que S est continue sur [−1, 1]

Posons : ∀n ∈ N :
fn : [−1, 1] −→ R

x 7−→ xn

n2

On peut alors dé�nir : ||fn||∞ = sup
x∈[−1,1]

|fn(x)| et remarquer que : ||fn||∞ = 1
n2

On a donc
∑
||fn||∞ qui est convergente par Riemann et donc

∑
fn converge normalement sur [−1, 1].

Donc
∑

fn converge uniformément sur [−1, 1]. Comme, de plus, les fn sont continues sur [−1, 1], alors,
par transfert de continuité, on en déduit : S est continue sur [−1, 1]

� S(1) =
+∞∑
n=1

1
n2 = π2

6
est admis. En passant à la limite dans le 6°)b) avec la continuité de S en 1 et

le 6°) c) on obtient :
1∫
0

ln(1−u)
u

du = −π2

6

7°) a) Intégrons par parties
y∫
0

ln(1−u)
u

du, IPP justi�ée car lim
u→0

ln(u)ln(1− u) = lim
u→0

ln(u)(−u) = 0 :

y∫
0

ln(1−u)
u

du = [ln(u)ln(1− u)]y0 −
y∫
0

ln(u) −1
1−u

du = ln(y)ln(1− y) +
y∫
0

ln(u)
1−u

du

On fait le changement de variable C1 bijectif : U = 1− u dans la dernière intégrale :
y∫
0

ln(1−u)
u

du = ln(y)ln(1− y) +
1−y∫
1

ln(1−U)
U

(−dU)

On remet les bornes dans l'ordre et on utilise Chasles puisque toutes les intégrales convergent :
y∫

0

ln(1− u)

u
du

︸ ︷︷ ︸
−S(y)

= ln(y)ln(1− y)−
0∫

1

ln(1− U)

U
dU

︸ ︷︷ ︸
π2

6

−
1−y∫
0

ln(1− U)

U
dU

︸ ︷︷ ︸
−S(1−y)

En utilisant le 6°)d) et le 6°)b) on obtient : ∀y ∈ [0, 1] , π2

6
= S(y) + S(1− y) + ln(y)ln(1− y)

7°) b) En prenant y = 1
2
au a) on obtient : S(1

2
) = π2

3
− ln(2)2

2

Avec la relation du 5°) et le 3°) : T (1
2
) = π2

3
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