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Chapitre 18 : Théorèmes de convergence dominée ;

intégrales à paramètres

Dans ce chapitre, les fonctions sont de la variable réelle et à valeurs dans K avec K = R ou C.

1 Suites et séries de fonctions intégrables

1.1 Théorème de convergence dominée

1.1.1 Théorème

Théorème . Soit I un intervalle de R et (fn : I → K)n∈N une suite de fonctions continues par morceaux sur I.
Alors :{

i) (fn)n∈N converge simplement vers une fonction notée f : I → K continue par morceaux sur I

ii) il existe une fonction φ : I → K telle que φ est intégrable sur I et ∀n ∈ N , ∀t ∈ I , |fn(t)| ≤ φ(t)

⇒

les fonctions fn et la fonction f sont intégrables sur I∫
I

fn(t)dt −→
n→+∞

∫
I

f(t)dt

preuve : HP théorème de convergence dominée de Lebesgue, utilise la théorie de la mesure de Lebesgue ...

Remarques. Autre écriture : lim
n→+∞

∫
I

fn(t)dt =
∫
I

lim
n→+∞

fn(t)dt

L'hypothèse ii) s'appelle hypothèse de domination

1.1.2 Exemple

Etudions lim
n→+∞

+∞∫
0

nt2

(1+nt2)(1+t2)dt

1.1.3 Contre-exemple

Etudions lim
n→+∞

1∫
0

n2tndt

1.1.4 Autre exemple

Si on pose Sn(t) =
n∑

k=0

(−t)k ... on arrive à montrer que : ln(2) =
1∫
0

1
1+tdt =

+∞∑
n=1

(−1)n+1

n

1



1.2 Théorème d'intégration terme à terme

1.2.1 Théorème

Théorème . Soit I un intervalle de R et
∑

fn une série de fonctions de I dans K.

Si


i) les fn sont continues par morceaux et intégrables sur I

ii)
∑

fn converge simplement sur I vers une fonction continue par morceaux sur I

iii)
∑∫

I

|fn(t)| dt est convergente

alors



+∞∑
n=0

fn est intégrable sur I∑∫
I

fn est convergente∫
I

+∞∑
n=0

fn(t)dt =
+∞∑
n=0

∫
I

fn(t)dt

preuve : HP

Remarque. La troisième hypothèse est est la plus importante.

1.2.2 Exemple

fn : ]0; 1[ −→ R
t 7→ ln(t)(−t)n

permet de démontrer
1∫
0

ln(t)
1+t dt =

+∞∑
n=1

(−1)n

n2

1.2.3 Contre-exemple

fn : ]− 1; 1[ −→ R
t 7→ t2n+1

1.2.4 Utilisation du théorème de convergence dominée pour les sommes partielles

∀x > 0 , cos(x)
ex+1 =

+∞∑
n=1

(−1)n−1e−nxcos(x)

fn : [0; +∞[ −→ R
t 7→ (−1)n−1e−nxcos(x)

+∞∫
0

cos(x)
ex+1 dx =

+∞∑
k=1

(−1)k−1 k
1+k2

On a la conclusion du théorème d'intégration terme à terme mais celui-ci n'est pas applicable, il faut utiliser le
théorème de convergence dominée pour les sommes partielles
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2 Intégrale dépendant d'un paramètre

2.1 Présentation

2.1.1 Blabla

Dans ce paragraphe on va étudier les fonctions de la forme f(x) =
b∫
a

g(x, t)dt que l'on nomme intégrale dépendant

d'un paramètre.

Il y a aussi les fonctions de la forme f(x) =
b(x)∫
a(x)

g(t)dt que l'on peut étudier, en posans G une primitive de g et

avec l'expression f(x) = G(b(x))−G(a(x)).

Les fonctions de la forme f(x) =
b(x)∫
a(x)

g(x, t)dt sont à priori hors programme, mais un changement de variable

peut parfois permettre de se ramener au cas qui nous intéresse f(x) =
b∫
a

g(x, t)dt

2.1.2 Exemple

Etude de f(x) =
2x∫
x

e−t2dt

2.1.3 Exemples

Exemple. 1

F (x) =
+∞∫
0

e−xt

1+t2 dt

Domaine de dé�nition : D =]0,+∞[

Exemple. 2 : Fonction Gamma d'Euler

Γ(x) =
+∞∫
0

tx−1e−tdt

Domaine de dé�nition : D =]0;+∞[

2.2 Continuité

2.2.1 Théorème

Théorème . Soit A et I deux intervalles de R et une application
f : A× I −→ K

(x, t) 7→ f(x, t)

Si


• ∀t ∈ I , x 7→ f(x, t) est continue sur A

• ∀x ∈ A , t 7→ f(x, t) est continue par morceaux sur I

• il existe une fonction φ intégrable sur I telle que :

∀(x, t) ∈ A× I , |f(x, t)| ≤ φ(t) (Hypothèse de domination)

alors la fonction x 7→
∫
I

f(x, t)dt est dé�nie et continue sur A.

Remarque. La propriété de continuité étant une propriété locale. On se ramène souvent à des segments de A (voir
exemples) puisque si F est continue sur tout segment de A alors F est continue sur A.

preuve :

2.2.2 Exemple

Suite des exemples précédents

2.2.3 Contre - exemple

g(x) =
+∞∫
0

xe−xtdt
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2.3 Théorème de dérivation (Formule de Leibniz)

2.3.1 Théorème

Théorème . Soit A et I deux intervalles de R et une application
f : A× I −→ K

(x, t) 7→ f(x, t)

Si



• ∀t ∈ I , x 7→ f(x, t) est de classe C1 sur A

• ∀x ∈ A , t 7→ f(x, t) est continue par morceaux et intégrable sur I

• ∀x ∈ A , t 7→ ∂f
∂x (x, t) est continue par morceaux sur I

• il existe une fonction φ intégrable sur I telle que :

∀(x, t) ∈ A× I ,
∣∣∣∂f∂x (x, t)∣∣∣ ≤ φ(t) (Hypothèse de domination)

alors

la fonction g : x 7→
∫
I

f(x, t)dt est de classe C1 sur A et véri�e ∀x ∈ A , g′(x) =
∫
I

∂f
∂x (x, t)dt

Remarque. g′(x) = d
dx (g(x)) =

d
dx (

∫
I

f(x, t)dt) =
∫
I

∂
∂xf(x, t)dt

On dit que l'on dérive sous le signe somme.

preuve :

2.3.2 Exemple

Suite des exemples précédents
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2.4 Extension du théorème de dérivation

2.4.1 Théorème

Théorème . Soit A et I deux intervalles de R, soit k ∈ N∗ et soit une application
f : A× I −→ K

(x, t) 7→ f(x, t)

Si



• ∀t ∈ I , x 7→ f(x, t) est de classe Ck sur A

• ∀x ∈ A ∀i ∈ J0; k − 1K , t 7→ ∂if
∂xi (x, t) est continue par morceaux et intégrable sur I

• ∀x ∈ A , t 7→ ∂kf
∂xk (x, t) est continue par morceaux sur I

• il existe une fonction φ intégrable sur I telle que :

∀(x, t) ∈ A× I ,
∣∣∣∂kf
∂xk (x, t)

∣∣∣ ≤ φ(t)( Hypothèse de domination)

alors

la fonction g : x 7→
∫
I

f(x, t)dt est de classe Ck sur A et véri�e ∀x ∈ A ∀i ∈ J1; kK , g(i)(x) =
∫
I

∂if
∂xi (x, t)dt

Remarque. g(k)(x) = dk

dxk (g(x)) =
dk

dxk (
∫
I

f(x, t)dt) =
∫
I

∂k

∂xk f(x, t)dt

On dit que l'on dérive sous le signe somme.

preuve :

2.4.2 Exemple

Suite des exemples précédents

2.5 Théorème de convergence dominée à paramètre continue

2.5.1 Théorème

Théorème . Soit A et I deux intervalles de R, soit a une borne de A et soit une application
f : A× I −→ K

(x, t) 7→ f(x, t)

Si



• ∀t ∈ I , f(x, t) −→
x→a

λ(t)

• ∀x ∈ A , t 7→ f(x, t) est continue par morceaux sur I

• t 7→ λ(t) est continue par morceaux sur I

• il existe une fonction φ intégrable sur I telle que :

∀(x, t) ∈ A× I , |f(x, t)| ≤ φ(t) (Hypothèse de domination)

alors

λ est intégrable sur I et
∫
I

f(x, t)dt −→
x→a

∫
I

λ(t)dt

Remarques. Autre écriture : lim
x→a

∫
I

f(x, t)dt =
∫
I

lim
x→a

f(x, t)dt

Utile surtout si a = +∞ ou a = −∞, sinon c'est le théorème de continuité d'une intégrale à paramètre, avec
éventuellement un prolongement.

preuve :

2.5.2 Exemple

On pose ∀x ∈ I =]0,+∞[ , F (x) =
+∞∫
0

e−t

x+tdt

a) Dé�nition de F
b) Limite en +∞
c) Equivalent en +∞ en étudiant xF (x)
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Compléments

preuve du 2.2.1. : Théorème de continuité sous le signe somme

� Commençons par montrer que F : x ∈ A 7→
∫
I

f(x, t)dt est bien dé�nie.

Soit x ∈ A �xé, alors, par hypothèse de domination : ∀t ∈ I , |f(x, t)| ≤ φ(t)
Comme φ est intégrable sur I alors, par comparaison, t 7→ f(x, t) est intégrable sur I donc

∫
I

f(x, t)dt est bien

convergente et on peut dé�nir F .

� Soit a ∈ A. Montrons maintenant que F est continue en a en utilisant la continuité séquentielle.

Soit (xn)n∈N ∈ AN telle que : lim
n→+∞

xn = a

Posons : ∀n ∈ N :
fn : I −→ R

t 7−→ f(xn, t)

On a alors, avec les hypothèses de l'énoncé :
les fonctions fn sont continues par morceaux sur I

la suit de fonctions (fn)n∈N converge simplement vers t ∈ I 7→ f(x0, t)

∀n ∈ N , ∀t ∈ I , |fn(t)| = |f(x,t)| ≤ φ(t)

On peut donc appliquer le théorème de convergence dominée et on obtient que : lim
n→+∞

∫
I

f(xn, t)dt =
∫
I

lim
n→+∞

f(xn, t)dt

Autrement dit que : lim
n→+∞

F (xn) =
∫
I

lim
n→+∞

f(a, t)dt = F (a)

Alors, pour toute suite (xn)n∈N ∈ AN telle que : lim
n→+∞

xn = a on a : lim
n→+∞

F (xn) = F (a)

Par continuité séquentielle on a donc F continue en a.

F est continue en tout point a ∈ A et donc F est continue sur A.

Bilan : F est dé�nie et continue sur A
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