
1 ##
2 ##TRI RAPIDE##################################
3
4 def partition(a):
5 '''partitionne le tableau a en deux,le premier tableau renvoyé contient les

éléments inférieurs
6 ou égaux au pivot (sans le pivot), le deuxième tableau contient les

éléments strictement supérieurs'''
7
8 pivot=a[0] #on choisit toujours le premier élément de la liste comme pivot
9 n=len(a)

10 b=[] #b contiendra les éléments plus petits que le pivot
11 c=[] #c contiendra les éléments plus grands que le pivot
12 for x in a[1:n]:
13 if x<=pivot:
14 b.append(x)
15 else:
16 c.append(x)
17
18 return b,pivot,c
19
20 def partitionv2(a):
21 '''partitionne le tableau a en deux,la première partie étant inférieure à un

élément du tableau choisi comme pivot,
22 le deuxième partie étant constituée d'éléments supérieurs.
23 Le résultat renvoyé est ce tableau partitionné et la position du pivot'''
24 pivot=a[0] # on choisit le premier élément de la liste comme

pivot
25 m=0
26 for i in range(1,len(a)): # on parcourt un par un tous les éléments de la liste
27 if a[i]<pivot:
28 a[i],a[m+1]=a[m+1],a[i]
29 m=m+1
30 a[0],a[m]=a[m],a[0] # on place le pivot au bon endroit
31 return a,m
32
33
34
35 def tri_rapide(t):
36
37 if len(t)==1 or len(t)==0: # si la liste est vide ou contient un seul élément,

elle est déjà triée
38 return(t)
39
40 b,pivot,c=partition(t) # on partionne la liste autour du pivot
41 t=tri_rapide(b)+[pivot]+tri_rapide(c) # on fait un appel récursif
42 #en appliquant la fonction aux deux

sous-tableaux
43 return t
44
45 ##
46 ##TRI FUSION##################################
47
48
49 def fusion(a,b):
50 '''réalise la fusion de deux tableaux a et b déjà triés'''
51
52 t=[]
53 i=0;j=0
54
55 while i<len(a) and j<len(b): #la boucle tourne tant qu'au moins une des listes

n'est pas parcourue entièrement
56 if a[i]<b[j]:
57 t.append(a[i])
58 i=i+1
59 else:
60 t.append(b[j])
61 j=j+1
62
63 if i==len(a): # s'il s'agit de la liste a qui est épuisée, on complète t

avec les éléments restants de b
64 t=t+b[j:len(b)]

65 if j==len(b): # s'il s'agit de la liste b qui est épuisée, on complète t
avec les éléments restants de a

66 t=t+a[i:len(a)]
67
68 return t
69
70
71 def tri_fusion(t):
72
73 if len(t)==0 or len(t)==1: # si la liste est vide ou contient un seul élément,
74 #elle est déjà triée
75 return t
76
77 n=len(t) # on repère la position moitié (ou presque) dans la liste
78 t1=tri_fusion(t[0:n//2]) # appel récursif pour trier la première moitié

du tableau
79
80 t2=tri_fusion(t[n//2 :len(t)]) # appel récursif pour trier la deuxième moitié

du tableau
81
82 return fusion(t1,t2) # on retourne la fusion des deux tableaux triés
83
84
85 ##
86 ##TRI PAR INSERTION###########################
87
88 def tri_insertion(a):
89 '''retourne un tableau avec les mêmes éléments triés par ordre croissant'''
90
91 n=len(a)
92
93 for i in range(1,n): #on parcourt un par un tous les éléments de la liste
94 x=a[i] #x est l'élément à insérer dans la partie de liste déjà

triée
95 j=i #on va parcourir la partie de liste déjà triée ,
96 #de la droite vers la gauche
97 while j>0 and x<a[j-1]: #tant qu'on est pas au début de la liste
98 #et que les elts rencontrés sont plus grand que x
99 a[j]=a[j-1] #on décale vers la droite les éléments

100 j=j-1
101 a[j]=x #on insère x à la bonne place
102 return a
103
104 ##
105 ##TRI A BULLES###########################
106 def tri_bulle(t):
107 n = len(t)
108 for i in range(n-1):
109 for j in range(n-i-1):
110 if t[j] > t[j+1]:
111 t[j], t[j+1] = t[j+1], t[j]
112 return t
113
114 ##
115 ##TRI PAR SELECTION###########################
116
117 def indice_min(t,g,d):
118 '''renvoie l'indice du plus petit élément de la partie de t comprise entre g

inclus et d inclus'''
119 i_min=g
120 min=t[g]
121 for i in range(g+1,d+1):
122 if t[i]<min:
123 min=t[i]
124 i_min=i
125 return i_min
126
127 def tri_selection_iteratif(t):
128 n=len(t)
129 for k in range(n-1):
130 j=indice_min(t,k,n-1) #position du minimum dans le tableau à partir de

l'indice k

131 t[k],t[j]=t[j],t[k]
132 return t
133
134 def tri_selection_recursif(t):
135 n=len(t)
136 if n==0 or n==1:
137 return(t) #si le tableau est vide ou de taille 1 alors il est déjà trié
138 j=indice_min(t,0,n-1) #position du minimum du tableau
139 t[0],t[j]=t[j],t[0] #on le met en première position
140 return [t[0]]+tri_selection_recursif(t[1:n]) #le premier élément est bien placé

et on trie la partie restante
141
142 ########## COMPLEXITE ###################
143 #la complexité de la fonction indice_min est linéaire puisque l'on parcourt une fois

le tableau
144 #la complexité du tri par sélection version itérative est donc quadratique puisque

l'on parcourt une fois le tableau,
145 #en appelant à chaque fois la fonction indice_min
146
147 #la complexité du tri par sélection version récursive vérifie: C(n)=5+a+bn+C(n-1) ,

où a+bn est la complexité dela fonction indice_min .
148 #On procédant par itérations successives, on conjecture facilement que

C(n)=O(n^2), complexité quadratique.

