PSI* 2025-2026

Chapitre 18 : Convergence dominée et intégrales a
parameétres

Enoncé, Exercice 18.1

nln(1+ )
Déterminer nll)g{loo f (o) d

On pouwrra commencer par montrer que Yu > —1 , In(l1+u) < u

Correction
e Commencgons par montrer 1'inégalité proposée.
On pose Vu > —1, A(u) = u — In(1 4 u) qui est dérivable sur | — 1, 4+o00[ avec A'(u) =1 — HLU =1
U -1 0 1

Al(u) - 0+
On a donc le tableau de variation suivant :

Au) N

0

On en déduit : Vu > -1, A(u) >0« In(l+u) <u

) fn o I — R
e Posons maintenant I =]0, +oo[ et ¥n € N* : nin(1+2)
T z(1+a2)
nin(1+72) n 1

Pour x € T, fn(x) = 2(1+22) nﬁr\jroo z(1+22) n*;\ioo 1422

On pose alors : Ve € I | F(z) = Hlmg qui est bien continue par morceaux sur I.
On a donc (fy,) converge simplement vers F sur I.

En utilisant I'inégalité démontrer en préambule, on a: Vn e N* | Ve e I, |f,(z)] < x(ﬁ:ﬂ) = F(x)
A A
Or, pour A>0: [ F(z)dz = leg = Arctan(A) — Arctan(0) — 7§, donc I’ est intégrable sur
0 0 A—4o00
+oo
ITet [ F(x)de=7%
0

la suite (fn)n>1 est une suite de fonctions continues par morceaux sur /
On a donc: ¢ (fn)n>1 converge simplement sur I vers F' une fonction continue par morceaux sur [

VneN*, Ve el, |fo(x)] < F(x) et F est intégrable sur [
On peut alors appliquer le théoréme de convergence dominée et on a :
F et les F), sont intégrables sur I et :
In(1 o
lim ffn )dx = f hm fo(z)dz = lim f n n1+;))dx = g F(z)dx

n——+o0o n—+00 g

Et donc| lim f [onin(t 2 )d

n—+oo 1+932)




Enoncé, Exercice 18.2

—

+oo 1
Démontrer f > oz
0 n=1

Correction

Posons I =|0,1[et VYt € I, S(t) = %
Il est facile de voir que S est continue par morceaux sur [.

+00 too
Comme d’aprés le cours sur les séries entieres : Vt € 1, 1> = > t"ona: S(t) = % = > In(t)t"
n=0 n=0
fn I — R
1 :
On pose alors : Vn € N | t oo In(o)em
. Soit € > 0 alors : .
- t’n+1 1¢ En+1 tn+1 1 —1
Efln(t)t”dt = U n+1 !? dt = 0 ! 5) nt1 - [(n+1)]€ n_>_+>oo (n+1)2

On en déduit que f, est continue par morceaux et intégrable sur I et de plus [ f, =

(n+1)?
On remarque que » }f 1ol =2 & +1)2 est convergente.
les fonctions f, sont continues par morceaux et intégrables sur [
+o0o
On a alors : ¢ 2 fn converge simplement vers S sur I et S est continue par morceaux sur [
n=0

Zf |fn| est convergente
I
On peut alors appliquer le théoréme d’intégration terme a terme et on obtient :

+o0 +oo
> fn et donc S est intégrable sur I, > [ f,, est convergente et surtout : [ > fu(t)dt = > [ fn(t)dt
T

I n=0 n=0J
“+oo
Compte tenu des calculs déja effectués on a : {S(t)dt = nz_: (n+1)2 dt
! In(t) T
On fait un changement d’indice dans la somme de droite et on obtient : [ F°Fdt = — 3 n%
0 n=1

1 00
En multipliant par —1 on a bien : | [ %dt =Y 5
0




Enoncé, Exercice 18.3

+0o0o +00

Montrer que : [ cos() g, — 3 (=DFH 'k
0

1+k2

Correction

Posons I = [0, 400 et Yo >0 ,5(x) = cos(x)

1
Pour z € I on a : ﬁ = % et comme e~ % €]0,1[, on peut utiliser le résultat du cours :
Yu €] —1,1], 141ru = Jio(—l)kuk avec u = e~ 7
0 +00 +00
On a donc ﬁ =e @ kz_:o(—l)k(e_x)k = kZ::O(—l)ke_(k“)x

En effectuant le changemen;d’indice n =k + 1 et en multipliant par cos(z) on obtient :

Veel, S(x)= Jrfzo(—l)"_le_”xcos(x)

n=1

On pose alors : Vn € N* | Jno o {05 o0 : R

t (1) le " cos(z)
Etudions I'intégrabilité de f,, sur I. Soit A > 0.

(—1)"le " Re(e®)dx
A .

= Re([(-1)""te e dx)
0

A
= (—1)"'Re([ ei=™2dx)
0

(—1)" ' Re ([ 1y

i—n
_ -1 (i-n)A 1 —1/_ 1y _ -1 iy (=t
o (—1)” Re(e i-n ﬁ) A—>—+>oo (—1)” (E) - (_1)n Re(11t32> - ( 1—)&-n2 =
—1 n—1
On a donc [ fn convergente et If fn = (IJ)FW"
De plus : ffn = 1_:Ln2 < f|fn‘
T T

1f7 ~ % > 0, alors par la régle de l’équivalent pour les séries & termes positifs, comme Z% est une

série de Riemann divergente, on a : »_ H% divergente, et par comparaison Y [|f,| est divergente et on
T

ne peut pas appliquer le théoréme d’intégration terme a terme !!!

On va donc passer par les sommes partielles de S.



n=1

N N
Posons donc : VN € N* | Sy(x) = > (—=1)" te™@cos(x) = Z n(T)
On a déja démontrer que (S,,) convergeait simplement vers S sur I_

De plus comme & > 0 fixé (e7™),cn+ est une suite décroissante tendant vers 0, alors on peut
appliquer le théoréme spécial & certaines séries alternées et on a : Vo € I | |Sy(x)| < |f1(z)], comme f;
est intégrable sur I alors on a I’hypothése de domination pour la suite (Sy).

o (SN)nen+ est une suite de fonctions continues par morceaux sur
On a : convergeant simplement vers la fonction continue par morceaux S sur [

e VN eN* Vxel, |Sv(z) <|fi(z)| et fi est intégrable sur I
On peut donc appliquer le théoréme de convergence dominée et on en déduit : S est intégrable sur I et
lim fSN(t)dt = Ile—igloo Sy (x)dx

= lim fon Jdz = [ lim Sy(z)dz

N—+oc0 I n=1 T N—+o00
= lim Ydzx = [ S(x)dz
N—+oo nzl ! fn f
N )n 1
= lim S(x
N—>+oo Z1 - Lke? f

= Z " =/ Trerda

+
. . cos(x) o (—1)k+1k
On a donc bien : of o dr = § T

On a la conclusion du théoréme d’intégration terme & terme mais celui-ci n’est pas applicable, on a
utiliser le théoréme de convergence dominée pour les sommes partielles.

Enoncé, Exercice 18.4

+oo
On définit la fonction Gamma d’Euler par : T'(z) = [ ¢~ le~tdt
0
a) Donner le domaine de définition I de T’
b) Etudier la continuité de I’
c) Etudier le caractére C! de T

d) Etudier le caractére C* de I'




Correction

a) Soit x € R fixé, étudions la convergence de I'(z).
Comme t +— t*le~! est continue sur |0, +oo[ alors, il y a éventuellement probléme pour l'intégrale aux
bornes 0 et +o0.

EnoO: t* le7t ~ tll,l. > 0 donc par la régle de I’équivalent pour les intégrales de fonctions positives

1 1
ona: [t" te7'dt de méme nature que [ i-dt qui est une intégrale de Riemann convergente
0 0

1
si et seulement si 1 —z <1< 2 >0 Donc ftﬁ_le_tdt est convergente si et seulement si x > 0
0

En +o0: t*7le™ = o(%) et t — 75 est intégrable sur [1,+oo[ donc par négligeabilité ¢ - t" "' est
intégrable sur [1, +ool.

+oo
Donc [ t*~le~tdt est convergente pour tout x > 0
1

Bilan: I'(z) est convergente si et seulement si z > 0 et donc | I =|0, +00]

f I? — R

b) Posons (2.1) > folet

ainsi Vx € I, T'(z f[

Soit [a, b] un segment inclus dans I et x € [a, b].
r€la,b=a<zr<b=a-1<z-1<b-1

Alors t €]0,1[= In(t) < 0et donca—1<z—1= (a—1)In(t) > (x —1)In(t), on prend 'exponentielle
qui est croissante et on a : exp((a — 1)in(t)) > exp((z — 1)In(t)) donc 0 < t#~1 < o1

Alorst € [1,+o0[= In(t) > 0Oet donc x—1 < b—1 = (x—1)In(t) > (b—1)In(t), on prend 'exponentielle
qui est croissante et on a : exp((z — 1)In(t)) > exp((b — 1)In(t)) donc 0 < t*~1 < v~1

0<tr=t <t tsiteg)o, 1]

0 <t L <=l sit €]l +oof

Comme ¢~ 1 < o1 4 0=t t9=1 <21 1 =T on a donc V¢t € I ,Va € [a,b] , 0 < t*7 L <ot 4 0= 1 et
en multipliant par e™* >0ona: 0 < f(z,t) < e t(t2 1 +¢071)

On a donc Vt € I ,Vx € [a,b] ,

Posons Vt € I, ¢(t) = e t(t* 1 +t*=1) = f(a,t) + f(b,1), alors ¢ est continue par morceaux sur I et
intégrable sur I par le a) comme somme de deux fonctions intégrables.

Vz € [a,b] , t— f(x,t) est continue sur [a, b]
On adonc: ¢Vtel, x> f(x,t) est continue par morceaux sur [
V(z,t) € [a,b] x I, |f(x,t)| < ¢(t) et ¢ est intégrable sur I
On peut alors appliquer le théoréme de continuité sous le signe somme et on a I' qui est continue sur [a, b]

Comme I = |J [a,b] (I est la réunion de ses segments), alors | T est continue sur I |
[a,b]CT

c¢) On remarque que f est C™ sur I? et que On a V(z,t) € I? , &E Lz, t) = In(t)t*te

Soit [a,b] C I. Alors, en réutilisant le résultat du a) :
V(1) € [a,b] x T, |5 (@, 0)] < lim(0)] @27t + 01t




Posons Vt € I, U(t) = [In(t)| (t¢ L +tb-1)e™!

e Au voisinage de 400 : W(t) = o(;;) et comme ¢ — 7 est intégrable sur [1,+oo| alors, par
négligeabilité, ¥ est intégrable sur [1,4o00]
e Au voisinage de 0 : U(t) ~ |In(t)|t* ! = ?fgt(z

Onaa >0 et donc1—a< 1. On peut donc choisir a €]1 —a,1[ et on a : L% = In(t)t* (1~ v 0
@ —

puisque « — (1 —a) >0
Au voisinage de 0 on a donc : ¥()

pu— ta
négligeabilité, ¥ est intégrable sur |0,

o(;%) et comme a < 1 donne ¢ — & intégrable sur ]0, 1] alors, par
1

U est intégrable sur ]0,1] et sur [1,4o00[ donc U est intégrable sur |0, +-o00[= I

On a donc :
Vz € [a,b] , t — f(x,t) est continue par morceaux et intégrable sur I

Vte I, xws f(z,t) est de classe O sur I
Vo € la,b] , t — g—i(a},t) est continue par morceaux sur [
il existe une application ¥ continue par morceaux et intégrable sur I telle que :
Y(z,t) € [a,b] x T | }%(x,t)( 210
on peut donc appliquer le théoréme de dérivation sous le signe somme de Leibniz et on a :
I est de classe C! sur [a,b] et Vz € [a,b] , I'(z) = [ %(x,t)dt
I

Comme ce résulat est valable pour segment inclu dans I, on a :

+oo
[ est de classe Clsur T et Vo e I, T'(z) = [ g—i(m,t)dt = [ In@t)t* e tdt
T 0

d) On sait que f est C™ sur I? et on remarque que : Yk € N, V(z,t) € I? | %(m,t) = (In(t))kt*=1e

Soit [a,b] C I. Alors, en réutilisant le résultat du a) :
VkeN, Y(z,t) € [a,b] x I, ﬁ(x,t)‘ < |in(t)[* (191 4 tb-L)et

oxk

Posons Vt € I, Wy (t) = |In(t)[F (121 + tv=1)e?

On montre comme au ¢) que Wy est continue par morceaux et intégrable sur I.

Par application de la regle de comparaison pour les fonctions positives on a : Vz € [a,b] , t +— %(m,t)
est intégrable sur I.

eVtc I, xw f(x,t) est de classe C¥ sur A
eVr€lab)Vie[l;k—1], t— g;{ (z,t) est continue par morceaux et intégrable sur I

k
Onadonc{eVre A, t— %(z,t) est continue par morceaux sur
e il existe une fonction ¥y intégrable sur [ telle que :

V(z,t) e AXT, %(w,t)‘ < U, (t)(Hypothése de domination)

On peut application la généralisation du théoreme de dérivation sous le signe somme et on a donc que
la fonction I' est de classe C* sur [a, b] et vérifie Va € [a,b] , Vi € [1;k] , T (z) = %(w,t)dt
I

Comme ce résultat est valable pour tout [a,b] C I et pour tout k € N on a donc :

+oo
T est O sur I =0, +oo[ et Vk € N, Va €]0, +oo[ , T¥)(z) = [ (In(t))Ft*letdt
0




