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Q1) On remarque que : ∀n ∈ N , an+1 = 1
(n+1)!

n∏
k=0

(α− k) = α−n
n+1

1
n!

n−1∏
k=0

(α− k) = α−n
n+1 an

On a donc la relation de récurrence : ∀n ∈ N , an+1 = α−n
n+1 an

On va alors considérer deux cas pour le calcul de R.

Cas 1 : α ∈ N

Alors aα+1 = α−α
n+1 aα = 0 et par une récurrence immédiate : ∀n ≥ α+ 1 , an = 0

On a alors :
+∞∑
n=0

anx
n =

α∑
n=0

anx
n qui est un polynôme et donc R = +∞

Cas 2 : α /∈ N

Alors, ∀n ∈ N , α− n ̸= 0 et, comme a0 = 1 ̸= 0, on a, par une récurrence immédiate an ̸= 0

Pour x ∈ R∗ on peut alors poser un(x) = anx
n ̸= 0 et considérer :

∣∣∣un+1(x)
un(x)

∣∣∣ = ∣∣∣an+1

an

xn+1

xn

∣∣∣ = ∣∣∣α−n
n+1 x

∣∣∣ −→
n→+∞

|x|

On a alors : |x| < 1 ⇒ lim
n→+∞

∣∣∣un+1(x)
un(x)

∣∣∣ = |x| < 1 =⇒︸︷︷︸
D'Alembert

∑
anx

n convergente

et : |x| > 1 ⇒ lim
n→+∞

∣∣∣un+1(x)
un(x)

∣∣∣ = |x| > 1 =⇒︸︷︷︸
D'Alembert

∑
anx

n divergente

On en déduit donc que : R = 1

Bilan : R =

{
1 si α /∈ N
+∞ si α ∈ N

Q2) On reconnaît le résultat du cours et on a : ∀x ∈]−R,R[ ,
+∞∑
n=0

anx
n = (1 + x)α

Q3) Calculons an dans le cas α = 1
2 . on a alors, d'après Q1) : R = 1.

Pour n ∈ N∗ :

an = 1
n!

n−1∏
k=0

(α− k) = 1
n!

n−1∏
k=0

( 12 − k) = 1
n!

n−1∏
k=0

1−2k
2 = 1

n!
(−1)n

2n

n−1∏
k=0

(2k − 1) = 1
n!

(−1)n

2n (−1)
n−1∏
k=1

(2k − 1)

= 1
n!

(−1)n+1

2n

n−1∏
k=1

(2k)(2k−1)

n−1∏
k=1

(2k)

= 1
n!

(−1)n+1

2n
(2n−2)!

2n−1(n−1)!

= 1
n!

(−1)n+1

2n
(2n)!

2n−1(2n)(2n−1)(n−1)!

= 1
n!

(−1)n+1

2n
(2n)!

2n(2n−1)n!

= (−1)n+1 (2n)!
(2n−1)4n(n!)2

= (−1)n+1bn

Comme b0 = −1 alors la formule an = (−1)n+1bn est aussi valable pour n = 0 et donc ∀n ∈ N

En reprenant le résultat de Q2) on a : ∀x ∈]− 1, 1[ ,
√
1 + x =

+∞∑
n=0

(−1)n+1bnx
n
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Q4) On utilise la formule de Stirling : n! =
√
2πnnne−n dans bn = (2n)!

(2n−1)4n(n!)2

Alors : bn ∼
√

2π(2n)(2n)2ne−2n

(2n−1)4n(2πn)(n2n)e−2n ∼
√

2π(2n)4n

(2n−1)4n(2πn) ∼
1

2
√
πn3/2

Comme
∑

1
n3/2 est une série de Riemann absolument convergente, on en déduit, par équivalent, que

∑
bn est

absolument convergente, et donc que
∑

(−1)n+1bn est absolument convergente.

Bilan : bn ∼ 1
2
√
πn3/2 et

∑
(−1)n+1bn est convergente.

Q5) � Posons, ∀n ∈ N :
fn : [−1, 1] −→ R

x 7−→ (−1)n+1bnx
n

On a alors : ||fn| |∞ = sup
x∈[−1,1]

|fn(x)| = bn

D'après Q4)
∑

bn =
∑

||fn| |∞ est convergente. On en déduit que :
∑

fn converge normalement et donc
uniformément sur [−1, 1].

Bilan : La série entière
+∞∑
n=0

(−1)n+1bnx
n converge donc uniformément sur [−1, 1]

� Comme les fn sont continues et que la convergence est uniforme, on en déduit, par transfert de continuité,

que : x 7→
+∞∑
n=0

(−1)n+1bnx
n est continue sur [−1, 1]

La continuité en t = 1 donne :
+∞∑
n=0

(−1)n+1bn = lim
x→1−

+∞∑
n=0

(−1)n+1bnx
n = lim

x→1−

√
1 + x par la question Q3)

On en conclut donc :
+∞∑
n=0

(−1)n+1bn =
√
2

Q6) Pour n ∈ N on a : bn > 0 et
bn+1

bn
= (2n+2)!

4n+1(2n+1)((n+1)!)2
4n(2n−1)(n!)2

(2n)! = (2n+2)(2n+1)(2n−1)
4(2n+1)(n+1)2 = 2(n+1)(2n−1)

4(n+1)2 = (2n−1)
2(n+1) = (2n−1)

2n+2) < 1

Donc la suite (bn)n∈N est décroissante et on peut appliquer le théorème spécial, en particulier pour l'encadrement
du reste puisque l'on sait déjà que la série converge.

On a :

∣∣∣∣√2−
n∑

k=0

(−1)k+1bk

∣∣∣∣ ≤ bn+1

Mais comme bn ∼ 1
2
√
πn3/2 (voir Q4)) alors : bn+1 = O( 1

n3/2 )

Reporter ci-dessus, on obtient :
√
2 =

n∑
k=0

(−1)k+1bk +O
(

1
n3/2

)
Q7) Montrons par récurrence sur n ∈ N la propriété Pn ⇔ cn(a) est bien dé�nie et cn(a) > 0

Initialisation :
L'énoncé pose c0(a) = 1 donc c0(a) est bien dé�nie et c0(a) = 1 > 0

Hérédité :
On suppose la propriété Pn vraie au rang n et on la démontre au rang n+ 1.

Comme cn(a) > 0 alors on peut calculer 1
2

(
cn(a) +

a
cn(a)

)
> 0

On a donc cn+1(a) est bien dé�ni et cn+1(a) > 0 ce qui équivaut à Pn+1

Conclusion : ∀n ∈ N , cn(a) est bien dé�nie et cn(a) > 0
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Q8) � cn+1(a)
2 − a

=
(

1
2

(
cn(a) +

a
cn(a)

))2

− a

= 1
4

(
cn(a)

2 + 2a+ a2

cn(a)2

)
− a = 1

4

(
cn(a)

2 − 2a+ a2

cn(a)2

)
= 1

4

(
cn(a)− a

cn(a)

)2

= 1
4
(cn(a)

2−a)2

cn(a)2

On a donc : ∀n ∈ N , cn+1(a)
2 − a = 1

4
(cn(a)

2−a)2

cn(a)2

� On déduit de l'égalité précédente que : ∀n ∈ N , c2n+1 − a ≥ 0
Donc que : ∀n ∈ N∗ , c2n − a ≥ 0 ⇔ cn(a)

2 ≥ a ⇔ cn(a) ≥
√
a puisque cn(a) > 0 et a ≥ 0

On a donc : ∀n ∈ N∗ , cn(a) ≥
√
a

Q9) On utilise Q8) qui donne
√
a ≤ cn(a) et donc a ≤ cn(a)

2 pour obtenir :

cn+1(a) =
1
2

(
cn(a) +

a
cn(a)

)
≤ 1

2

(
cn(a) +

cn(a)
2

cn(a)

)
= 1

2

(
cn(a) + cn(a)

)
= cn(a)

Donc : ∀n ≥ 1 , cn+1(a) ≤ cn(a) et la suite (cn(a))n∈N∗ est donc décroissante.
Comme elle est minorée, à partir du rang 1, par

√
a, elle donc convergente.

Notons λ = lim
n→+∞

cn(a)

Par passage à la limite dans la relation de récurrence dé�nissant cn(a) on a : λ = 1
2 (λ+ a

λ )
Donc 2λ2 = λ2 + a ⇔ λ2 = a et comme λ ≥

√
a ≥ 0 alors : λ =

√
a

Bilan : La suite (cn(a))n∈N converge vers
√
a

Q10) � C1(2) =
1
2

(
c0(2) +

2
c0(2)

)
= 1

2

(
1 + 2

1

)
= 3

2 On a donc : c1(2) =
3
2

� Montrons par récurrence sur n ∈ N∗ que : ∀n ∈ N∗ , cn(2)
2 − 2 ≤ 8

(
1
32

)2n−1

Initialisation :
Pour n = 1 on veut montrer que : c1(2)

2 − 2 ≤ 8
Mais, avec la valeur de c1(2) : c1(2)

2 − 2 = 9
4 − 2 = 1

4 ≤ 8 est évident.

Hérédité : On suppose la propriété vraie au rang n, c'est-à-dire : cn(2)
2 − 2 ≤ 8

(
1
32

)2n−1

On veut la montrer au rang n+ 1, c'est-à-dire : cn+1(2)
2 − 2 ≤ 8

(
1
32

)2n

Avec le début de Q8) on a : ∀n ∈ N , cn+1(2)
2 − 2 = 1

4
(cn(2)

2−2)2

cn(2)2

On a aussi par Q8) : ∀n ∈ N∗ , cn(2) ≥
√
2 donc 1

cn(2)
≤ 1√

2
⇒ 1

cn(2)2
≤ 1

2

On en déduit : cn+1(2)
2 − 2 ≤ 1

4

(
8

(
1
32

)2n−1)2

2 = 8
(

1
32

)2n

qui est bien la propriété au rang n+ 1

Conclusion : ∀n ∈ N∗ , cn(2)
2 − 2 ≤ 8

(
1
32

)2n−1

� On sait par Q8) que : 0 ≤ cn(2)−2 donc l'inégalité précédente donne : 0 ≤ (cn(2)−
√
2)(cn(2)+

√
2) ≤ 8

(
1
32

)2n−1

Comme cn(2) ≥
√
2 ⇒ cn(2) +

√
2 ≥ 2

√
2 alors on a : 0 ≤ cn(2)−

√
2 ≤ 8

2
√
2

(
1
32

)2n−1

On en déduit que : cn(2)−
√
2 = O

((
1
32

)2n−1)
et donc que :

√
2 = cn(2) +O

((
1
32

)2n−1)
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Q11)

(
1
32

)2n−1

1

n3/2

= n3/2exp(2n−1ln( 1
32 )) = exp( 32 ln(n)−ln(32)2n−1) −→

n→+∞
0 par comparaison de ln(n) et de 2n−1.

On a donc :
((

1
32

)2n−1)
tend plus vite vers zéro que

(
1
n2

)
Q12) Grâce à Q10) on sait que : 0 ≤ cn(2)−

√
2 ≤ 2

√
2
(

1
32

)2n−1

≤ 4
(

1
32

)2n−1

(on utilise
√
2 ≤ 2 puisque l'on est pas censé connaître

√
2 précisement à cette question)

On peut alors en déduire les lignes Python suivantes :

c=1.5 # on a calcule c_1(2))

diff=4 # écart entre c_n(2) et sqrt(2)

while diff>10**(-10):

c=0.5*(c+2/c) # calcul du terme suivant par récurrence

diff=diff/(32**2) # calcul de l'écart à sqrt(2)

print(c)

Q13) D'après le cours, les matrices de O2(R) sont de la forme

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
(matrice de rotation) ou(

cos(θ) −sin(θ)
−sin(θ) −cos(θ)

)
(matrice de ré�exion) avec θ ∈ R

Q14) Toute les matrices de ré�exions de O2(R) sont de racines carrées de I2, ainsi que I2 et −I2 (pour les
rotations)

Comme il y a une in�nité de ré�exions, il y a une in�nité de racines carrées de I2

Q15) D'après le cours : Une matrice M symétrique est positive si et seulement si sp(M) ⊂ [0,+∞[

Q16) Soit M ∈ S +
q (R)

Alors, par le théorème spectral, M est diagonalisable dans une base orthonormée, donc ∃P ∈ On(R) , M = PDPT

(on remarque que : P−1 = PT ) avec D = diag(λ1, λ2, . . . , λn) où (λ1, λ2, . . . , λn) ∈ Rn

Comme de plus M est positive, alors ∀i ∈ J1, nK , λi ≥ 0 donc on peut poser : B = Pdiag(
√
λ1,

√
λ2, . . . ,

√
λn)P

T

Alors B est symétrique par construction, sp(B) = {
√
λ1,

√
λ2, . . . ,

√
λn} ⊂ [0,+∞[ donc B ∈ S +

q (R) et
B2 = Pdiag(

√
λ1,

√
λ2, . . . ,

√
λn)P

TP︸ ︷︷ ︸
In

diag(
√
λ1,

√
λ2, . . . ,

√
λn)P

T

= Pdiag(
√
λ1,

√
λ2, . . . ,

√
λn)diag(

√
λ1,

√
λ2, . . . ,

√
λn)P

T

= Pdiag(λ1, λ2, . . . , λn)P
T = PDPT = M

On a déterminer B ∈ S +
q (R) telle que B2 = M

Q17) Attention, cette question Q17) n'est pas facile si on ne l'a jamais vu !!! donc ...

Soit C ∈ S +
q (R) telle que C2 = M

Notons c l'endomorphisme associé à c et m celui associé à M .
Alors MC = C2C = C3 = CC2 = CM donc m et c commutent.

On écrit sp(M) = sp(m) = {µ1, . . . , µp} le spectre de M en supposant donc les µi distincts deux à deux.

Comme m est diagonalisable alors on a : Rq =
p⊕

i=1

Ei avec Ei = ker(m− µiIdRq )

Comme m et c commutent alors les Ei sont stables par c et on peut considérer ci la restriction de c à Ei.

Comme c est diagonalisable alors ci est diagonalisable et donc il existe une base Bi de Ei telle que :
MBi

(c) = diag(αi,1, . . . , αi,dim(Ei))
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De plus, comme sp(ci) ⊂ sp(c) ⊂ [0,+∞[ alors on a αi,k ≥ 0
Dans Ei : c

2 = m se traduit par c2i = µiIdEi et on a donc pour tout k : α2
i,k = µi, ce qui donne αi,k =

√
µi compte

tenue de la positivité des termes.
ci est donc dé�nie de manière unique et donc c est dé�nie de manière unique.
Il y a donc au plus une matrice C ∈ S +

q (R) telle que C2 = M

D'après la question Q16), il y en a au moins une B.

Bilan : B est l'unique racine carrée de M appartenant à S +
q (R)

Q18) Montrons par récurrence sur n ∈ N la propriété : Prn ⇔ Mn est bien dé�nie etMn = Pdiag(cn(λ1), . . . , cn(λq))P
T

Initialisation : au rang n = 0
M0 est dé�nie par M0 = Iq donc est bien dé�nie !!!
c0(λi) = 1 , donc Pdiag(c0(λ1), . . . , c0(λq))P

T = PPT = In = M0 car P ∈ On(R)
On a donc bien Pr0

Hérédité : On suppose Prn vraie.

On a det(Mn) =
q∏

k=1

cn(λk) > 0 car cn(λk) > 0 d'après Q7), donc det(Mn) ̸= 0 et donc Mn est inversible et on peut

dé�nir : Mn+1 = 1
2

(
Mn +MM−1

n

)
. On a alors :

Mn+1

= 1
2

(
Pdiag(cn(λ1), . . . , cn(λq))P

T + Pdiag(λ1, . . . , λq)P
TPdiag( 1

cn(λ1)
, . . . , 1

cn(λq)
)PT

)
= Pdiag

(
1
2

(
cn(λ1) +

λ1

cn(λ1)

)
, . . . , 1

2

(
cn(λn) +

λn

cn(λn)

))
= Pdiag

(
cn+1(λ1), . . . , cn+1(λn)

)
avec la relation de récurrence véri�ée par (cn(λk))

On a donc bien Prn+1

Conclusion : ∀n ∈ N , Mn = Pdiag(cn(λ1), . . . , cn(λq))P
T

Q19) On sait que ∀k ∈ N , cn(λk) −→
n→+∞

√
λk par la question Q9).

On a donc diag(cn(λ1), . . . , cn(λq)) −→
n→+∞

diag(
√
λ1, . . . ,

√
λq)

Et avec la propriété admise dans l'énoncé :
Pdiag(cn(λ1), . . . , cn(λq))P

T −→
n→+∞

Pdiag(
√
λ1, . . . ,

√
λq)P

T = B =
√
M

On a donc : (Mn)n∈N converge vers
√
M

Q20) f est C2 donc f ′ est continue.
Comme f ′ ne s'annule pas sur I, alors f est de signe constant (strict) sur I. (Sinon par l'absurde f ′ s'annulerait
pas le TVI). Donc f est strictement monotone sur I.

Donc f est une bijection de I dans f(I) et donc f s'annule au plus une fois sur I.

Q21) f ′ et f ′′ sont continues sur Jr qui est un segment. Donc par le théorème des bornes atteintes sr et ir sont
bien dé�nis.
De plus ir est atteint, donc ∃υ ∈ Jr , ir = |f ′(υ)| ≠ 0 car f ′ ne sannule pas sur Jr ⊂ J
On a donc ir > 0

Bilan : sr et ir sont bien dé�nis et ir > 0
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Q22) Fixons r0 > 0 tel que Jr0 ⊂ J .
Alors, pour r ∈]0, r0[ on a Jr ⊂ Jr0 donc sr ≤ sr0 et ir0 ≤ ir
Donc Kr = sr

2ir
≤ sr0

2ir0
⇒ Kr ≤ Kr0

Donc, comme r > 0 : 0 ≤ rKr ≤ rKr0 −→
r→0

0

Par dé�nition de la limite : ∃r > 0 , 0 ≤ rKr < 1

Q23) � On suppose que cn ∈ Jr

Par l'inégalité de Taylor-Lagrange : |f(c)− f(cn)− (c− cn)f
′(cn)| ≤ 1

2 (c− cn)
2sr

Comme f(c) = 0 alors : |f(cn) + (c− cn)f
′(cn)| ≤ sr

2 (c− cn)
2

On divise par |f ′(cn)| qui par hypothèse est non nul :
∣∣∣ f(cn)
f ′(cn)

+ (c− cn)
∣∣∣ ≤ sr

2|f ′(cn)| (c− cn)
2

Par dé�nition de ir :
∣∣∣ f(cn)
f ′(cn)

− cn + c
∣∣∣ ≤ sr

2ir
(c− cn)

2

Par dé�nition de Kr et de cn+1 : |−cn+1 + c| ≤ Kr(c− cn)
2

On a donc bien : |cn+1 − c| ≤ Kr(c− cn)
2

� Comme cn ∈ Jr alors |c− cn| < r, comme de plus rKr < 1, alors : |cn+1 − c| < Krr
2 = (rKr︸︷︷︸

<1

)r < r donc

cn+1 ∈ Jr

Q24) Si c0 ∈ Jr, alors, on montre par récurrence, comme à la question Q10) que : ∀n ∈ N , |cn − c| ≤
(
Kr|c0−c|

)2n

Kr

Comme c0 ∈ Jr alors |c− c0| < r et donc 0 < Kr |c0 − c| < 1, on en déduit lim
n→+∞

(
Kr|c0−c|

)2n

Kr
= 0 et donc, par

comparaison : lim
n→+∞

cn = c

Q25)

def newton(c_0,f,df):

c=c_0

n=0

while (n<51) and abs(f(c))>10**(-10):

c=c-f(c)/df(c)

n=n+1

if n=51:

return('None')

return c

Q26) � On remarque que P est un polynôme scindé simple dont les racines sont les valeurs propres de M .

Soit µ une racine de P ′.
Si µ était racine de P alors µ serait racine au moins double de P , ce qui est impossible car P n'admet que des
racines simples.
On en déduit que µ n'est pas racine de P et donc que µ n'est pas dans le spectre de M .

Donc ker(M − µIq) = {0Rq} et donc det(M − µIq) ̸= 0 et donc M − µIq est inversible.
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� Comme on est dans C[X] alors, on peut écrire P ′ = α
∏

µ∈rac(P ′)

(X − µ)θµ avec α ∈ C∗ et rac(p′) l'ensemble

des racines de P ′ et θµ l'ordre de multiplicité de µ comme racine de P ′.

Alors P ′(M) = α
∏

µ∈rac(P ′)

(M − µIq)
θµ qui est, par le début de la question, un produit de matrices inversibles.

CommeGLq est stable par multiplication et par multiplication par un scalaire non nul (α), alors : P ′(M) est inversible.

Q27) � Comme χM est scindé dans C[X], unitaire, et que l'ensemble des ses racines est {λ1, . . . , λs}, alors, on
peut écrire χM =

s∏
i=1

(X − λi)
ki avec ki ∈ J1, qK

On a donc P q =
(
χm

) s∏
i=1

(X − λi)

q − ki︸ ︷︷ ︸
≥0 et donc χM divise P q

� Comme par Hamilton-Cayley on a que χm est un polynôme annulateur de M , alors P q est aussi un polynôme
annulateur de M
Donc P (M)q = 0 et donc P (M) est nilpotente.

Q28) Comme 2n −→
n→+∞

+∞, alors, à partir d'un certain rang n0 : 2n ≥ q donc, comme P (M)q = 0 alors

P (M)2
n

= 0.
On a donc, puisque l'on admet P (Mn) = (P (M))2

n

Bn que : Mn+1 = Mn.

La suite (Mn) est donc stationnaire (constante, à partir d'un certain rang)

Q29) Par une récurrence immédiateMn = Rn(M) avecR ∈ C[X], donc, avec les résultats admis : M et Mn commutent.

Q30) On a montrer que, à partir d'un certain rang : P (Mn) = 0, et comme (Mn) est stationnaire, donc égale à
sa limite A à partir d'un certain rang, on a : P (A)
Comme on sait, de plus, que P est scindé à racines simples alors A admet un polynôme annulateur à racines simples

donc : A est diagonalisable.

Q31) � Mn est un polynôme en M et A = Mn à partir d'un certain rang, donc A est un polynôme en M .
Donc N = M −A est un polynôme en M .

Comme deux polynômes en M commutent, alors : N et A commutent.

� A partir d'un certain rang, on a : Mn = A

Donc
n∑

k=0

(Mk −Mk+1) = M0 −Mn+1 = M −A = N par télescopage.

D'autre, part, en utilisant la relation de récurrence dé�nissant (Mn) : N =
n∑

k=0

P (Mk)P
′(Mk)

−1︸ ︷︷ ︸
Mk−Mk+1

Comme P (Mk) = (P (M))2
k

Bk alors : N =
n∑

k=0

(P (M))2
k

BkP
′(Mk)

−1

Comme tout commutent et que l'on a des polynôme en M alors : N = P (M)T (M) avec T un polynôme de C[X]

Comme P (M)q = 0 et que Nq = (P (M))q(T (M))q alors Nq = 0

On a bien : N est nilpotente.

Q32) L'énoncé nous propose d'utiliser le DL de
√
1 + x, ce qui nous amène à poser :

Rq(X) =
q∑

k=0

(−1)k+1bkX
k

Il reste à montrer que S(X) = 1 +X − (Rq(X))2 est divisible par Xq
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Comme deg(Rq) = q ≥ 1 alors deg(S) = 2q, on peut donc écrire S(X) =
2n∑
k=0

σkX
k

S est non nul à cause du terme de degré 2n qui est non nul par exemple, donc on peut poser :

k0 = min({k ∈ J0, 2nK , σk ̸= 0} et on a alors : S(X) =
2n∑

k=k0

σkX
k

Avec cette écriture, au voisinage de x = 0 : S(x) ∼ σk0x
k0

D'autre part S(x) = (1 + x)− (Rq(x))
2 = (

√
1 + x+Rq(x))(

√
1 + x−Rq(x))

Mais, par dé�nition de Rq et Taylor-Young :
√
1 + x−Rq(x) = o(xq)

Comme on a aussi
√
1 + x+Rq(x) = O(1) alors, par produit : S(x) = o(xq)

Alors S(x) = o(xq) et S(x) ∼ σk0x
k0 donc k0 ≥ q

On a alors : S(X) =
2n∑

k=k0

σkX
k = Xq

2n∑
k=k0

σkX

≥0︷ ︸︸ ︷
k − q et donc S est divisible par Xq

Bilan : ∃Rq ∈ R[X] , Xq divise 1 +X −Rq(X)2

Q33) Comme Xq divise 1 +X −Rq(X)2 alors 1 +X −Rq(X)2 = XqH(X) avec H ∈ R[X]
Evaluer en N : Iq +N −Rq(N)2 = NqH(N) et comme Nq = 0 alors Iq +N = Rq(N)2

Donc Rq(N) est une racine carrée de IqN .

Avec l'expression trouvée en Q32) : Si N est nilpotente :
q∑

k=0

(−1)k+1bkN
k est une racine carrée de Iq +N .

Q34) � Comme M est à valeurs propres réelles, alors P ∈ R[X] et, par construction, les matrices Mn sont dans

Mq(R). Donc A et N sont à coe�cients réels.

� On a toujours P qui est un polynôme annulateur scindé simple de A. Comme de plus P ∈ R[X] alors :

A est diagonalisable dans Mq(R).

Q35) Comme P est un polynôme annulateur de A et que rac(P ) = sp(M) alors on en déduit : sp(A) ⊂ sp(M)

Comme sp(M) ⊂]0,+∞[ alors sp(A) ⊂]0,+∞[

Q36) � Comme A est diagonalisable et que sp(A) ⊂]0,+∞[ alors ∃(λ1, . . . , λn) ∈ R∗
+ et P ∈ GLq(R) tel que :

A = Pdiag(λ1, . . . , λq)P
−1

Si on pose rA = Pdiag(
√
λ1, . . . ,

√
λq)P

−1 alors r2A = A donc rA est une racince carrée de A.
Il existe au moins une racine carrée de A (sans doute pas unique).

� On peut alors dé�nir, comme en Q18), la suite (An) par :

{
A0 = Iq

∀n ∈ N , An+1 = 1
2

(
An +AA−1

n

)
Et on sait de même que (An) converge vers rA = A′ qui est une racine carrée de A.

� Comme sp(A) ⊂ R+
∗ alors 0 /∈ sp(A) et donc A est inversible.

On a alors : M = A+N = A−1(Iq +A−1N)
Comme A et N commutent A−1 et N aussi, donc (A−1N)q = A−qNq = 0 donc A−1N est nilpotente.

Par application de Q33) : Rq(A
−1N) est une racine carrée de Iq +A−1N

On pose : rM = A′Rq(A
−1N) Par commutativité (polynôme en M) r2M = A′2Rq(A

−1N)2 = A(Iq+A−1N) = M

A′Rq(A
−1N) est une racine carrée de M .
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