Feuille d'exercices n°12 : Chapitres 4 et 5

Exercice 113. Soit f l'application de \mathbb{R}^2 dans \mathbb{R}^2 définie par

 $\forall (x,y) \in \mathbb{R}^2 \quad f(x,y) = (3x + 2y, 2x + y)$

- a) Montrer que f est une application linéaire et déterminer la matrice de f relativement à la base canonique B de \mathbb{R}^2
- b) Montrer que f est inversible et déterminer f^{-1} sous la même forme que la définition de f.

Exercice 114. Soit la matrice
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{pmatrix}$$

 $D\acute{e}terminer\ ker(A)\ et\ Im(A)$

Exercice 115. Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3.

On définit u l'application de E dans lui-même par u(P) = P + (1 - X)P'

- a) Montrer que u est un endomorphisme de E
- b) Déterminer la matrice de u relativement à B la base canonique de E
- c) Déterminer une base de Im(u)
- d) Déterminer une base de ker(u)
- e) Montrer que ker(u) et Im(u) sont deux sous-espaces vectoriels supplémentaires de E.

Exercice 116. Soit
$$A = \begin{pmatrix} 4 & 9 \\ 1 & 4 \end{pmatrix}$$
.

Soit φ l'endomorphisme de $E = \mathbb{R}^2$ admettant A comme matrice relativement à la base canonique B = (i, j).

On pose u = 3i - j et v = 3i + j.

- a) Montrer que B' = (u, v) est une base de E.
- b) Déterminer la matrice de φ relativement à B'.
- c) Calculer A^n pour $n \in \mathbb{N}$

Exercice 117. Soit $E = \mathbb{R}_n[X]$ et B la base canonique de E.

On pose $\forall P \in E \ \phi(P)(X) = P(X+1)$

- a) Déterminer A la matrice de ϕ relativement à B
- \vec{b}) Déterminer A^{-1}

Exercice 118. a) Trouver une application linéaire injective mais non surjective.

b) Trouver une application linéaire sujective mais non injective.

Exercice 119. Soit $N \in M_3(\mathbb{R})$ telle que $N^2 = (0)$ Montrer que $I_3 + N$ est inversible

Exercice 120. (\star)

Soit $A \in M_n(\mathbb{R})$ une matrice de rang 1.

Montrer que : $A^2 = tr(A)A$

Donner une expression de A^n pour $n \in \mathbb{N}$