Feuille d'exercices posés aux oraux blancs PSI^* 2024 par Mr Billette

1 Sujet 1

Exercice 1

Soit $n \in \mathbb{N}^*$ et $p \in]0;1[$.

a) Démontrer que la suite de réels définis par

$$\forall k \in \mathbb{N}, \quad p_k = \binom{k+n-1}{n-1} p^n q^k \qquad (q=1-p).$$

définit la loi de probabilité d'une variable aléatoire à valeurs dans \mathbb{N} . On l'appelle "loi de Pascal de paramètres n et p".

On utilisera la formule dite du "binôme négatif" :

$$\forall n \in \mathbb{N}, \ \forall x \in]-1; 1[, \ \frac{1}{(1-x)^{n+1}} = \sum_{k=n}^{+\infty} \binom{k}{n} x^{k-n}.$$

- b) Soit X une variable aléatoire qui suit cette loi. Déterminer sa série génératrice. En déduire que X admet une espérance et une variance et la calculer.
- c) On suppose que deux variables X et Y indépendantes suivent deux lois de Pascal de paramètres respectifs (n,p) et (m,p). Déterminer la loi de Z=X+Y.
- d) Démontrer la formule utilisée à la première question.

Exercice 2

On pose
$$f(x) = \sum_{n=2}^{+\infty} \frac{(-1)^n}{n(n-1)} x^n$$
.

- a) Quel est le rayon de convergence de la série entière considérée? Sur quel ensemble la fonction f est-elle définie?
- b) Exprimer f(x) à l'aide de fonctions usuelles (il sera utile de s'intéresser à la dérivée de f).
- c) Que valent f(1) et f(-1)?

2 Sujet 2

Exercice 1

On pose
$$\varphi(x) = \int_0^{+\infty} \frac{\sin(xt)}{e^t - 1} dt$$
.

- a) Montrer que φ est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- b) Établir pour tout x l'égalité $\varphi(x) = \sum_{k=1}^{+\infty} \frac{x}{k^2 + x^2}$.

Exercice 2

Dans
$$E = \mathcal{C}^0([a, b], \mathbb{R})$$
, on pose $(f|g) = \int_a^b f(t)g(t) dt$.

- a) Vérifier que $(\cdot|\cdot)$ est un produit scalaire sur E.
- b) Pour $f \in E$ strictement positive, on pose $l(f) = \int_a^b f(t) dt \int_a^b \frac{dt}{f(t)}$. Montrer que $l(f) \ge (b-a)^2$ et préciser les cas d'égalité.

3 Sujet 3

Exercice 1

Soit f définie sur \mathbb{R}^2 par $f(x,y) = x^4 + y^4 - (x-y)^2$.

- a) Déterminer les points critiques de f sur \mathbb{R}^2 et évaluer f en ces points.
- b) La fonction f admet-elle au point (0,0) un extremum local?
- c) Justifier que la fonction f admet un minimum sur l'ensemble $\mathcal{D} = \{(x,y) \in \mathbb{R}, \sqrt{x^2 + y^2} \le 3\}$ et déterminer ce minimum.
- d) Montrer que le minimum obtenu à la question précédente est global.

Exercice 2

Soit a, b et c trois nombres complexes et $M(a, b, c) = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$. On note J = M(0, 1, 0).

- a) Calculer J^2 , puis exprimer M(a,b,c) en fonction de I (matrice identité), J et J^2 .
- b) Démontrer que J est diagonalisable et préciser son spectre.
- c) En déduire que M(a,b,c) est diagonalisable et préciser aussi son spectre.

4 Sujet 4

Exercice 1

Soit, pour $f \in E = \mathcal{C}^0(\mathbb{R}, \mathbb{R})$, $\Phi(f) : x \in \mathbb{R}^* \mapsto \frac{1}{2x} \int_{-x}^x f \text{ et } \Phi(f)(0) = f(0)$.

- a) Montrer que Φ est un endomorphisme de E.
- b) Montrer que pour tout $f \in E$, $\Phi(f)$ est une fonction paire.
- c) Montrer que 0 est une valeur propre de Φ et déterminer les vecteurs propres associés.
- d) On suppose que $\lambda \in \mathbb{R}^*$ est une valeur propre de Φ . Montrer que toute fonction propre f est paire, puis que si F est la primitive de f nulle en 0, alors F est solution de l'équation différentielle $\lambda xy' y = 0$. En déduire les valeurs propres non nulles de Φ et les vecteurs propres associés.

Exercice 2

Soit (U, V) un couple de variables aléatoires indépendantes suivant la loi binomiale $\mathcal{B}\left(2, \frac{1}{2}\right)$.

- a) Rappeler la loi suivie par la somme de n variables aléatoires indépendante qui suivent un loi de Bernoulli de même paramètre p.
- b) On pose $S = (U-1)^2 + (V-1)^2$. Déterminer la loi de S.
- c) On pose T=(U-1)(V-1)+1. Calculer E(S(T-1)). Déterminer la loi de T . Calculer la covariance de (S,T). Les variables S et T sont-elles indépendantes ?