PSI* 2025-2026

Chapitre 18 : Théorémes de convergence dominée ;
intégrales & parametres

Dans ce chapitre, les fonctions sont de la variable réelle et & valeurs dans K avec K =R ou C.

1 Suites et séries de fonctions intégrables

1.1 Théoréme de convergence dominée
1.1.1 Théoréme

Théoréme . Soit I un intervalle de R et (f, : I — K)nen une suite de fonctions continues par morceaux sur I.
Alors :

1) (fn)nen converge simplement vers une fonction notée f : I — K continue par morceauz sur I
i1) il existe une fonction ¢ : I — K telle que ¢ est intégrable sur I etVn e N, YVt e I, |fn(t)] < o(t)

les fonctions f, et la fonction f sont intégrables sur I
= g .
n(t)dt — t)dt
[ fultyde > [ 0

preuve : HP théoréme de convergence dominée de Lebesgue, utilise la théorie de la mesure de Lebesgue ...

Remarques. Autre écriture : ngrfw{fn(t)dt = Ifngrfoo fu(t)dt

L’hypothese ii) s’appelle hypothese de domination

1.1.2 Exemple

Btudions lim | o2
tudions lim [ remityee @

1.1.3 Contre-exemple

1
Etudions lim [ n?t"dt

n—-+oo 0

1.1.4 Autre exemple

Si on pose Sy, (t) =
k

n 1
(—t)k ... on arrive & montrer que : In(2) = [ {Ldt= Y Gk
=0 0



1.2 Théoréme d’intégration terme a terme

Soit I un intervalle de R et > f, une série de fonctions de I dans K

1.2.1 Théoréme
Théoréme .
) les [, sont continues par morceauz et intégrables sur [
i) > fn converge simplement sur I vers une fonction continue par morceauz sur I

)| dt est convergente

g )i
i Zf | fu(t
Z fn est intégrable sur I

n=0
> f fn est convergente

—+oo +oo .
I3 ;1/ fa(t)dt

I n=0

preuve : HP
Remarque. La troisiéme hypothése est est la plus importante

In(t) =
1+t dt = nX_:l “n2

alors

1.2.2 Exemple
permet de démontrer f

fn ]0; 1[ —
t = In(t)(—t)"

1.2.3 Contre-exemple
fo + ]1-11 — R

t =
1.2.4 Utilisation du théoréme de convergence dominée pour les sommes partielles

+o00
Vo >0, Ceofﬁ) = ngl(—l)"_le_mcos(x)
fn o 03400 — R
t o (=) lem
—+oo

too cos(ac) k—1_k
dx Z (_1) 1+k2
On a la conclusion du théoréme d’intégration terme & terme mais celui-ci n’est pas applicable, il faut utiliser le

" eos(x)

théoréme de convergence dominée pour les sommes partielles



2 Intégrale dépendant d’un parameétre

2.1 Présentation

2.1.1 Blabla

b

Dans ce paragraphe on va étudier les fonctions de la forme f(z) = [ g(z,t)dt que 'on nomme intégrale dépendant
a

d’un paramétre.

b(x)
Il y a aussi les fonctions de la forme f(z) = [ g(t)dt que 'on peut étudier, en posans G une primitive de g et
a(z)
avec l'expression f(z) = G(b(z)) — G(a(x)).
b(x)
Les fonctions de la forme f(z) = [ g(,t)dt sont & priori hors programme, mais un changement de variable

a(z)

b

peut parfois permettre de se ramener au cas qui nous intéresse | f(z) = [ g(x,t)dt
a

2.1.2 Exemple

2z
Etude de f(z) = [e " dt

xT

2.1.3 Exemples
Exemple. 1

+oo —axt
F(.’L') = b[ &ﬁdt
Domaine de définition : D =)0, 4+o00[

Exemple. 2 : Fonction Gamma d’FEuler

+
D(z)= [ t* e tdt
0
Domaine de définition : D =]0; 00|

2.2 Continuité

2.2.1 Théoréme
Théoréme . Soit A et I deux intervalles de R et une application oo AxD — K
(,t) = flz,t)
eVtel, v f(x,t) est continue sur A
gl Ve € A, t— f(x,t) est continue par morceaus sur I
i
e il existe une fonction ¢ intégrable sur I telle que :
V(z,t) e Ax I, |f(z,t)] < p(t) (Hypothése de domination)
alors la fonction x — [ f(z,t)dt est définie et continue sur A.
T

Remarque. La propriété de continuité étant une propriété locale. On se raméne souvent & des segments de A (voir
exemples) puisque si F' est continue sur tout segment de A alors F' est continue sur A.

preuve :

2.2.2 Exemple

Suite des exemples précédents

2.2.3 Contre - exemple

+o0o
g(x)= [ xe *dt
0



2.3 Théoréme de dérivation (Formule de Leibniz)

2.3.1 Théoréme

Théoréme . Soit A et I deux intervalles de R et une application AxT — K
N A O )
eVte I, xz+ f(x,t) est de classe C' sur A
eVaxc A, t— f(x,t) est continue par morceauzx et intégrable sur I
SileVreA, t— g—i(x, t) est continue par morceaux sur [
e il existe une fonction ¢ intégrable sur I telle que :

V(x,t) e Ax T, %(x,t)‘ < ¢(t) (Hypothése de domination)

alors

la fonction g : x — [ f(x,t)dt est de classe C' sur A et vérifieVe € A, ¢'(z) = [ g—i(x,t)dt
T T

Remarque. ¢'(z) = %(g(x)) = %(Iff(m,t)dt) = { %f(m,t)dt

On dit que ’on dérive sous le signe somme.

preuve :

2.3.2 Exemple

Suite des exemples précédents



2.4 Extension du théoréme de dérivation

2.4.1 Théoréme

AxI — K
(z,t) = f(x,1)

Théoréme . Soit A et I deux intervalles de R, soit k € N* et soit une application

evVtc I, x f(z,t) est de classe C* sur A
eVre AVie[0;k—1], t+— ng (x,t) est continue par morceaux et intégrable sur I

Si{eVre A, t— %(az,t) est continue par morceaux sur [
e il existe une fonction ¢ intégrable sur I telle que :

V(z,t) e AT, %(x,t)‘ < ¢(t)( Hypothése de domination)

alors

la fonction g : x> [ f(z,t)dt est de classe C* sur A et vérifie Vo € AVi € [1;k] , ¢ (z)= [ ng (x,t)dt
T T

Remarque. ¢ (z) = L (g(z)) = Lo ([ f(x,t)dt) = [ 2% f(x,t)d
T T
On dit que l'on dérive sous le signe somme.

preuve :

2.4.2 Exemple

Suite des exemples précédents

2.5 Théoréme de convergence dominée 4 paramétre continue

2.5.1 Théoréme

Théoréme . Soit A et I deuz intervalles de R, soit a une borne de A et soit une application foooAxt —

eVtel, f(x,t) — A¥)
T—ra
eVre A, t— f(x,t) est continue par morceauz sur I
St { e t > \(t) est continue par morceaus sur I

e il existe une fonction ¢ intégrable sur I telle que :
V(z,t) e Ax I, |f(z,t)] < p(t) (Hypothése de domination)

alors

A est intégrable sur I et [ f(x,t)dt — [ A(t)dt

Remarques. Autre écriture : hm ff (x,t)dt = fhm flx, t)dt

Utile surtout st a = 400 ou a = —oo sinon ¢ est le théoreme de continuité d’une intégrale 4 paramétre, avec
éventuellement un prolongement.

preuve :

2.5.2 Exemple

+oo

—t

On pose Vz € I =]0,+o0[, F(z) = [ <—dt
0

x+t
a) Définition de F'
b) Limite en +o00
c¢) Equivalent en +o00 en étudiant zF ()

(x,t) = flx,t)
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Compléments

preuve du 2.2.1. : Théoréme de continuité sous le signe somme

e Commencons par montrer que F': x € A [ f(xz,t)dt est bien définie.

T
Soit = € A fixé, alors, par hypothése de domination : Vt € I, |f(z,t)| < ¢(¢)

Comme ¢ est intégrable sur I alors, par comparaison, ¢ — f(x,t) est intégrable sur I donc [ f(z,t)dt est bien
1
convergente et on peut définir F.

e Soit a € A. Montrons maintenant que F' est continue en a en utilisant la continuité séquentielle.

Soit (7)nen € AN telle que :  lim 2, =a
n—-+oo

fn I — R

Posons : Vn € N : t —  f(zp,t)

On a alors, avec les hypothéses de I’énoncé :
les fonctions f, sont continues par morceaux sur I

la suit de fonctions (f,)nen converge simplement vers t € I — f(z,t)
VneN, Vtel |[fa(t)] =|f(zt)] <o)
On peut donc appliquer le théoréme de convergence dominée et on obtient que : hm f f(zn, t)dt = f hm fla,, t)dt

Autrement dit que : hm F(x,) f hm fla,t)dt = F(a)

Alors, pour toute suite (T, )nen € AN telle que: lim z,=aona: lim F(x,)=F(a)
n—-+oo n—-+4oo
Par continuité séquentielle on a donc F' continue en a.

F est continue en tout point a € A et donc F' est continue sur A.

Bilan : F est définie et continue sur A



