
PSI* 2025-2026

Chapitre 17 : Equation di�érentielles linéaires scalaire

fonction de la variable réelle à valeurs dans Rn

Enoncé, Exercice 17.1

Résoudre sur I =]− 1;+∞[ l'équation di�érentielle : Eq ⇔ (x+ 1)y′(x)− (x− 1)y(x) = 1

Correction

On remarque queEq est une équation di�érentielle linéaire d'ordre 1, à coe�cients continues, d'équation

homogène associée : E0 ⇔ (x+ 1)y′(x)− (x− 1)y(x) = 0
Alors, comme sur I on a x+ 1 ̸= 0, on a : E0 ⇔ y′(x) = x−1

x+1y(x)∫
x−1
x+1dx =

∫
x+1−1−1

x+1 dx =
∫
(1− 2

x+1)dx = x− 2ln(|x+ 1|) = x− 2ln(x+ 1) (car x+ 1 > 0 sur I)
On sait alors d'après le cours que :

E0 ⇔ y(x) = αexp(x− 2ln(x+ 1)) ⇔ y(x) = α ex

(x+1)2
avec α ∈ R

Pour résoudre Eq on va utiliser la méthode de variation de la constante. On cherche donc les solutions

de Eq sous la forme : y(x) = λ(x)y0(x) avec y0(x) =
ex

(x+1)2

Ce changement de fonction inconnue est licite car y0(x) ̸= 0 sur I
Alors y′(x) = λ(x)y′0(x) + λ′(x)y0(x)
On a donc :

Eq ⇔ (x+ 1)y′(x)− (x− 1)y(x) = 1
⇔ (x+ 1)(λ(x)y′0(x) + λ′(x)y0(x))− (x− 1)λ(x)y0(x) = 1
⇔ λ(x)[(x+ 1)y′0(x)− (x− 1)y0(x)] + +(x+ 1)λ′(x)y0(x)) = 1
Mais y0 est solution de E0 donc (x+ 1)y′0(x)− (x− 1)y0(x) = 0 et donc

Eq ⇔ (x+ 1)λ′(x)y0(x) = 1
⇔ (x+ 1)λ′(x) ex

(x+1)2
= 1

⇔ λ′(x) = (x+ 1)e−x on fait une intégration par partie avec des fonctions C1

⇔ λ(x) = [−(x+ 1)e−x] +
∫
e−xdx

⇔ λ(x) = −(x+ 1)e−x − e−x + α avec α ∈ R
⇔ λ(x) = −(x+ 2)e−x + α mais y(x) = λ(x)y0(x)
⇔ y(x) = (−(x+ 2)e−x + α) ex

(x+1)2

⇔ y(x) = − x+2
(x+1)2

+ α ex

(x+1)2

Bilan : Les solutions de Eq sur ]− 1;+∞[ s'écrivent y(x) = − x+2
(x+1)2

+ α ex

(x+1)2
avec α ∈ R
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Enoncé, Exercice 17.2

Trouver les fonctions y de classe C∞ sur R, à valeurs réelles, véri�ant :
∀x ∈ R y′′(x)− 4y′(x) + 13y(x) = 169x

y(0) = 0

y′(0) = 5

Correction

On a une équation di�érentielle linéaire d'ordre 2 à coe�cients constants, et second membre continue

avec conditions initiales. On notera E cette équation di�érentielle.

L'unicité de la solution est assurée par le théorème (de Cauchy) du cours.

L'équation homogène E0 associée est y
′′(x)− 4y′(x) + 13y(x) = 0, comme elle est a coe�cients constants,

on peut considérée son équation caractéristique :

r2 − 4r + 13 = 0 de ∆ = 16− 52 = −36 = (6i)2

Les solutions conjuguées sont donc r1 = 2 + 3i et r2 = 2− 3i

Les solutions de E0 s'écrivent donc y(x) = exp(2x)(Acos(3x) +Bsin(3x)) avec (A,B) ∈ R2

Vu la forme du second membre on va chercher une solution particulière sous la forme

yp(x) = ax+ b avec (a, b) ∈ R2

Alors : yp solution de E sur R
⇔ ∀x ∈ R y′′p(x)− 4y′p(x) + 13yp(x) = 169x
⇔ ∀x ∈ R 0− 4(a) + 13(ax+ b) = 169x or un polynôme nul à tous ses coe�cients nuls

⇔

{
−4a+ 13b = 0

13a = 169
⇔

{
a = 13

b = 4

Une solution particulière de E est donc yp(x) = 13x+ 4

On a une équation di�érentielle linéaire donc la solution générale s'écrit comme la somme d'une

solution particulière et d'une solution de l'équation homogène.

Les solutions de E s'écrivent donc y(x) = 13x+ 4 + exp(2x)(Acos(3x) +Bsin(3x)) avec (A,B) ∈ R2

Alors y′(x) = 13 + 2exp(2x)(Acos(3x) +Bsin(3x)) + exp(2x)(−3Asin(3x) + 3Bcos(3x))
donc y′(0) = 13 + 2A+ 3B. On a aussi : y(0) = 4 +A
Les conditions initiales donnent donc :{
y(0) = 0

y′(0) = 5
⇔

{
4 +A = 0

13 + 2A+ 3B = 5
⇔

{
A = −4

B = 0

Finalement, notre problème de Cauchy admet une unique solution donnée par

∀x ∈ R , y(x) = 13x+ 4− 4e2xcos(3x)
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Enoncé, Exercice 17.3

Déterminer les solutions sur I =]0;+∞[ de E ⇔ x2y′′(x)− xy′(x) + y(x) = 0 en les cherchant sous la

forme : y(x) = xλ(x)

Correction

Remarque préliminaire : E est une équation di�érentielle linéaire d'ordre 2 homogène, à coe�cients

continue sur I (puisque x ̸= 0 sur I) on sait donc que l'ensemble des solutions est un R espace vectoriel

de dimension 2.

Posons ∀x ∈ I , y0(x) = x.
Alors : ∀x ∈ I , x2y′′0(x)− xy′0(x) + y0(x) = 0− x+ x = 0,
y0 est donc une solution particulière de E

Comme y0(x) ̸= 0 sur I on peut utiliser le changement de fonction inconnue :

y(x) = λ(x)y0(x) = xλ(x)
Alors y′(x) = λ(x) + xλ′(x) et y′′(x) = 2λ′(x) + xλ′′(x)

E ⇔ ∀x ∈ I , x2y′′(x)− xy′(x) + y(x) = 0
⇔ ∀x ∈ I , x2(2λ′(x) + xλ′′(x))− x(λ(x) + xλ′(x)) + xλ(x) = 0
⇔ ∀x ∈ I , x3λ′′(x) + (2x2 − x2)λ′(x) = 0
⇔ ∀x ∈ I , xλ′′(x) + λ′(x) = 0

On pose A(x) = λ′(x) pour se ramener à une EDL1

E ⇔ ∀x ∈ I , A′(x) = −1
x A(x)∫ −1

x dx = −ln(x) (car x > 0 sur I) et donc d'après le cours :

E ⇔ ∀x ∈ I , A(x) = aexp(−ln(x))
⇔ ∀x ∈ I , A(x) = λ′(x) = a 1

x avec a ∈ R
⇔ ∀x ∈ I , λ(x) = aln(x) + b avec (a, b) ∈ R2

⇔ ∀x ∈ I , y(x) = axln(x) + bx avec (a, b) ∈ R2

Bilan : les solutions de E sur I s'écrivent y(x) = axln(x) + bx avec (a, b) ∈ R2
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Enoncé, Exercice 17.4

Calculer la dérivée nième de f(x) = (x2 + 1)e2x

Correction

Déjà f est C∞ sur R.
On pose ∀x ∈ R , a(x) = x2 + 1 et b(x) = e2x

Alors a et b sont C∞ et ∀k ∈ N , b(k)(x) = 2ke2x

De plus a′(x) = 2x, a′′(x) = 2 et ∀k ∈ N , k ≥ 3 ⇒ a(k)(x) = 0

Par la formule de Leibniz on a f = ab ⇒ ∀n ∈ N , f (n)(x) =
n∑

k=0

(
n
k

)
a(k)(x)b(n−k)(x)

Avec les calculs précédents :

f (n)(x)

=
2∑

k=0

(
n
k

)
a(k)(x)2n−ke2x

= (x2 + 1)2ne2x + n(2x)2n−1e2x + n(n−1)
2 (2)2n−2e2x

= (x2 + 1)2ne2x + nx2ne2x + n(n−1)
4 2ne2x

= [(x2 + 1) + nx+ n(n−1)
4 ]2ne2x

= [4x2 + 4nx+ (n2 − n+ 4)]2n−2e2x

On remarque que la formule est valable pour n ≤ 2 et donc :

∀n ∈ N , f (n)(x) = [4x2 + 4nx+ (n2 − n+ 4)]2n−2e2x

Enoncé, Exercice 17.5

Soit (α, β) ∈ R2 deux constantes �xés. On pose : ∀t ∈ R , ∆(t) =

∣∣∣∣∣∣
1 cos(t) sin(t)
1 cos(t+ α) sin(t+ α)
1 cos(t+ β) sin(t+ β)

∣∣∣∣∣∣
a) Montrer que la fonction ∆ est constante.

b) En déduire une expression simple de ∆(t)

Correction

a) Le déterminant est multilinéaire et les fonctions coordonnées de la matrice sont dérivables, donc ∆
et dérivable. En utilisant le cours (on dérive les colonnes l'une après l'autre) :

∆′(t) =

∣∣∣∣∣∣
0 cos(t) sin(t)
0 cos(t+ α) sin(t+ α)
0 cos(t+ β) sin(t+ β)

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 −sin(t) sin(t)
1 −sin(t+ α) sin(t+ α)
1 −sin(t+ β) sin(t+ β)

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 cos(t) cos(t)
1 cos(t+ α) cos(t+ α)
1 cos(t+ β) cos(t+ β)

∣∣∣∣∣∣
Quand il y a deux colonnes égales (ou une colonne nulle) un déterminant est nul donc ∆′(t) = 0

Comme on est sur un intervalle : ∆ est constante.
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b) D'après le a) ∀t ∈ R , ∆(t) = ∆(0) On développe par rapport à la première ligne.

∆(0)

=

∣∣∣∣∣∣
1 1 0
1 cos(α) sin(α)
1 cos(β) sin(β)

∣∣∣∣∣∣
=

∣∣∣∣cos(α) sin(α)
cos(β) sin(β)

∣∣∣∣− ∣∣∣∣1 sin(α)
1 sin(β)

∣∣∣∣
= cos(α)sin(β)− cos(β)sin(α) + sin(β)− sin(α) = sin(β − α) + sin(β)− sin(α)

On a donc : ∀t ∈ R , ∆(t) =

∣∣∣∣∣∣
1 cos(t) sin(t)
1 cos(t+ α) sin(t+ α)
1 cos(t+ β) sin(t+ β)

∣∣∣∣∣∣ = sin(β − α) + sin(β)− sin(α)

Enoncé, Exercice 17.6

Résoudre le système di�érentielle suivant : (S) ⇔

{
x′(t) = x(t) + 2y(t)

y′(t) = −3x(t) + 6y(t)

Correction

On pose X(t) =

(
x(t)
y(t)

)
On a alors : X ′(t) = AX(t) avec A =

(
1 2
−3 6

)
Soit PA le polynôme caractéristique de A.

PA(X) = det(XI2 −A) =

(
X − 1 −2

3 X − 6

)
= X2 − 7X + 12 = (X − 3)(X − 4)

λ ∈ sp(A) ⇔ PA(λ) = 0 on en déduit sp(A) = {3; 4}(
x
y

)
∈ ker(A− 3I2) ⇔

{
−2x+ 2y = 0

−3x+ 3y = 0
⇔ x = y donc ker(A− 3I2) = vect(

(
1
1

)
(
x
y

)
∈ ker(A− 4I2) ⇔

{
−3x+ 2y = 0

−3x+ 2y = 0
⇔ −3x+ 2y = 0 donc ker(A− 4I2) = vect(

(
2
3

)
A est diagonalisable. On obtient une base diagonalisant A par réunion des bases des sous-espaces

propres. Par la formule de changement de bases : A = PDP−1 avec P =

(
1 2
1 3

)
et D =

(
3 0
0 4

)
Alors : (S) ⇔ X ′(t) = AX(t) ⇔ X ′(t) = PDP−1X(t). On multiplie à gauche par P−1 et on pose

Y (t) =

(
u(t)
v(t)

)
= P−1X(t)

Donc (S) ⇔ P−1X ′(t) = DP−1X(t) ⇔ Y ′(t) = DY (t) ⇔

{
u′(t) = 3u(t)

v′(t) = 4v(t)

On a deux équation di�érentielle linéaire d'ordre 1 à coe�cients constants homogène.

Donc d'après le cours :

{
u(t) = aexp(3t)

v′(t) = bexp(4t)
avec (a, b) ∈ R2

Y = P−1X ⇒ X(t) = PY (t) ⇒

{
x(t) = ae3t + 2be4t

y(t) = ae3t + 3be4t
On a bien les solutions du système cherché.
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