Devoir à la maison n°1 de Mathématiques

Exercice: CCP 2013 TSI - exercice 1

Soit f la fonction définie sur l'intervalle $[0, +\infty[$ par $f(x) = \frac{x^3}{12} - x + 1.$

- 1. a) Déterminer la limite de f en $+\infty$.
 - **b)** Justifier que f est dérivable sur l'intervalle $[0, +\infty[$, calculer f'(x) et déterminer le signe de f'(x) sur l'intervalle $[0, +\infty[$. En déduire le tableau de variation de f.
- **2.** a) Montrer que f s'annule exactement deux fois sur l'intervalle $[0, +\infty[$: une première fois sur l'intervalle [0, 2] et une deuxième fois sur l'intervalle $[2, +\infty[$.

 On notera β et γ les deux solutions de l'équation f(x) = 0 sur $[0, +\infty[$ avec $\beta < \gamma$.
 - **b)** Simplifier l'expression $1 + \frac{\beta^3}{12}$ (on l'exprimera à l'aide de β).
 - c) À l'aide de la calculatrice, montrer que β appartient à]1; 1,2[et que γ appartient à]2,7; 2,8[.
 - **d)** Préciser le signe de f sur l'intervalle $[0, +\infty[$.
- **3.** Tracer l'allure de la courbe représentative de f sur $[0, +\infty[$.
- **4.** On cherche à obtenir une approximation de β . À cet effet, on définit la suite $(u_n)_{n\in\mathbb{N}}$ par

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = 1 + \frac{u_n^3}{12}. \end{cases}$$

- a) Calculer u_1 puis démontrer par récurrence que, pour tout entier naturel n, u_n appartient à l'intervalle $[0, \beta]$.
- **b)** Vérifier que, pour tout entier naturel n, $u_{n+1} u_n = f(u_n)$. Que peut-on en déduire sur la monotonie de la suite $(u_n)_{n \in \mathbb{N}}$?
- c) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers β .
- d) Écrire dans le langage de votre choix (MAPLE, MATHEMATICA ou autre) un programme de quelques lignes permettant d'obtenir pour un entier N donné la valeur de u_N .

Problème: Alès, Douai, Nantes 2009 Pb2

Dans tout ce problème, on notera sh la fonction sinus hyperbolique, ch la fonction cosinus hyperbolique et th la fonction tangente hyperbolique.

A. Etude d'une fonction

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = x \operatorname{sh}\left(\frac{1}{x}\right)$.

- 1. Etudier la parité de f.
- 2. (a) Rappeler un équivalent de la fonction sh en 0 et en déduire les limites de f en $+\infty$ et en $-\infty$.
 - (b) Déterminer la limite de f en 0.
- **3.** Justifier que f est dérivable sur \mathbb{R}^* et que pour tout $x \in \mathbb{R}^*$,

$$f'(x) = \left[\operatorname{th}\left(\frac{1}{x}\right) - \frac{1}{x} \right] \times \operatorname{ch}\left(\frac{1}{x}\right).$$

- **4.** Montrer que, pour tout $X \in \mathbb{R}_+^*$, th(X) < X.
- 5. En déduire le tableau de variations de f.
- **6.** Donner le développement limité à l'ordre 4 en 0 de la fonction $X \longmapsto \frac{\operatorname{sh}(X)}{X}$.
- 7. En déduire qu'au voisinage de $+\infty$ et de $-\infty$, f admet un développement de la forme

$$f(x) = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \frac{a_3}{x^3} + \frac{a_4}{x^4} + o\left(\frac{1}{x^4}\right),$$

où a_0, \ldots, a_4 sont cinq réels que l'on précisera.

8. Montrer que la fonction $x \in \mathbb{R}^* \longmapsto f\left(\frac{1}{x}\right) \in \mathbb{R}$ se prolonge sur \mathbb{R} en une fonction continue notée F, puis prouver que F est dérivable sur \mathbb{R} .

C. Une équation différentielle

On considère l'équation différentielle (E) suivante, que l'on va résoudre sur différents intervalles

$$xy' + y = \operatorname{ch}(x). \tag{E}$$

- 12. Résoudre sur l'intervalle \mathbb{R}_{+}^{*} l'équation différentielle (E).
- 13. Donner sans justification les solutions de l'équation différentielle (E) sur l'intervalle \mathbb{R}_{-}^* .
- **14.** Justifier que la fonction F (définie dans la question A.8.) est l'unique fonction définie et dérivable sur \mathbb{R} qui soit solution de l'équation différentielle (E) sur \mathbb{R} .

D. Etude d'une suite

15. Montrer que pour $n \in \mathbb{N}^*$, l'équation

$$f(x) = \frac{n+1}{n}$$

admet une unique solution dans \mathbb{R}_{+}^{*} . On la note u_{n} .

On définit ainsi une suite $(u_n)_{n\in\mathbb{N}^*}$ que l'on va étudier dans les questions qui suivent.

- **16.** Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante.
- 17. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ tend vers $+\infty$ quand n tend vers $+\infty$.
- 18. En utilisant la question A.7., déterminer un équivalent de u_n quand n tend vers $+\infty$.

2

E. Une fonction définie par une intégrale

Pour
$$x \in \mathbb{R}_+^*$$
, on pose $J(x) = \int_{x/2}^x f(t) dt$.

- **19.** Montrer que pour tout $x \in \mathbb{R}$, sh(2x) = 2 ch(x) sh(x).
- **20.** Justifier que J est dérivable sur \mathbb{R}_+^* et que pour tout $x \in \mathbb{R}_+^*$,

$$J'(x) = f(x) \left[1 - \frac{1}{2} \operatorname{ch} \left(\frac{1}{x} \right) \right].$$

- **21.** En déduire le signe de J' sur \mathbb{R}_+^* ; on exprimera le (ou les) zéro(s) de J' à l'aide de la fonction ln.
- **22.** On <u>admet</u> les résultats suivants :
 - $(*) \lim_{x \to 0^{+}} J(x) = +\infty,$
 - $(*) \lim_{x \to +\infty} J(x) = +\infty \ et \ J \ admet \ au \ voisinage \ de \ +\infty \ une \ asymptote \ d'équation \ y = \frac{x}{2},$
 - (*) la courbe représentative de J est toujours "au dessus" de l'asymptote précédente.

Donner le tableau de variations de J sur \mathbb{R}_+^* .

23. Tracer l'allure de la courbe représentative de J.

On donne pour le tracé :
$$\frac{1}{\ln(2+\sqrt{3})} \approx 0.76 \text{ et } J\left(\frac{1}{\ln(2+\sqrt{3})}\right) \approx 0.65 \text{ à } 10^{-2} \text{ près.}$$

Problème Bonus : Equations du troisième degré Méthode de Tartaglia (ou de Cardan)

Le but de ce problème est la résolution d'équation du troisième degré à coefficients réels.

Partie I : Résolution générale d'un cas particulier

Dans cette partie p et q sont deux nombres réels quelconques et on considère l'équation, d'inconnue z complexe, suivante :

$$(1) \Leftrightarrow z^3 + pz + q = 0$$

On posera $j = exp(\frac{2i\pi}{3})$

- 1°) Préliminaires
- a) Montrer que : $j^3 = 1$, $1 + j + j^2 = 0$ et $j^2 = \bar{j}$
- b) Montrer que si $U \in \mathbb{R}$ l'équation, d'inconnue $u: u^3 = U$ admet une unique solution réelle. On notera $\sqrt[3]{U}$ cette solution.

3

- c) Montrer que si $U\in\mathbb{C}$, $u_0\in\mathbb{C}$ tels que $u_0^3=U$ alors : $u^3=U\Leftrightarrow u\in\{u_0,ju_0,\overline{j}u_0\}$
 - d) Montrer que si $U \in \mathbb{R}$ alors : $u^3 = U \Leftrightarrow u \in \{\sqrt[3]{U}, j\sqrt[3]{U}, \overline{j}\sqrt[3]{U}\}$

2°) Première étape

On cherche à écrire les solutions de (1) sous la forme u + vOn suppose donc que $z_0 = u + v$ est solution de (1)

- a) Montrer, sans chercher à les calculer, qu'il existe deux complexes u et v tels que : $\begin{cases} u+v=z_0 \\ uv=\frac{-p}{3} \end{cases}$
- b) Montrer que l'on a alors : u^3 et v^3 qui sont solutions de l'équation d'inconnue X suivante :

$$(2) \Leftrightarrow X^2 + qX - \frac{p^3}{27} = 0$$

- c) Montrer que le discriminant de (2) est $\Delta = \frac{4p^3 + 27q^2}{27}$
- 3°) Etude du cas $\Delta > 0$

On suppose dans ce 3°) que $\Delta > 0$ et on note U et V les deux solutions réelles de (2)

Montrer alors que (1) admet trois solutions, une réelle et deux conjuguées, que l'on exprimera à l'aide de $\sqrt[3]{U}$, $\sqrt[3]{V}$, j et \overline{j}

4°) Etude du cas $\Delta < 0$

On suppose dans ce 4°) que $\Delta < 0$.

- a) Montrer que (2) admet deux solutions complexes conjuguées distinctes que l'on notera U et \overline{U}
- b) Montrer que (1) admet alors trois solutions réelles que l'on exprimera à l'aide de u_0 une solution particulière de $u^3=U$
 - 5°) Etude du cas $\Delta = 0$

On suppose dans ce 5°) que $\Delta = 0$.

- a) Montrer que (2) admet une racine double, notée U, que l'on exprimera à l'aide de q
- b) Montrer que (1) admet alors deux solutions réelles que l'on exprimera à l'aide de q
- 6°) Bilan

Faire le bilan de cette partie I

Partie II: Cas général

On considère l'équation suivante :

$$(3) \Leftrightarrow z^3 + \alpha z^2 + \beta z + \gamma = 0$$

avec $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ et d'inconnue z.

7°) Montrer que l'on peut trouver $a \in \mathbb{C}$ tel que le changement de variable z = Z + a ramène (3) à une équation de type (1)

Partie III: Exemples

- 8°) Résoudre : $z^3 12z 65 = 0$
- 9°) Résoudre : $z^3 12z 16 = 0$
- 10°) (Difficile) Résoudre : $z^3 9z^2 + 18z + 2\sqrt{2} = 0$

Partie IV: Retour sur le nombres de solutions réelles

Cette partie est indépendante, on n'utilisera pas les résultats des parties précédentes.

Soit
$$(p,q) \in \mathbb{R}^2$$
, on pose, pour tout $x \in \mathbb{R} : f(x) = x^3 + px + q$

- 11°) Montrer que l'équation f(x) = 0 admet au moins une solution réelle.
- 12°) Dresser le tableau de variation de f en distinguant plusieurs cas selon p.
- 13°) Déterminer, selon le signe de $\delta=4p^3+27q^2$, le nombre de solution de f(x)=0