FHAAAA AR A R R
##TRI RAPIDEH#FH##H#HHHHASHFASHHASHHA ARSI SAA

def partition(a):
'"'"'"partitionne le tableau a en deux,le premier tableau renvoyé contient les
éléments inférieurs
6 ou égaux au pivot (sans le pivot), le deuxieme tableau contient les
éléments strictement supérieurs'''

g s w N

7
38 pivot=a[0] #on choisit toujours le premier élément de la liste comme pivot
9 n=len (a)
10 b=[1 #b contiendra les éléments plus petits que le pivot
11 c=[1 #c contiendra les éléments plus grands que le pivot
12 for x in a[l:n]:
13 if x<=pivot:
14 b.append(x)
15 else:
16 c.append(x)
17
18 return b,pivot,c
19
20 def partitionv2(a):
21 '"""partitionne le tableau a en deux,la premiere partie étant inférieure a un
élément du tableau choisi comme pivot,
22 le deuxieme partie étant constituée d'éléments supérieurs.
23 Le résultat renvoyé est ce tableau partitionné et la position du pivot'''
24 pivot=al[0] # on choisit le premier élément de la liste comme
pivot
25 m=0
26 for i in range(l,len(a)): # on parcourt un par un tous les éléments de la liste
27 if a[i]l<pivot:
28 af[i]l,a[m+l]=a[m+1],a[i]
29 m=m+1
30 af[0],a[m]=a[m],a[0] # on place le pivot au bon endroit
31 return a,m
32
33
34
35 def tri rapide(t):
36
37 if len(t)==1 or len(t)==0: # si la liste est vide ou contient un seul élément,
elle est déja triée
38 return(t)
39
40 b,pivot,c=partition(t) # on partionne la liste autour du pivot
41 t=tri rapide(b)+[pivotl+tri rapide(c) # on fait un appel récursif
42 #en appliquant la fonction aux deux
sous—-tableaux
43 return t
44

45 FHAAAF AR R R R
46 ##TRI FUSION######H##FFSHHFHAFIARRIHAAHERSSSASS

47

48

49 def fusion(a,b):

50 '""'"réalise la fusion de deux tableaux a et b déja triés'''

51

52 t=[1]

53 i=0;3=0

54

55 while i<len(a) and j<len(b): #la boucle tourne tant gu'au moins une des listes
n'est pas parcourue entierement

56 if a[il<bl[jl:

57 t.append(alil)

58 i=i+1

59 else:

60 t.append([j])

61 J=j+1

62

63 if i==len(a): # s'il s'agit de la liste a qui est épuisée, on complete t

avec les éléments restants de b
04 t=t+b[j:1len (b)]

65 if j==len (b): # s'il s'agit de la liste b qui est épuisée, on complete t
avec les éléments restants de a

66 t=t+a[i:len(a)]

67

68 return t

69

70

71 def tri fusion(t):

72

73 if len(t)==0 or len(t)==1: # si la liste est vide ou contient un seul élément,

74 #elle est déja triée

75 return t

76

77 n=len (t) # on repere la position moitié (ou presque) dans la liste

78 tl=tri fusion(t[0:n//2 1) # appel récursif pour trier la premiére moitié
du tableau

79

80 t2=tri fusion(t[n//2 :len(t)]) # appel récursif pour trier la deuxieme moitié
du tableau

81

82 return fusion(tl,t2) # on retourne la fusion des deux tableaux triés

83

84

85 g sssaasdiasadaddsnaaaR R R AR
86 ##TRI PAR INSERTION#########H#HH#HFHHHHFHSRHFARSHA

87

88 def tri insertion(a):

89 ''"'retourne un tableau avec les mémes éléments triés par ordre croissant'''

90

91 n=len (a)

92

93 for i in range(l,n): #on parcourt un par un tous les éléments de la liste

94 x=a[i] #x est 1'élément a insérer dans la partie de liste déja

triée

95 J=1i #on va parcourir la partie de liste déja triée ,

96 #de la droite vers la gauche

97 while 7>0 and x<a[j-1]: #tant gqu'on est pas au début de la liste

98 #et que les elts rencontrés sont plus grand que x
99 aljl=alj-11 #on décale vers la droite les éléments
100 J=j-1
101 aljl=x #on insere x a la bonne place
102 return a
103

104 FHAAAE AR R A R A
105 ##TRI A BULLESH#######FHSHHHSHAHRSH SRS HERS

106 def tri bulle(t):

107 n = len(t)

108 for i in range(n-1):

109 for j in range(n-i-1):

110 if t[j] > t[j+1]:

111 tl31, tl3+1] = t[3+1], t[3]
112 return t

113

114 FHAAAF AR AR R A R
115 ##TRI PAR SELECTION#########H#H##H#HHHHFHHRHARIHA

116

117 def indice min(t,g,d):

118 '""'"renvoie 1l'indice du plus petit élément de la partie de t comprise entre g
inclus et d inclus'''

119 i min=g

120 min=t [g]

121 for i in range(g+1l,d+1):

122 if t[i]<min:

123 min=t[i]

124 i min=i

125 return i min

126

127 def tri selection iteratif(t):

128 n=len (t)

129 for k in range(n-1):

130 j=indice min(t,k,n-1) +#position du minimum dans le tableau a partir de

1l'indice k

131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
146
147

148

tlk]l,tl31=t[]J],t[kl]

return t

def tri selection recursif(t):

n=len (t)
if n==0 or n==1:

return (t) #si le tableau est vide ou de taille 1 alors il est déja trié
j=indice min(t,0,n-1) #position du minimum du tableau

t[0],t031=t[3]1,t[0]

#on le met en premiere position

return [t[0]]+tri selection recursif(t[l:n]) #le premier élément est bien placeé
et on trie la partie restante

#HEH4#HEHHE COMPLEXITE ######4###4###4444#4

#la complexité de la fonction indice min est linéaire

le tableau

#la complexité du tri par

l'on parcourt une fois le
#en appelant & chaque

#la complexité du tri par
ou atbn est la complexité

#0n procédant par itérations successives,

sélection version itérative
tableau,
fois la fonction indice min

sélection version récursive
dela fonction indice min

C(n)=0(n"2), complexité quadratique.

puisque 1l'on parcourt une fois

est donc quadratique puisque

vérifie: C(n)=5+a+bn+C(n-1) ,

on conjecture facilement que

