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Chapitre 18 : Convergence dominée et intégrales à

paramètres

Enoncé, Exercice 18.1

Déterminer lim
n→+∞

+∞∫
0

nln(1+ x
n
)

x(1+x2)
dx

On pourra commencer par montrer que ∀u > −1 , ln(1 + u) ≤ u

Correction

� Commençons par montrer l'inégalité proposée.

On pose ∀u > −1 , A(u) = u− ln(1 + u) qui est dérivable sur ]− 1,+∞[ avec A′(u) = 1− 1
1+u = u

1+u

On a donc le tableau de variation suivant :

u −1 0 1

A′(u) - 0 +

A(u) ↘ ↗
0

On en déduit : ∀u > −1 , A(u) ≥ 0 ⇔ ln(1 + u) ≤ u

� Posons maintenant I =]0,+∞[ et ∀n ∈ N∗ :
fn : I −→ R

x 7→ nln(1+ x
n
)

x(1+x2)

Pour x ∈ I , fn(x) =
nln(1+ x

n
)

x(1+x2)
∼

n→+∞
n x

n
x(1+x2)

∼
n→+∞

1
1+x2

On pose alors : ∀x ∈ I , F (x) = 1
1+x2 qui est bien continue par morceaux sur I.

On a donc (fn) converge simplement vers F sur I.

En utilisant l'inégalité démontrer en préambule, on a : ∀n ∈ N∗ , ∀x ∈ I , |fn(x)| ≤
n x

n
x(1+x2)

= F (x)

Or, pour A > 0 :
A∫
0

F (x)dx =
A∫
0

1
1+x2dx = Arctan(A)−Arctan(0) −→

A→+∞
π
2 , donc F est intégrable sur

I et
+∞∫
0

F (x)dx = π
2

On a donc:


la suite (fn)n≥1 est une suite de fonctions continues par morceaux sur I

(fn)n≥1 converge simplement sur I vers F une fonction continue par morceaux sur I

∀n ∈ N∗ , ∀x ∈ I , |fn(x)| ≤ F (x) et F est intégrable sur I
On peut alors appliquer le théorème de convergence dominée et on a :

F et les Fn sont intégrables sur I et :

lim
n→+∞

∫
I

fn(x)dx =
∫
I

lim
n→+∞

fn(x)dx ⇒ lim
n→+∞

∞∫
0

nln(1+ x
n
)

x(1+x2)
dx =

+∞∫
0

F (x)dx

Et donc lim
n→+∞

+∞∫
0

nln(1+ x
n
)

x(1+x2)
dx = π

2
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Enoncé, Exercice 18.2

Démontrer
1∫
0

ln(t)
t−1 dt =

+∞∑
n=1

1
n2

Correction

Posons I =]0, 1[ et ∀t ∈ I , S(t) = ln(t)
1−t

Il est facile de voir que S est continue par morceaux sur I.

Comme d'après le cours sur les séries entières : ∀t ∈ I , 1
1−t =

+∞∑
n=0

tn on a : S(t) = ln(t)
1−t =

+∞∑
n=0

ln(t)tn

On pose alors : ∀n ∈ N ,
fn : I −→ R

t 7→ ln(t)tn

Soit ε > 0 alors :
1∫
ε
ln(t)tndt = [ln(t) t

n+1

n+1 ]
1
ε −

1∫
ε

1
t
tn+1

n+1 dt = 0− ln(ε) ε
n+1

n+1 −
1∫
ε

tn

n+1dt = ln(ε) ε
n+1

n+1 − [ tn+1

(n+1) ]
1
ε −→
n→+∞

−1
(n+1)2

On en déduit que fn est continue par morceaux et intégrable sur I et de plus
∫
I

fn = −1
(n+1)2

On remarque que
∑∫

I

|fn| =
∑ 1

(n+1)2
est convergente.

On a alors :


les fonctions fn sont continues par morceaux et intégrables sur I
+∞∑
n=0

fn converge simplement vers S sur I et S est continue par morceaux sur I∑∫
I

|fn| est convergente

On peut alors appliquer le théorème d'intégration terme à terme et on obtient :∑
fn et donc S est intégrable sur I,

∑∫
I

fn est convergente et surtout :
∫
I

+∞∑
n=0

fn(t)dt =
+∞∑
n=0

∫
I

fn(t)dt

Compte tenu des calculs déjà e�ectués on a :
∫
I

S(t)dt =
+∞∑
n=0

−1
(n+1)2

dt

On fait un changement d'indice dans la somme de droite et on obtient :
1∫
0

ln(t)
1−t dt = −

+∞∑
n=1

1
n2

En multipliant par −1 on a bien :
1∫
0

ln(t)
t−1 dt =

+∞∑
n=1

1
n2
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Enoncé, Exercice 18.3

Montrer que :
+∞∫
0

cos(x)
ex+1 dx =

+∞∑
k=1

(−1)k+1k
1+k2

Correction

Posons I = [0,+∞[ et ∀x > 0 , S(x) = cos(x)
ex+1

Pour x ∈ I on a : 1
ex+1 = e−x

1+e−x et comme e−x ∈]0, 1[, on peut utiliser le résultat du cours :

∀u ∈]− 1, 1[ , 1
1+u =

+∞∑
k=0

(−1)kuk avec u = e−x

On a donc 1
ex+1 = e−x

+∞∑
k=0

(−1)k(e−x)k =
+∞∑
k=0

(−1)ke−(k+1)x

En e�ectuant le changement d'indice n = k + 1 et en multipliant par cos(x) on obtient :

∀x ∈ I , S(x) =
+∞∑
n=1

(−1)n−1e−nxcos(x)

On pose alors : ∀n ∈ N∗ , :
fn : [0; +∞[ −→ R

t 7→ (−1)n−1e−nxcos(x)
Etudions l'intégrabilité de fn sur I. Soit A > 0.

A∫
0

fn(t)dx

=
A∫
0

(−1)n−1e−nxcos(x)dx

=
A∫
0

(−1)n−1e−nxRe(eix)dx

= Re(
A∫
0

(−1)n−1e−nxeixdx)

= (−1)n−1Re(
A∫
0

e(i−n)xdx)

= (−1)n−1Re([ e
(i−n)x

i−n ]A0 )

= (−1)n−1Re( e
(i−n)A

i−n − 1
i−n) −→

A→+∞
(−1)n−1( 1

n−i) = (−1)n−1Re( n+i
1+n2 ) =

(−1)n−1n
1+n2

On a donc
∫
I

fn convergente et
∫
I

fn = (−1)n−1n
1+n2

De plus :

∣∣∣∣∫
I

fn

∣∣∣∣ = n
1+n2 ≤

∫
I

|fn|

n
1+n2 ∼ 1

n > 0, alors par la règle de l'équivalent pour les séries à termes positifs, comme
∑ 1

n est une

série de Riemann divergente, on a :
∑ n

1+n2 divergente, et par comparaison
∑∫

I

|fn| est divergente et on

ne peut pas appliquer le théorème d'intégration terme à terme !!!

On va donc passer par les sommes partielles de S.
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Posons donc : ∀N ∈ N∗ , SN (x) =
N∑

n=1
(−1)n−1e−nxcos(x) =

N∑
n=1

fn(x)

On a déjà démontrer que (Sn) convergeait simplement vers S sur I.

De plus comme à x > 0 �xé (e−nx)n∈N∗ est une suite décroissante tendant vers 0, alors on peut

appliquer le théorème spécial à certaines séries alternées et on a : ∀x ∈ I , |SN (x)| ≤ |f1(x)|, comme f1
est intégrable sur I alors on a l'hypothèse de domination pour la suite (SN ).

On a :


• (SN )n∈N∗ est une suite de fonctions continues par morceaux sur I

convergeant simplement vers la fonction continue par morceaux S sur I

• ∀N ∈ N∗ , ∀x ∈ I , |SN (x)| ≤ |f1(x)| et f1 est intégrable sur I
On peut donc appliquer le théorème de convergence dominée et on en déduit : S est intégrable sur I et

lim
N→+∞

∫
I

SN (t)dt =
∫
I

lim
N→+∞

SN (x)dx

⇒ lim
N→+∞

∫
I

N∑
n=1

fn(x)dx =
∫
I

lim
N→+∞

SN (x)dx

⇒ lim
N→+∞

N∑
n=1

∫
I

fn(x)dx =
∫
I

S(x)dx

⇒ lim
N→+∞

N∑
n=1

(−1)n−1n
1+n2 =

∫
I

S(x)

⇒
+∞∑
n=1

(−1)n−1n
1+n2 =

∫
I

cos(x)
1+ex dx

On a donc bien :
+∞∫
0

cos(x)
ex+1 dx =

+∞∑
k=1

(−1)k+1k
1+k2

On a la conclusion du théorème d'intégration terme à terme mais celui-ci n'est pas applicable, on a

utiliser le théorème de convergence dominée pour les sommes partielles.

Enoncé, Exercice 18.4

On dé�nit la fonction Gamma d'Euler par : Γ(x) =
+∞∫
0

tx−1e−tdt

a) Donner le domaine de dé�nition I de Γ
b) Etudier la continuité de Γ
c) Etudier le caractère C1 de Γ
d) Etudier le caractère C∞ de Γ
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Correction

a) Soit x ∈ R �xé, étudions la convergence de Γ(x).
Comme t 7→ tx−1e−t est continue sur ]0,+∞[ alors, il y a éventuellement problème pour l'intégrale aux

bornes 0 et +∞.

En 0 : tx−1e−t ∼ 1
t1−x > 0 donc par la règle de l'équivalent pour les intégrales de fonctions positives

on a :
1∫
0

tx−1e−tdt de même nature que
1∫
0

1
t1−xdt qui est une intégrale de Riemann convergente

si et seulement si 1− x < 1 ⇔ x > 0 Donc
1∫
0

tx−1e−tdt est convergente si et seulement si x > 0

En +∞ : tx−1e−t = o( 1
t2
) et t 7→ 1

t2
est intégrable sur [1,+∞[ donc par négligeabilité t 7→ tx−1e−t est

intégrable sur [1,+∞[.

Donc
+∞∫
1

tx−1e−tdt est convergente pour tout x > 0

Bilan: Γ(x) est convergente si et seulement si x > 0 et donc I =]0,+∞[

b) Posons
f : I2 −→ R

(x, t) 7→ tx−1e−t , ainsi ∀x ∈ I , Γ(x) =
∫
I f(x, t)dt

Soit [a, b] un segment inclus dans I et x ∈ [a, b].
x ∈ [a, b] ⇒ a ≤ x ≤ b ⇒ a− 1 ≤ x− 1 ≤ b− 1

Alors t ∈]0, 1[⇒ ln(t) < 0 et donc a− 1 ≤ x− 1 ⇒ (a− 1)ln(t) ≥ (x− 1)ln(t), on prend l'exponentielle

qui est croissante et on a : exp((a− 1)ln(t)) ≥ exp((x− 1)ln(t)) donc 0 ≤ tx−1 ≤ ta−1

Alors t ∈ [1,+∞[⇒ ln(t) ≥ 0 et donc x−1 ≤ b−1 ⇒ (x−1)ln(t) ≥ (b−1)ln(t), on prend l'exponentielle

qui est croissante et on a : exp((x− 1)ln(t)) ≥ exp((b− 1)ln(t)) donc 0 ≤ tx−1 ≤ tb−1

On a donc ∀t ∈ I ,∀x ∈ [a, b] ,

{
0 ≤ tx−1 ≤ ta−1 si t ∈]0, 1[
0 ≤ tx−1 ≤ tb−1 si t ∈]1,+∞[

Comme ta−1 ≤ ta−1 + tb−1 et tb−1 ≤ ta−1 + tb−1 on a donc ∀t ∈ I , ∀x ∈ [a, b] , 0 ≤ tx−1 ≤ ta−1 + tb−1 et

en multipliant par e−t > 0 on a : 0 ≤ f(x, t) ≤ e−t(ta−1 + tb−1)

Posons ∀t ∈ I , φ(t) = e−t(ta−1 + tb−1) = f(a, t) + f(b, t), alors φ est continue par morceaux sur I et

intégrable sur I par le a) comme somme de deux fonctions intégrables.

On a donc :


∀x ∈ [a, b] , t 7→ f(x, t) est continue sur [a, b]

∀t ∈ I , x 7→ f(x, t) est continue par morceaux sur I

∀(x, t) ∈ [a, b]× I , |f(x, t)| ≤ φ(t) et φ est intégrable sur I

On peut alors appliquer le théorème de continuité sous le signe somme et on a Γ qui est continue sur [a, b]

Comme I =
⋃

[a,b]⊂I

[a, b] (I est la réunion de ses segments), alors Γ est continue sur I

c) On remarque que f est C∞ sur I2 et que On a ∀(x, t) ∈ I2 , ∂f
∂x (x, t) = ln(t)tx−1e−t

Soit [a, b] ⊂ I. Alors, en réutilisant le résultat du a) :

∀(x, t) ∈ [a, b]× I ,
∣∣∣∂f∂x (x, t)∣∣∣ ≤ |ln(t)| (ta−1 + tb−1)e−t
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Posons ∀t ∈ I , Ψ(t) = |ln(t)| (ta−1 + tb−1)e−t

� Au voisinage de +∞ : Ψ(t) = o( 1
t2
) et comme t 7→ 1

t2
est intégrable sur [1,+∞[ alors, par

négligeabilité, Ψ est intégrable sur [1,+∞[

� Au voisinage de 0 : Ψ(t) ∼ |ln(t)| ta−1 = ln(t)
t1−a

On a a > 0 et donc 1 − a < 1. On peut donc choisir α ∈]1 − a, 1[ et on a :
ln(t)

t1−a
1
tα

= ln(t)tα−(1−a) −→
t→0

0

puisque α− (1− a) > 0
Au voisinage de 0 on a donc : Ψ(t) = o( 1

tα ) et comme α < 1 donne t 7→ 1
tα intégrable sur ]0, 1] alors, par

négligeabilité, Ψ est intégrable sur ]0, 1]

Ψ est intégrable sur ]0, 1] et sur [1,+∞[ donc Ψ est intégrable sur ]0,+∞[= I

On a donc :

∀x ∈ [a, b] , t 7→ f(x, t) est continue par morceaux et intégrable sur I

∀t ∈ I , x 7→ f(x, t) est de classe C1 sur I

∀x ∈ [a, b] , t 7→ ∂f
∂x (x, t) est continue par morceaux sur I

il existe une application Ψ continue par morceaux et intégrable sur I telle que :

∀(x, t) ∈ [a, b]× I ,
∣∣∣∂f∂x (x, t)∣∣∣ ≤ Ψ(t)

on peut donc appliquer le théorème de dérivation sous le signe somme de Leibniz et on a :

Γ est de classe C1 sur [a, b] et ∀x ∈ [a, b] , Γ′(x) =
∫
I

∂f
∂x (x, t)dt

Comme ce résulat est valable pour segment inclu dans I, on a :

Γ est de classe C1 sur I et ∀x ∈ I , Γ′(x) =
∫
I

∂f
∂x (x, t)dt =

+∞∫
0

ln(t))tx−1e−tdt

d) On sait que f est C∞ sur I2 et on remarque que : ∀k ∈ N , ∀(x, t) ∈ I2 , ∂kf
∂xk (x, t) = (ln(t))ktx−1e−t

Soit [a, b] ⊂ I. Alors, en réutilisant le résultat du a) :

∀k ∈ N , ∀(x, t) ∈ [a, b]× I ,
∣∣∣∂kf
∂xk (x, t)

∣∣∣ ≤ |ln(t)|k (ta−1 + tb−1)e−t

Posons ∀t ∈ I , Ψk(t) = |ln(t)|k (ta−1 + tb−1)e−t

On montre comme au c) que Ψk est continue par morceaux et intégrable sur I.

Par application de la règle de comparaison pour les fonctions positives on a : ∀x ∈ [a, b] , t 7→ ∂kf
∂xk (x, t)

est intégrable sur I.

On a donc



• ∀t ∈ I , x 7→ f(x, t) est de classe Ck sur A

• ∀x ∈ [a, b] ∀i ∈ J1; k − 1K , t 7→ ∂if
∂xi (x, t) est continue par morceaux et intégrable sur I

• ∀x ∈ A , t 7→ ∂kf
∂xk (x, t) est continue par morceaux sur I

• il existe une fonction Ψk intégrable sur I telle que :

∀(x, t) ∈ A× I ,
∣∣∣∂kf
∂xk (x, t)

∣∣∣ ≤ Ψk(t)(Hypothèse de domination)

On peut application la généralisation du théorème de dérivation sous le signe somme et on a donc que

la fonction Γ est de classe Ck sur [a, b] et véri�e ∀x ∈ [a, b] , ∀i ∈ J1; kK , Γ(i)(x) =
∫
I

∂if
∂xi (x, t)dt

Comme ce résultat est valable pour tout [a, b] ⊂ I et pour tout k ∈ N on a donc :

Γ est C∞ sur I =]0,+∞[ et ∀k ∈ N , ∀x ∈]0,+∞[ , Γ[k)(x) =
+∞∫
0

(ln(t))ktx−1e−tdt
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