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n—1

n
Q1) On remarque que : Vn € N | a,41 = ﬁ k]:[O(a —k)= %H o H (= k) =7 ay

On a donc la relation de récurrence : Vn € N | a,41 = ‘:L—jrlan
On va alors considérer deux cas pour le calcul de R.
Casl: €N

Alors aqt1 = 5%a, = 0 et par une récurrence immeédiate : YVn > a+1, a, =0

n+1

+o0 «
On aalors : > a,2™ = > a,z™ qui est un polynéme et donc R = +00
n=0

Cas2: a¢N

Alors, Vn € N, a —n # 0 et, comme ag = 1 # 0, on a, par une récurrence immédiate a,, # 0

n+1

Pour x € R* on peut alors poser u,(z) = a,z" # 0 et considérer : u;f%x) il = |95t
Onaalors: |z] <1= lim “”72(3”) |z] <1 = > a,z™ convergente
n—+oo | un(z) ~~
D’Alembert
. : Un 41 (T) n 1
et: |z|>1= TLEI}}OO | = =lz|>1 = > a,a" divergente
D’ Alembert
On en déduit donc que : R=1
1 i N
Bilan : |R = ST o ¢
+oo siaeN
+oo
Q2) On reconnait le résultat du cours et on a : |Vz €] — R, R[, Y apz™ = (1+ )
Q3) Calculons a,, dans le cas a = % on a alors, d’aprés Q1) : R=1.
Pour n € N* :
1 n—1 1 n—1 1 1 (71)” n—1 1 (—))" n—1
an =g [[la=k) =3 11 (3 —k) =5 H e 12k =1) = G- (1) TT (2k = 1)
k=0 k=0 k=0 k=0 k=1
n—1
Ly T (2K) (k1)
= nl 2n n1
[T (2k)
k=1
_ 1 (="t (2n-2)!
T nlT 27 2n-I(pn-1)!
_ 1 (=" (2n)!
— nl 2n 27=1(2n)(2n—1)(n—1)!
— 1 nrtt (2n)!
! 27 27 (2n—1)n!
— ( )n+1 (277,)!
(2n—1)4"(n!)?
( )n+1bn
Comme by = —1 alors la formule a,, = (—1)"*1b,, est aussi valable pour n = 0 et donc Vn € N

+oo
En reprenant le résultat de Q2) on a: |Vz €] — 1,1, V1+z = > (=1)" p,2"
n=0




Q4) On utilise la formule de Stirling : n! = /2rnn"e~™ dans b,, = (2n_(12)+),,'(n,)2

Alors : b \/2m(2n)(2n)2me 2" \/ 27 (2n)4"

1
~ @n—Dan2rn)(n2)e—2r 7 @n—1)4"(27n)  2/man3/2

Comme # est une série de Riemann absolument convergente, on en déduit, par équivalent, que > b, est
absolument convergente, et donc que Y (—1)""1b,, est absolument convergente.

Bilan : | b, ~ W et > (—1)"*1b, est convergente.

fn . [*1,1] — R

Q5) e Posons, ¥n € N : v s (=1)" b,

On aalors : [|fu|loo = sup |fu(x)| =by
z€[—1,1]

D’aprés Q4) Y b, = > ||fulloo est convergente. On en déduit que : Y f, converge normalement et donc
uniformément sur [—1, 1].

+oo
Bilan : | La série entiére > (—1)"*1b,2™ converge donc uniformément sur [—1,1]
n=0

e Comme les f, sont continues et que la convergence est uniforme, on en déduit, par transfert de continuité,
“+ o0
que : x> > (—1)""1h, 2™ est continue sur [—1, 1]
n=0

+0o +oo

La continuité en t = 1 donne : > (=1)"*1b, = lim Y (=1)"*'b,2" = lim /1 + z par la question Q3)

n=0 =17 n=0 r—1-

+oo
On en conclut donc : | 3 (—=1)"*1b, = /2

n=0

Q6) Pour n € Non a: b, >0et
bnt1 _ (2n+2)! 4" (2n—1)(n)? _ (2n+2)(2n+1)(2n—1) _ 2(n+1)(2n—1) _ (2n—1) _ (2n—1) <1
by, 47T (2n+41)((n+1)!)2 (2n)! - 4(2n+1)(n+1)2 - 4(n+1)2 T 2(n+1) T 2n42)
Donc la suite (b, )nen est décroissante et on peut appliquer le théoréme spécial, en particulier pour ’encadrement

du reste puisque ’on sait déja que la série converge.
n
On a: ‘ﬂ— > (—1)k+1bk‘ <bpi1
k=0

Mais comme b,, ~ W (voir Q4)) alors : by = O(#)

Reporter ci-dessus, on obtient : | v2 = Y (=1)*"b, + O(7)
k=0

Q7) Montrons par récurrence sur n € N la propriété P, < ¢, (a) est bien définie et ¢,(a) >0

Initialisation :
L’énonceé pose co(a) = 1 donc ¢g(a) est bien définie et co(a) =1 >0

Heérédité :
On suppose la propriété P, vraie au rang n et on la démontre au rang n + 1.

Comme ¢y, (a) > 0 alors on peut calculer %(cn (a) + ﬁ) >0
On a donc ¢,11(a) est bien défini et ¢,,+1(a) > 0 ce qui équivaut & P, 41

Conclusion : ’Vn € N, ¢,(a) est bien définie et ¢, (a) > 0‘




Q8) o cuir(a)? —a
2
(% (c” (a) + cn(Za) ))
2 2_ .2
= en(@P +20+ 255 ) —a = ea(a)? ~ 20+ 8 = eala) - o) = Flmlfmel

(cn(a)®~a)?

On adonc: |Vne N, Cn+1(a)2 —a= % cn(a)?

e On déduit de l’égalité précédente que : Yn € N, ¢2,; —a >0
Donc que : Vn € N* | ¢2 —a >0 c,(a)? > a < c,(a) > v/a puisque cy(a) >0et a >0

On a donc : ’VTLEN* , cn(a)z\/ﬁ‘

Q9) On utilise Q8) qui donne /a < ¢,(a) et donc a < ¢,(a)? pour obtenir :
2
en1(0) = 3 (eal@) + 2455) < 3 (enla) + 25 ) = 3 (enla) + enl@)) = eala)

cn(a)

Donc : Vn > 1, ept1(a) < ep(a) et la suite (¢, (a))nen est donc décroissante.
Comme elle est minorée, & partir du rang 1, par /a, elle donc convergente.

Notons A = nll)r_il_loo cn(a)

Par passage a la limite dans la relation de récurrence définissant ¢,,(a) on a: A= 1(A+ )
Donc 20? = A2 +a < A% = a et comme \ > /a >0 alors : A =/a

Bilan : ’La suite (¢, (a))nen converge vers \/6‘

Q10) o C1(2) = 3(co(2) + ofzy) = 5(1+3) =3  Onadonc: |ei(2) =

N o

2"71
e Montrons par récurrence sur n € N* que : Vn € N* | ¢,(2)2 —2 < 8(3—12>

Initialisation :
Pour n = 1 on veut montrer que : ¢1(2)2 —2 <8
Mais, avec la valeur de ¢1(2) : ¢1(2)? —2 =2 — 2 =1 < 8 est évident.

27L71
Hérédité : On suppose la propriété vraie au rang n, c’est-a-dire : ¢, (2)? — 2 < 8(3%)

n

On veut la montrer au rang n + 1, c’est-a-dire : ¢,;1(2)% —2 < 8(%2)

Avec le début de Q8) ona: Vn €N, ¢,11(2)2 -2 = i%

On a aussi par Q8) : Vn € N* | ¢,(2) > /2 donc Cn]iQ) < % = ﬁ <i

on—1

n

2
8(#) ) 2
On en déduit : ¢,41(2)%2 -2 < 111(322 = 8(%) qui est bien la propriété au rang n + 1

2n—1
Conclusion : |Vn € N* | Cn(2)2 —2< 8(%2)

271,71
e On sait par Q8) que : 0 < ¢,(2) —2 donc I'inégalité précédente donne : 0 < (¢, (2) —v/2)(cn(2) +v2) < 8(%2)
27L71

Comme ¢, (2) > V2 = ¢,(2) +v2>2v2alorson a: 0 < ¢,(2) —v2 < 28%(3%)

On en déduit que ; cn(2) a \/§ - O((é)T?l) et donc que : \@ = cn(2) + O(<?T12)2n71)




on—1

Q11) (ﬁ) = n3/26zp(2"’1ln(3i2)) = exp(3in(n)—In(32)2"~') — 0 par comparaison de In(n) et de 2"~ 1.

" /2 n——+00

n—1
On a donc : ((é)2 ) tend plus vite vers zéro que (#)

271—1 271.—1
Q12) Grace & Q10) on sait que : 0 < cn(2) — V2 < 2@(3%) < 4(3%)

(on utilise V/2 < 2 puisque 1’on est pas censé connaitre /2 précisement a cette question)

On peut alors en déduire les lignes Python suivantes :

c=1.5 # on a calcule c_1(2))

diff=4 # écart entre c_n(2) et sqrt(2)

while diff>10**(-10):
c=0.5%(c+2/c) # calcul du terme suivant par récurrence
diff=diff/(32%%2) # calcul de 1’écart a sqrt(2)

print(c)

cos(0) —sin(0)

sin(f)  cos(h) ) (matrice de rotation) ou

Q13) D’apres le cours, les matrices de O3(R) sont de la forme (

( cos()  —sin(6)

—sin(0) 008(0)) (matrice de réflexion) avec 6§ € R

Q14) Toute les matrices de réflexions de O3(R) sont de racines carrées de I, ainsi que Ip et —Iy (pour les
rotations)

Comme il y a une infinité de réflexions, | il y a une infinité de racines carrées de I ‘

Q15) D’apres le cours : ’Une matrice M symétrique est positive si et seulement si sp(M) C [0, —|—oo[‘

Q16) Soit M € .7+ (R)
Alors, par le théoréme spectral, M est diagonalisable dans une base orthonormée, donc 3P € O, (R) , M = PDPT
(on remarque que : P~' = PT) avec D = diag(A1, A2, ..., \n) ot (A1, Xa,...,\,) €R”
Comme de plus M est positive, alors Vi € [1,n] , A; > 0 donc on peut poser : B = Pdiag(v/A1, vz, ..., vVAn)PT
Alors B est symétrique par construction, sp(B) = {vA1,VX2,...,vAn} C [0, +00[ donc B € .7} (R) et

B? = Pdiag(v/A1,VAz, -, VA )PTPdiag(\/)\l,\/E,...,«/AR)PT

= Pdiag(v/A1, VA2, . ... \/ )dmg(\/ 17\/ A2y ooV ) PT
:Pdiag()\l,)\g,...,)\ ) PDP

On a |déterminer B € .7 (R) telle que B> = M

Q17) Attention, cette question Q17) n’est pas facile si on ne ’a jamais vu !!! donc ...
Soit C € .7F(R) telle que C? = M

Notons ¢ 'endomorphisme associé & ¢ et m celui associé a M.
Alors MC = C?C = C® = CC? = CM donc m et ¢ commutent.

On écrit sp(M) = sp(m) = {pu, ..., p} le spectre de M en supposant donc les u; distincts deux & deux.

P
Comme m est diagonalisable alors on a : R? = @ E; avec F; = ker(m — p;Idga)
i=1

Comme m et ¢ commutent alors les E; sont stables par ¢ et on peut considérer ¢; la restriction de ¢ a E;.

Comme c est diagonalisable alors ¢; est diagonalisable et donc il existe une base B; de F; telle que :
Mp, (c) = diag(ai 1, - - -, Qi dim(E,))



De plus, comme sp(e;) C sp(e) C (0,400 alors on a o, > 0

Dans F; : ¢ = m se traduit par ¢? = p;Idg, et on a donc pour tout k : ozZ & = Mi, ce qui donne a; i = |/p; compte
tenue de la positivité des termes.

¢; est donc définie de maniére unique et donc c est définie de maniére unique.

Il y a donc au plus une matrice C' € ;7 (R) telle que C* =

D’aprés la question Q16), il y en a au moins une B.

Bilan : | B est I'unique racine carrée de M appartenant & y;(R)

Q18) Montrons par récurrence sur n € N la propriété : Pr, < M,, est bien définie et M,, = Pdiag(c,(\1),. .., cn(Ag))PT

Initialisation : au rang n =0
My est définie par My = I, donc est bien définie !!!
CO(Ai) =1 y donc Pdiag(co()\l), .. .,Co(Aq))PT = PPT = In = M() car P € On(R)
On a donc bien Prg

Hérédité : On suppose Pr,, vraie.

q
On a det(M,) = ] en(Ax) > 0 car ¢, (Ax) > 0 d’aprés Q7), donc det(M,,) # 0 et donc M, est inversible et on peut
k=

1
M, +MMn‘1). On a alors :

définir : M, = 3

MnJrl
= %(Pdiag(cn(/\l), el cn(/\q))PT + Pdiag(\, ..., /\q)PTI:’diag(Wl/\l)7 ol cn(A ))PT)

= szaQ(% (C”(Al) + %)7 LR %(Cn(An) + Cn)(\gin) ))

= Pdiag (cn+1()\1), e Cn+1()\n)) avec la relation de récurrence vérifiée par (c,(Ag))

On a donc bien Pr, 41

Conclusion : ’Vn €N, M, = Pdiag(c,(A\1),...,cn(Ag))PT ‘

Q19) On sait que Yk € N | ¢, () = VA par la question Q9).
n—-+0oo

On a donc diag(c, (A1), ... ,cn()\q)) e diag(v/ A1, ..., /A
Et avec la propriété admise dans I’ énonce

Pdiag(cn(M\), - .-, cn(Ng ))PT bl Pdiag(v/A1,...,\/A)PT =B =vVM

Oun a donc : | (M,,),en converge vers v M

Q20) f est C? donc f’ est continue.
Comme [’ ne s’annule pas sur I, alors f est de signe constant (strict) sur I. (Sinon par I'absurde f’ s’annulerait
pas le TVI). Donc f est strictement monotone sur 1.

Donc f est une bijection de I dans f(I) et donc ’ f s’annule au plus une fois sur 1. ‘

Q21) f" et f” sont continues sur J, qui est un segment. Donc par le théoréme des bornes atteintes s, et 4, sont
bien définis.
De plus i, est atteint, donc Jv € J,. , i, = |f'(v)]| # 0 car f’ ne sannule pas sur J,. C J
On a donc i, > 0

Bilan : | s, et 4, sont bien définis et i, > 0‘




Q22) Fixons r¢ > 0 tel que J,,, C J.
Alors, pour r €]0,7¢[ on a J. C J,, donc s, < sp €t ip, < iy
Donc K, = 3= < o = K, < Ky,

T

Donc, comme r > 0: 0 <rK, <rk,, —6 0
T

Par définition de la limite : ’3r >0,0<rK, <1 ‘

Q23) e On suppose que ¢, € J,.
Par I'inégalité de Taylor-Lagrange : |f(c) — f(cn) — (¢ — cn) f'(cn)| < 3(c — ¢n)?s,

Comme f(c) =0 alors : |f(cn) + (¢ — cn) f'(cn)] < F(c—cn)?

(Cn)

On divise par |f'(¢,)| qui par hypothése est non nul :

Par définition de 7, :

ff/((cc,;)) — Cp, + C‘ S QST:(C - Cn)2

Par définition de K, et de ¢,41 : |—cpi1 + ¢ < K.(c—cp)?

On a donc bien : ’ lens1 — ¢ < Kp(c—cp)? ‘

e Comme ¢, € J, alors |c — ¢,| < 7, comme de plus 7K, < 1, alors : |c 41 — ¢ < K,r?

f S 2
Fen + (€= en)| < grgy(c —en)

<1

(rK,)r < r donc
~—

n

K, |co—c
Q24) Si ¢y € J,, alors, on montre par récurrence, comme a la question Q10) que: [Vn € N | |¢, — ¢| < %
1 . (K}EOfcozn
Comme ¢ € J,. alors ¢ — cg| < r et donc 0 < K, |co — ¢| < 1, on en déduit 11111 ~——5—— = 0 et donc, par
n—-+oo r
comparaison : | lim ¢, =c¢
n—-+oo
Q25)
def newton(c_0,f,df):
c=c_0
n=0

while (n<51) and abs(f(c))>10%x(-10):
c=c-f(c)/df(c)
n=n+1
if n=51:
return(’None?)
return c

Q26) e On remarque que P est un polynome scindé simple dont les racines sont les valeurs propres de M.

Soit p une racine de P’.

Si p était racine de P alors p serait racine au moins double de P, ce qui est impossible car P n’admet que des

racines simples.
On en déduit que p n’est pas racine de P et donc que p n’est pas dans le spectre de M.

Donc ker(M — pl;) = {Ora} et donc det(M — pl,) # 0 et donc ’ M — ul, est inversible.




e Comme on est dans C[X] alors, on peut écrire P’ = a [[ (X — )% avec a € C* et rac(p’) 'ensemble
nerac(P’)
des racines de P’ et 6, 'ordre de multiplicité de p comme racine de P’.

Alors P'(M)=a [[ (M — pl,)% qui est, par le début de la question, un produit de matrices inversibles.
perac(P’)

Comme G L, est stable par multiplication et par multiplication par un scalaire non nul («), alors : ’ P’(M) est inversible.

Q27) e Comme x s est scindé dans C[X], unitaire, et que ’ensemble des ses racines est {\1,..., s}, alors, on
S
peut écrire xar = [[ (X — ;)% avec k; € [1, 4]
i=1
q—k

——
X203 et done oy dive 7]

e Comme par Hamilton-Cayley on a que x,, est un polynéme annulateur de M, alors P9 est aussi un polynéme
annulateur de M
Donc P(M)? =0 et donc ’ P(M) est nilpotente. ‘

.

On a donc P? = (xy,)

i=1

Q28) Comme 2" — o0, alors, & partir d’un certain rang ng : 2" > ¢ donc, comme P(M)? = 0 alors

n—-+oo
P(M)*" =o0.
On a donc, puisque 1'on admet P(M,,) = (P(M))?*" B,, que : M, 1 = M,,.

’La suite (M,,) est donc stationnaire (constante, & partir d’un certain rang) ‘

Q29) Par une récurrence immeédiate M,, = R, (M) avec R € C[X], donc, avec les résultats admis : | M et M,, commutent.

Q30) On a montrer que, & partir d’un certain rang : P(M,,) =0, et comme (M,,) est stationnaire, donc égale a
sa limite A a partir d’un certain rang, on a : P(A)
Comme on sait, de plus, que P est scindé & racines simples alors A admet un polynéme annulateur & racines simples
donc : ’A est diagonalisable.

Q31) e M, est un polyndéme en M et A = M,, a partir d’un certain rang, donc A est un polynéme en M.
Donc N = M — A est un polynéme en M.
Comme deux polynomes en M commutent, alors : | N et A commutent.

e A partir d’un certain rang, on a : M, = A
Donc > (My — My41) = My — My, 41 = M — A = N par télescopage.
k=0

n

D’autre, part, en utilisant la relation de récurrence définissant (M,,) : N = . P(My)P'(M;,)™*
k=0 ~———————
My —Mp 11
Comme P(My) = (P(M))?' By, alors : N = 3. (P(M))2" By P' (M)~
E=0

Comme tout commutent et que 'on a des polynoéme en M alors : N = P(M)T (M) avec T un polynéome de C[X]

Comme P(M)? =0 et que N? = (P(M))4(T(M))? alors N7 =0

On a bien : ’N est nilpotente. ‘

Q32) L’énoncé nous propose d’utiliser le DL de /1 + z, ce qui nous améne & poser :

Ry(X) = é}(—w’f“bkxk

Il reste & montrer que S(X) =1+ X — (R,(X))? est divisible par X1



2n
Comme deg(R,) = g > 1 alors deg(S) = 2g, on peut donc écrire S(X) = 3 o, X*
k=0

S est non nul & cause du terme de degré 2n qui est non nul par exemple, donc on peut poser :

2n
ko = min({k € [0,2n] , ok # 0} et on a alors : S(X) = > opXF*
k=ko

Avec cette écriture, au voisinage de z = 0 : S(x) ~ op,z*°

D’autre part S(z) = (1 + ) — (Ry(2))* = (V1 + 2+ Ry(2)) (V1 +z — Ry(z))
Mais, par définition de R, et Taylor-Young : v/1+ x — Ry(z) = o(z?)
Comme on a aussi V14 x + Ry(x) = O(1) alors, par produit : S(z) = o(x?)

Alors S(x) = o(z9) et S(x) ~ op,z* donc ko > ¢q

>0

2n 2n r\
On a alors : S(X)= > o3 X*=X? 3 0, X"~ 9 et donc S est divisible par X4
k=ko k=ko

Bilan : | 3R, € R[X] , X1 divise 1 + X — Ry(X)?]

Q33) Comme X7 divise 1 + X — R, (X)? alors 1 + X — R,(X)? = X9H(X) avec H € R[X]
Evaluer en N : I, + N — Ry(N)?> = N?H(N) et comme N? = 0 alors I, + N = R,(N)?

Donc R,(N) est une racine carrée de I;N.

q
Avec I'expression trouvée en Q32) : |Si N est nilpotente : > (—1)*+1b, N* est une racine carrée de I, + N.
k=0

Q34) ¢ Comme M est a valeurs propres réelles, alors P € R[X] et, par construction, les matrices M,, sont dans
M,(R). Donc ’ A et N sont a coefficients réels. ‘

e On a toujours P qui est un polynome annulateur scindé simple de A. Comme de plus P € R[X] alors :
’A est diagonalisable dans M, (RR). ‘

Q35) Comme P est un polynéome annulateur de A et que rac(P) = sp(M) alors on en déduit : sp(A) C sp(M)
Comme sp(M) C]0, +oo] alors ’ sp(A4) C]o, —l—oo[‘

Q36) e Comme A est diagonalisable et que sp(A) CJ0,+oo[ alors I(A1,...,A,) € RY et P € GLy(R) tel que :
A = Pdiag(\1, ..., \g) P!
Si on pose 74 = Pdiag(\/A1, ..., \/)Tq)Pfl alors 7% = A donc r4 est une racince carrée de A.
Tl existe au moins une racine carrée de A (sans doute pas unique).

Ay =1,
VneN, A,y =1(A4, + AALY)
Et on sait de méme que (A,) converge vers r4 = A’ qui est une racine carrée de A.

e On peut alors définir, comme en Q18), la suite (A4,,) par : {

e Comme sp(A) C R} alors 0 ¢ sp(A) et donc A est inversible.

Onaalors: M =A+N=A11I,+A"'N)

Comme A et N commutent A~! et N aussi, donc (A71N)? = A79N? = 0 donc A~ N est nilpotente.
Par application de Q33) : R,(A'N) est une racine carrée de I, + A~'N

On pose : ryy = A'Ry (A7 N) Par commutativité (polynéme en M) r3, = A?R,(A7IN)? = A([,+A7'N) =M

’A’Rq(A_lN) est une racine carrée de M. ‘




