Mathématiques : Correction du devoir à la maison n°1

CCP 2013 TSI: exercice 1

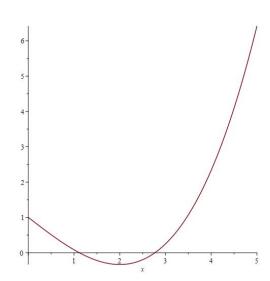
- 1) a) Avec les limites usuelles : $\lim_{x\to +\infty} f(x) = +\infty$
- 1) b) f est une fonction polynomiale donc f est dérivable sur $[0, +\infty[$. On a : $\forall x \geq 0$, $f'(x) = \frac{x^2}{4} 1$

On en déduit le tableau suivant :

x	0		2		$+\infty$
f'(x)		-	0	+	
	1				$+\infty$
f(x)		V		7	
			$\frac{-1}{3}$		

- 2) a) f est strictement décroissante et continue sur [0,2] donc $f_{[0,2]}$ définit une bijection de [0,2] dans $\left[\frac{-1}{3},1\right]$
- Comme $0 \in [\frac{-1}{3}, 1]$ alors il existe une unique solution sur [0, 2], notée β , à l'équation f(x) = 0
- f est strictement croissante et continue sur $]2, +\infty[$ donc $f_{]2,+\infty[}$ définit une bijection de $]2, +\infty[$ dans $]\frac{-1}{3}, +\infty[$ Comme $0 \in]\frac{-1}{3}, +\infty[$ alors il existe une unique solution sur $]2, +\infty[$, notée γ , à l'équation f(x) = 0
 - f s'annule donc exactement deux fois sur $[0, +\infty[$, une fois en $\beta \in [0, 2]$ et une fois en $\gamma \in]2, +\infty[$
 - 2) b) $f(\beta) = 0 \Rightarrow \frac{\beta^3}{12} \beta + 1 = 0 \Rightarrow \boxed{1 + \frac{\beta^3}{12} = \beta}$
 - 2) c) A la calculatrice f(1)f(1,2) < 0 donc par le TVI : $\beta \in]1;1,2|$
- \bullet A la calculatrice f(2,7)f(2,8)<0 donc par le TVI : $\beta\in]2,7;2,8|$
 - 2) d) D'après les variations de f: $\begin{cases} f(x) \text{ positif sur } [0,\beta] \cup [\gamma,+\infty[\\ f(x) \text{ négatif sur } [\beta,\gamma] \end{cases}$

3)



4) a)
$$u_1 = 1 + \frac{1}{12} = \frac{13}{12}$$

Montrons par récurrence sur $n \in \mathbb{N}$ que : $\forall n \in \mathbb{N}$, $u_n \in [0, \beta]$

Initialisation : D'après 2)c), $\beta > 1$ donc $u_0 = 1 \in [0, \beta]$

Hérédité : On suppose que $u_n \in [0, \beta]$

$$u_n \in [0, \beta]$$

$$\Rightarrow 0 \le u_n \le \beta$$

$$\Rightarrow 0 \le \frac{u_n^3}{12} \le \frac{\beta}{12}$$

$$\Rightarrow 1 \le 1 + \frac{u_n^3}{12} \le 1 + \frac{\beta}{12}$$

$$\Rightarrow 1 \le u_{n+1} \le \beta \text{ en utilisant } 2)b)$$
On a donc $u_{n+1} \in [0, \beta]$

Conclusion : On a montrer par récurrence sur $n \in \mathbb{N}$ que : $\forall n \in \mathbb{N}$, $u_n \in [0, \beta]$

4) b) $u_{n+1} - u_n = 1 + \frac{u_n^3}{12} - u_n = f(u_n)$ Comme $u_n \in [0, \beta]$ et d'après le tableau de variation de $f: f(u_n) \ge 0$ et donc $u_{n+1} - u_n \ge 0$ La suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

4) c) $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée (par β) donc $(u_n)_{n\in\mathbb{N}}$ est convergente. Notons λ sa limite. Comme $u_n \in [0, \beta]$ alors $\lambda \leq \beta$ De plus, en passant à la limite dans $u_{n+1} - u_n = f(u_n)$, on a, comme f est continue : $f(\lambda) = 0$. Comme $\lambda \leq \beta$ alors $\lambda = \beta$

On en déduit : $\lim_{n \to +\infty} u_n = \beta$

4) d)

def u(n):
 u=1
 for i in range(n):
 u=1+u**3/12
 return u

Alès, Douai, Nantes 2009 Pb2

1) \mathbb{R}^* est centré en 0 et $\forall x \in \mathbb{R}^*$, $f(-x) = (-x)sh(\frac{-1}{x}) = xsh(\frac{1}{x}) = f(x)$ car sh est impaire.

Donc |f| est paire.

2) a) Au voisinage de
$$u=0$$
 : $sh(u) \underset{u=0}{\sim} u$ donc $f(x) \underset{x\to\pm\infty}{\sim} x^{\frac{1}{x}} = 1$ et donc $\lim_{x\to\pm\infty} f(x) = 1$

2) b) Pour $x \in \mathbb{R}^*$ on pose $u = \frac{1}{x}$ On a alors : $f(x) = \frac{e^u - e^{-u}}{2u}$ Quand $x \to 0^+$, $u \to +\infty$ et $f(x) \sim \frac{e^u}{2u} \to +\infty$ par comparaison exponentielle puissance. Quand $x \to 0^-$, $u \to -\infty$ et $f(x) \sim \frac{-e^{-u}}{2u} \to +\infty$ par comparaison exponentielle puissance.

Donc
$$\lim_{x\to 0} f(x) = +\infty$$

3) f est dérivable sur \mathbb{R}^* comme composée de fonctions dérivables sur \mathbb{R}^* . On a alors : $\forall x \in \mathbb{R}^*$,

$$f'(x) = sh(\frac{1}{x}) + x(\frac{-1}{x^2})ch(\frac{1}{x}) = ch(\frac{1}{x})(\frac{sh(\frac{1}{x})}{ch(\frac{1}{x})} - \frac{1}{x})$$

On a bien : f dérivable sur \mathbb{R}^* et $\forall x \in \mathbb{R}^*$, $f'(x) = [th(\frac{1}{x}) - \frac{1}{x}]ch(\frac{1}{x})$

4) On a
$$th' = \left(\frac{sh}{ch}\right)' = \frac{ch \times ch - sh \times sh}{ch^2} = \frac{1}{ch^2}$$

Comme $\forall X \in \mathbb{R}$, $ch(X) \geq 1$ alors $\forall X \in \mathbb{R}$, $th'(X) \in [0,1]$

th est C^{∞} sur \mathbb{R} donc par le théorème des accroissements finis :

$$\forall X \in \mathbb{R}_{+}^{*}, \ th(X) - th(0) = (X - 0)th'(c) \text{ avec } c \in]0, X[$$

Comme $X \neq 0$, on a $\frac{th(X)}{X} = th'(c) \in]0,1]$. (0 exclu car $X \neq 0$) Comme X > 0 alors th(X) < X

Bilan :
$$\forall X \in \mathbb{R}_+^*$$
 , $th(X) < X$

5) On va faire le tableau de variation de f sur \mathbb{R}_+^* compte tenu de la parité de f. Pour x > 0, en utilisant 4), on a $\left[th\left(\frac{1}{x}\right) - \frac{1}{x}\right] < 0$, comme $ch\left(\frac{1}{x}\right) > 0$ alors f'(x) < 0

On a déjà calculer les limites et on a donc :

x	0		$+\infty$
f'(x)		-	
	$+\infty$		
$\int f(x)$		\searrow	
			1

- 6) Au voisinage de X = 0: $\frac{sh(X)}{X} = 1 + \frac{X^2}{6} + \frac{X^4}{120} + o(X^4)$
- 7) Au voisinage de $\pm \infty$, : $f(x) = \frac{sh(\frac{1}{x})}{\frac{1}{x}}$ avec $\frac{1}{x} \to 0$, donc avec la question 6):

Au voisinage de
$$\pm \infty$$
 : $f(x) = 1 + \frac{1}{6x^2} + \frac{1}{120x^4} + o(\frac{1}{x^4})$

On va montrer que F est le prolongement par continuité de $x \in \mathbb{R}^* \mapsto f(\frac{1}{x})$ sur \mathbb{R} et que F est dérivable sur \mathbb{R} .

3

La limite du 2)a) donne : $\lim_{x\to 0} F(x) = \lim_{u\to\pm\infty} f(u) = 1 = F(0)$ donc F est continue en 0 et est bien le prolongement prévu.

Comme $x \mapsto \frac{1}{x}$ va de \mathbb{R}^* dans \mathbb{R}^* et que f est dérivable sur \mathbb{R}^* alors F est dérivable sur \mathbb{R}^* .

Il reste à montrer que F est dérivable en 0.

Pour
$$x \neq 0$$
: $\frac{F(x)-F(0)}{x} = \frac{1-\frac{x^2}{6}+o(x^2)-1}{x} = \frac{-x}{2}+o(x) \xrightarrow[x\to 0]{} 0$, donc F est dérivable en 0 et $F'(0)=0$.

F est le prolongement par continuité de $x \in \mathbb{R}^* \mapsto f(\frac{1}{x})$ sur \mathbb{R} et F est dérivable sur \mathbb{R} .

12) (E) est une équation différentielle linéaire d'ordre 1, à coefficients continues sur \mathbb{R}_+^* . L'équation homogène associée est : $(E_0) \Leftrightarrow y' = \frac{-1}{x}y$ $\int \frac{-1}{x} dx = -ln(x) \text{ sur } \mathbb{R}_+^*, \text{ donc, d'après le cours : } (E_0) \Leftrightarrow y(x) = aexp(-ln(x)) = \frac{a}{x} \text{ avec } a \in \mathbb{R}$

Pour résoudre (E) on utilise la méthode de variation de la constante. On cherche y sous la forme $y(x) = \frac{\lambda(x)}{x}$ puisque $x \neq 0$ sur \mathbb{R}_+^*

Alors
$$(E)$$

 $\Leftrightarrow xy' + y = ch(x)$
 $\Leftrightarrow x(\frac{\lambda'(x)}{x} - \frac{\lambda(x)}{x^2}) + \frac{\lambda(x)}{x} = ch(x)$
 $\Leftrightarrow \lambda'(x) = ch(x)$
 $\Leftrightarrow \lambda(x) = sh(x) + a \text{ avec } a \in \mathbb{R}$
 $\Leftrightarrow y(x) = f(\frac{1}{x}) + \frac{a}{x} \text{ avec } a \in \mathbb{R}$

Les solutions de (E) sur \mathbb{R}_+^* s'écrivent $y(x) = F(x) + \frac{a}{x}$ avec $a \in \mathbb{R}$

- 13) Les solutions de (E) sur \mathbb{R}_{-}^{*} s'écrivent $y(x) = F(x) + \frac{b}{x}$ avec $b \in \mathbb{R}$
- 14) Soit y une solution de (E) sur \mathbb{R} . Alors $y|_{\mathbb{R}^*_+}$ est solution de (E) sur \mathbb{R}^*_+ et donc $\exists a \in \mathbb{R}$, $\forall x \in \mathbb{R}^*_+$, $y(x) = F(x) + \frac{a}{x}$ De même $y|_{\mathbb{R}^*_-}$ est solution de (E) sur \mathbb{R}^*_- et donc $\exists b \in \mathbb{R}$, $\forall x \in \mathbb{R}^*_+$, $y(x) = F(x) + \frac{b}{x}$

Comme y est continue en 0 alors $y(0) = \lim_{x \to 0^+} y(x) = \lim_{x \to 0^-} y(x)$ et on a alors a = b = 0 (sinon les limites n'existent pas) et y(0) = 1On a donc bien y = F.

Réciproquement. F est dérivable sur \mathbb{R} et les questions 12 et 13 permettent d'affirmer que F est vérifie (E) sur \mathbb{R}^* . Comme F(0) = ch(0) = 1 alors la relation est aussi vérifiée en x = 0. Donc F est bien solution de (E) sur \mathbb{R})

Bilan : F est l'unique fonction continue et dérivable sur \mathbb{R} , solution de (E) sur \mathbb{R} .

15) D'après le TVI (f est bien continue sur \mathbb{R}_+^*) et la stricte décroissance de f, on a $g = f|_{\mathbb{R}_+^*}$ qui définie une bijection de \mathbb{R}_+^* dans $]1, +\infty[$

Comme $\frac{n+1}{n} > 1$ alors $f(x) = \frac{n}{n+1}$ admet une unique solution que l'on peut note u_n .

$$16) \frac{n+2}{n+1} - \frac{n+1}{n} = \frac{(n+2)n - (n+1)^2}{n(n+1)} = \frac{-1}{n(n+1)} \le 0$$

$$donc \frac{n+2}{n+1} < \frac{n+1}{n}$$

$$donc f(u_{n+1}) < f(u_n)$$

et comme f est décroissante alors $u_{n+1} \ge u_n$

Ona bien : la suite (u_n) est croissante.

17) (u_n) est croissante, donc soit (u_n) converge vers un réel μ , soit (u_n) tend vers $+\infty$ Par l'absurde. Si $u_n \to \mu$, alors par continuité de f, $f(u_n) \to f(\mu)$ donc $\frac{n+1}{n} \to f(\mu)$ donc $f(\mu) = 1$, or cette équation n'a pas de solution réelle. Absurde

On a donc
$$\lim_{n\to+\infty} u_n = +\infty$$

18) D'après 7) et 17) :
$$f(u_n) = 1 + \frac{1}{6u_n^2} + o(\frac{1}{u_n^2})$$

De plus $f(u_n) = \frac{n+1}{n} = 1 + \frac{1}{n}$

Donc
$$1 + \frac{1}{6u_n^2} + o(\frac{1}{u_n^2}) = 1 + \frac{1}{n}$$

$$\Rightarrow \frac{1}{6u_n^2} + o(\frac{1}{u_n^2}) = \frac{1}{n}$$

$$\Rightarrow \frac{1}{6u_n^2} \sim \frac{1}{n}$$

$$\Rightarrow 6u_n^2 \sim n$$

$$\Rightarrow u_n \sim \sqrt{\frac{n}{6}} \text{ car } u_n > 0$$

On a donc
$$u_n \sim \sqrt{\frac{n}{6}}$$

19)
$$2ch(x)sh(x) = 2\frac{e^x + e^{-x}}{2} \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - e^{-2x}}{2} = sh(2x)$$

donc : $\forall x \in \mathbb{R}$, $sh(2x) = 2ch(x)sh(x)$

20) f est continue sur \mathbb{R}_+^* , on peut donc considérer Φ une primitive de f sur \mathbb{R}_+^* .

 $\forall x \in \mathbb{R}_+^*$ on a $\left[\frac{x}{2}, x\right] \subset \mathbb{R}_+^*$, donc J(x) est bien définie, comme l'intégrale d'une fonction continue sur un segment et de plus : $J(x) = \Phi(x) - \Phi\left(\frac{x}{2}\right)$

 Φ étant une primitive de f qui est continue, Φ est C^1 sur \mathbb{R}_+^* et $\Phi' = f$ On en déduit J dérivable sur \mathbb{R}_+^* et

$$J'(x) = \Phi'(x) - \frac{1}{2}\Phi'(\frac{x}{2}) = f(x) - \frac{1}{2}f(x/2) = xsh(\frac{1}{x}) - \frac{1}{2}\frac{x}{2}sh(\frac{2}{x})$$
 En utilisant 19) et $sh(\frac{2}{x}) = 2sh(\frac{1}{x})ch(\frac{1}{x}) : J'(x) = f(x) - \frac{x}{2}sh(\frac{1}{x})ch(\frac{1}{x})$

Donc
$$\forall x \in \mathbb{R}_+^*$$
, $J'(x) = f(x)[1 - \frac{1}{2}ch(\frac{1}{x})]$

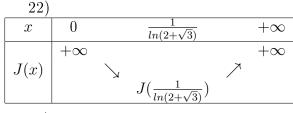
21) On a f(x) > 0 donc J'(x) est du signe de $1 - \frac{1}{2}ch(\frac{1}{x})$

$$J'(x) = 0 \Leftrightarrow 1 - \frac{1}{2}ch(\frac{1}{x}) = 0 \Leftrightarrow ch(\frac{1}{x}) = 2$$

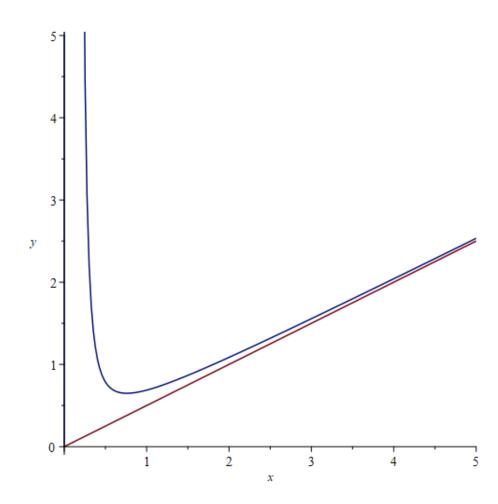
 $J'(x) = 0 \Leftrightarrow 1 - \frac{1}{2}ch(\frac{1}{x}) = 0 \Leftrightarrow ch(\frac{1}{x}) = 2$ On pose $u = e^{\frac{1}{x}}$, alors : $J'(x) = 0 \Leftrightarrow \frac{u + \frac{1}{u}}{2} = 2 \Leftrightarrow u^2 - 4u + 1 = 0 \Leftrightarrow (u - 2)^2 - 4 + 1 = 0 \Leftrightarrow (u - 2)^2) = 3 \Leftrightarrow u = 2 + \sqrt{3}$ (autre solution exclue car $u = exp(\frac{1}{x}) \geq 1$)

Donc
$$\frac{1}{x} = ln(2 + \sqrt{3}) \Rightarrow x = \frac{1}{ln(2 + \sqrt{3})}$$

On a donc J'(x) négatif sur $]0, \frac{1}{\ln(2+\sqrt{3})}[$ et positif sur $]\frac{1}{\ln(2+\sqrt{3})}, +\infty[$, nulle en $x=\frac{1}{\ln(2+\sqrt{3})}$



23)



Equations du troisième degré

1°) a) $j^3 = (exp(\frac{2i\pi}{3}))^3 = exp(3\frac{2i\pi}{3}) = exp(2i\pi) = 1$

Par la somme des termes d'une suite géométrique de raison $j \neq 1$ on a : $1 + j + j^2 = \frac{1-j^3}{1-j}$ et comme $j^3 = 1$ alors $1 + j + j^2 = 0$

 $j^2 = exp(2\frac{2i\pi}{3}) = exp(\frac{4i\pi}{3}) = exp(\frac{-2i\pi}{3}) = \overline{j}$

On a donc démontré les trois relations voulues : $\begin{cases} j^3 = 1 \\ 1 + j + j^2 = 0 \end{cases}$

1°) b) Posons $\forall x \in \mathbb{R} \ \Phi(x) = x^3$ alors Φ est dérivable et $\Phi'(x) = 3x^2 > 0$ sauf en x = 0 Φ est alors strictement croissante, continue et comme de plus $\lim_{x\to -\infty} \Phi(x) = -\infty$ et $\lim_{x\to +\infty} \Phi(x) = +\infty$ alors ϕ est une bijection de \mathbb{R} dans \mathbb{R} .

L'équation $\Phi(x) = U \Leftrightarrow x^3 = U$ admet alors une unique solution réelle que l'on peut noter $\sqrt[3]{U}$

1°) c) Dans les conditions données par l'énoncé.

Si U=0, alors $u^3=U\Leftrightarrow u^3=0\Leftrightarrow u=0\Leftrightarrow u\in\{U;jU;\overline{j}U\}=\{0\}$ Si $U\neq 0$ alors $u^3=U\Leftrightarrow u^3=u_0^3\Leftrightarrow (\frac{u}{u_0})^3=1\Leftrightarrow \frac{u}{u_0}\in\{1;j;\overline{j}\}\Leftrightarrow u\in\{u_0;ju_0;\overline{j}u_0\}$

Dans tout les cas : $u^3 = U \Leftrightarrow u \in \{u_0; ju_0; \overline{j}u_0\}$

- 1°) d) D'après le b) on sait que si $U \in \mathbb{R}$ alors $\sqrt[3]{U}$ est une solution de $u^3 = U$, on applique alors le c) avec $u_0 = \sqrt[3]{u}$ et $u^3 = U \Leftrightarrow u \in \{\sqrt[3]{u}; j\sqrt[3]{u}; \overline{j}\sqrt[3]{u}\}$
- 2°) a) Considérons l'équation du second degré : $Y^2 z_0Y \frac{p}{3} = 0$ qui a 2 solutions complexes u et v. Alors $(Y u)(Y v) = Y^2 (u + v)Y + uv = Y^2 z_0Y \frac{p}{3} = 0$ et par identification on a le résultat voulu.
- 2°) b) u^3 et v^3 sont solutions de $(X-u^3)(X-v^3)=0 \Leftrightarrow X^2-(u^3+v^3)X+(uv)^3=0$

Comme $uv = \frac{-p}{3}$ alors $(uv)^3 = \frac{-p^3}{27}$

 z_0 solution de (1) donne :

 $(u+v)^3 + p(u+v) + q = 0 \Rightarrow u^3 + 3u^2v + 3uv^2 + v^3 + p(u+v) + q = 0 \Rightarrow u^3 + v^3 = -3uv(u+v) - p(u+v) - q$ Mais $uv = \frac{-p}{3}$ donc $u^3 + v^3 = p(u+v) - p(u+v) - q$ donc $u^3 + v^3 = -q$

$$u^{3} + v^{3} = p(u + v) - p(u + v) - q \operatorname{donc} u^{3} + v^{3} = -q$$

Donc u^3 et v^3 sont solutions de $X^2 + qX - \frac{p^3}{27} = 0$

- 2°) c) Le discriminant de (2) vaut : $\Delta = q^2 + 4\frac{p^3}{27} = \frac{4p^3 + 27q^2}{27}$

3°) (2) admet deux solutions réelles s'ecrivant U 2

De plus, on cherche les solutions de (1) sous la forme u+v avec $\begin{cases} u^3 = U \\ v^3 = V \\ uv = \frac{-p}{3} \end{cases}$

Comme de plus il faut que $uv \in \mathbb{R}$ alors :

 $(u,v) \in \{(\sqrt[3]{U},\sqrt[3]{V}); (j\sqrt[3]{U},\overline{j}\sqrt[3]{V}); (\overline{j}\sqrt[3]{U},j\sqrt[3]{V})\}$

Ce qui donne trois solutions à (1) : $z_1 = \sqrt[3]{U} + \sqrt[3]{V}$, $z_2 = j\sqrt[3]{U} + \overline{j}\sqrt[3]{V}$ et $z_3 = \overline{j}\sqrt[3]{U} + j\sqrt[3]{V}$ On a bien z_1 qui est réelle et, z_2 et z_3 qui sont conjuguées.

4°) a) Si $\Delta < 0$ alors $\Delta = (i\delta)^2$ avec $\delta > 0$ et donc les solutions de (2) s'écrivent : $U = \frac{-q + i\delta}{2}$ et $V = \frac{-q - i\delta}{2}$ qui sont bien complexes conjuguées et distinctes car $\delta \neq 0$.

4°) b) Si u_0 est une solution particulière de $u^3=U$ alors comme $V=\overline{U}, \overline{u_0}$ est une solution particulière de $v^3=V$

On a alors $u^3 = U \Leftrightarrow u \in \{u_0; ju_0; \overline{j}u_0\}$ et $v^3 = U \Leftrightarrow u \in \{\overline{u_0}; j\overline{u_0}; \overline{j}\overline{u_0}\}$

Comme de plus il faut que $uv \in \mathbb{R}$ alors :

$$(u,v) \in \{(u_0; \overline{u_0}); (ju_0; \overline{ju_0}); (\overline{j}u_0; j\overline{u_0})\}$$

Ce qui donne trois solutions à (1): $z_1 = u_0 + \overline{u_0} = 2\Re(u_0), z_2 = ju_0 + \overline{ju_0} = 2\Re(ju_0)$ et $z_3 = \overline{j}u_0 + j\overline{u_0} = 2\Re(\overline{j}u_0)$ Les trois solutions sont biens réelles et distinctes.

5°) a) Comme $\Delta = 0$ la racine double de (2) est $U = \frac{-q}{2}$

5°) b) Alors
$$u^3 = \frac{-q}{2} \Leftrightarrow u \in \{\sqrt[3]{\frac{-q}{2}}; j\sqrt[3]{\frac{-q}{2}}; \overline{j}\sqrt[3]{\frac{-q}{2}}\}$$

Les solutions de (1) s'écrivent u+v avec $u^3=v^3=\frac{-q}{2}$ et $uv\in\mathbb{R}$

Donc
$$(u, v) \in \{(\sqrt[3]{\frac{-q}{2}}, \sqrt[3]{\frac{-q}{2}}); (j\sqrt[3]{\frac{-q}{2}}, \overline{j}\sqrt[3]{\frac{-q}{2}}); (\overline{j}\sqrt[3]{\frac{-q}{2}}, j\sqrt[3]{\frac{-q}{2}})\}$$

Ce qui donne deux solutions réelles pour (1) : $z_1 = 2\sqrt[3]{\frac{-q}{2}}$; $z_2 = j\sqrt[3]{\frac{-q}{2}} + \bar{j}\sqrt[3]{\frac{-q}{2}} = -\sqrt[3]{\frac{-q}{2}}$ qui est racine double.

6°) Bilan

Pour résoudre (1) $\Leftrightarrow z^3 + pz + q = 0$ on calcule $\Delta = \frac{4p^3 + 27q^2}{27}$ le discriminant de (2) $\Leftrightarrow X^2 + qX - \frac{p^3}{27} = 0$

$$\cos 1: \Delta > 0$$

Alors (1) admet une solution réelle $z_1 = \sqrt[3]{U} + \sqrt[3]{V}$ et deux solutions complexes conjuguées $z_2 = j\sqrt[3]{U} + \overline{j}\sqrt[3]{V}$ et $z_3 = \overline{z_2}$

avec U et V les solutions réelles de (2)

cas 2:
$$\Delta < 0$$

Alors (1) admet trois solutions réelles distinctes $z_1 = 2\Re(u_0)$, $z_2 = 2\Re(ju_0)$ et $z_3 = 2\Re(\overline{j}u_0)$ avec u_0 une solution quelconque de $u^3 = U$ avec U une solution de (2)

$$\cos 3: \Delta = 0$$

Alors (1) admet deux solutions réelles distinctes $z_1 = 2\sqrt[3]{\frac{-q}{2}}$ $z_2 = \sqrt[3]{\frac{q}{2}}$ qui est une racine double.

7°) Effectuons le changement de variable z = Z + a dans (3)

Alors: (3)
$$\Leftrightarrow$$
 $(Z+a)^3 + \alpha(Z+a)^2 + \beta(Z+a) + \gamma = 0 \Leftrightarrow Z^3 + (3a+\alpha)Z^2 + (3a^2+2a\alpha)Z + (a^3+\alpha a^2+\beta a+\gamma = 0)$

Si on pose
$$a = \frac{-\alpha}{3}$$
 alors $3a + \alpha = 0$ et $(3) \Leftrightarrow Z^3 + (3a^2 + 2a\alpha)Z + (a^3 + \alpha a^2 + \beta a + \gamma = 0)$

On est bien ramenée à une équation de type (1)

8°) On utilise la méthode avec p = -12 et q = -65

Alors (2)
$$\Leftrightarrow X^2 - 65X + 64 = 0 \Leftrightarrow X = 1$$
 ou $X = 64$

On a donc $\Delta > 0$ et on se trouve dans le cas (1)

$$u^3 = 1$$
 et $u \in \mathbb{R} \Leftrightarrow u = 1$; $v^3 = 64$ et $v \in \mathbb{R} \Leftrightarrow v = 4$

Les solutions de $z^3 - 12z - 65 = 0$ sont donc $z_1 = 1 + 4 = 5$, $z_2 = j + 4\overline{j} = \frac{-5 + 3i\sqrt{3}}{2}$ et $z_3 = \overline{z_2} = \frac{-5 - 3i\sqrt{3}}{2}$

9°) On utilise la méthode avec
$$p = -12$$
 $q = -16$

Alors (2)
$$\Leftrightarrow X^2 - 16X + 64 = 0 \Leftrightarrow (X - 8)^2 = 0 \Leftrightarrow X = 8$$

On a donc
$$\Delta = 0$$
 et on se trouve dans le cas (3)

$$\sqrt[3]{\frac{q}{2}} = \sqrt[3]{\frac{-16}{2}} = -\sqrt[3]{8} = -2$$

On donc deux solutions 4 et -2 qui est racine double.

10°) Pour résoudre $Eq \Leftrightarrow z^3 - 9z^2 + 18z + 2\sqrt{2} = 0$ on utilise le 7°) et on effectue le changement d'inconnue z = Z + 3 alors:

$$Eq \Leftrightarrow (Z+3)^3 - 9(Z+3)^2 + 18(Z+3) + 2\sqrt{2} = 0$$

$$Eq \Leftrightarrow (Z+3)^3 - 9(Z+3)^2 + 18(Z+3) + 2\sqrt{2} = 0$$

$$\Leftrightarrow Z^3 + (3.3-9)Z^2 + (3.3^2 - 9.6 + 18)Z + 3^3 - 9.9 + 18.3 + 2\sqrt{2} = 0$$

$$\Leftrightarrow Z^3 - 9Z + 2\sqrt{2} = 0 \Leftrightarrow EQU$$

EQU est alors du type (1), on résout alors : (2) $\Leftrightarrow X^2 + 2\sqrt{2}X - \frac{-9^3}{27} = 0 \Leftrightarrow X^2 + 2\sqrt{2}X + 27 = 0$

On a alors
$$\Delta = 8 - 108 = -100 = (10i)^2$$

On a alors
$$\Delta = 8 - 108 = -100 = (10i)^2$$

(2) $\Leftrightarrow X = \frac{-2\sqrt{2} + 10i}{2} = -\sqrt{2} + 5i$ ou $X = -\sqrt{2} + 5i$

On cherche des solutions de $u^3 = -\sqrt{2} + 5i$

Vu la forme de u^3 on va chercher les solutions sous la forme $u = \rho(\sqrt{2} + ai)$ avec $\rho > 0$ et $a \in \mathbb{R}$

Alors
$$u^3 = -\sqrt{2} + 5i \Leftrightarrow \rho^3(\sqrt{2}(2 - 3a^2) + (6a - a^3)i) = -\sqrt{2} + 5i$$

En identifiant partie réelle et partie imaginaire on a :
$$\begin{cases} \rho^3(2-3a^2)=-\sqrt{2}\\ \rho^3(6a-a^3)=5 \end{cases}$$

On peut diviser car $\rho \neq 0$ on obtient : $\frac{2-3a^2}{6a-a^3} = \frac{-1}{5} \Leftrightarrow a^3 + 15a^2 - 6a - 10 = 0$ On remarque que a=1 est une solution évidente de l'équation ci-dessus et si on reporte dans $\rho^3(6a-a^3)=5$ on obtient $\rho = 1$

On vérifie alors (en calculant) que $\sqrt{2} + i$ est une solution de $u^3 = -\sqrt{2} + 5i$

En appliquant la méthode du 7°) les solutions de EQ sont alors :

$$Z_1 = 2\Re(u_0) = 2\sqrt{2}, Z_2 = 2\Re(ju_0) = -\sqrt{2} - \sqrt{3} \text{ et } Z_3 = 2\Re(\overline{j}u_0) = -\sqrt{2} + \sqrt{3}$$

En appliquant le changement de variable z=Z+3 les solutions de $z^3-9z^2+18+2\sqrt{2}=0$ sont alors : $z_1=3+2\sqrt{2},\ z_2=3-\sqrt{2}-\sqrt{3}$ et $z_3=3-\sqrt{2}+\sqrt{3}$

11°) f est continue sur \mathbb{R} et $\lim_{x\to-\infty}f(x)=-\infty$ et $\lim_{x\to+\infty}f(x)=+\infty$, donc par le théorème des valeurs intermédiaires l'équation f(x) = 0 admet au moins une solution réelle.

12°)
$$f$$
 est dérivable et $f'(x) = 3x^2 + p$
On a alors deux cas :

$$\cos 1: p \ge 0$$

Alors f'(x) > 0 (sauf éventuellement en 0) et donc f est strictement croissante.

x	$-\infty$		$+\infty$
f'(x)		+	
			$+\infty$
f(x)		7	
	$-\infty$		

cas
$$2: p < 0$$

Alors $f'(x) = 0 \Leftrightarrow x = \sqrt{\frac{-p}{3}}$ ou $x = -\sqrt{\frac{-p}{3}}$

avec
$$\alpha = f(-\sqrt{\frac{-p}{3}})$$
 et $\beta = f(\sqrt{\frac{-p}{3}})$

Revenons au cas $1: p \ge 0$ alors $\delta = 4p^3 + 27q^2 \ge 0$ et f(x) = 0 admet une unique solution. On peut remarque que si p > 0 alors f est strictement croissante donc la racine est simple. Si p = 0 alors $f(x) = x^3 + q$ et la racine est simple sauf si q = 0

Dans le cas 2 il faut étudier le signe de $\alpha\beta$

$$\alpha = f(-\sqrt{\frac{-p}{3}}) = (-\sqrt{\frac{-p}{3}})^3 - p\sqrt{\frac{-p}{3}} + q = \frac{p}{3}\sqrt{\frac{-p}{3}} - p\sqrt{\frac{-p}{3}} + q = \frac{-2p}{3}\sqrt{\frac{-p}{3}} + q$$

$$\beta = f(\sqrt{\frac{-p}{3}}) = (\sqrt{\frac{-p}{3}})^3 + p\sqrt{\frac{-p}{3}} + q = -\frac{p}{3}\sqrt{\frac{-p}{3}} + p\sqrt{\frac{-p}{3}} + q = \frac{2p}{3}\sqrt{\frac{-p}{3}} + q$$

$$\alpha\beta = q^2 - (\frac{2p}{3}\sqrt{\frac{-p}{3}})^2 = q^2 - \frac{-4p^3}{27} = \frac{\delta}{27}$$

Alors : $\alpha\beta > 0 \Leftrightarrow (\alpha > 0 \text{ et } \beta > 0)$ ou $(\alpha < 0 \text{ et } \beta < 0)$ Donc si $\alpha\beta > 0 \Leftrightarrow \delta > 0$ alors f(x) = 0 admet une unique solution.

D'autre part : $\alpha\beta < 0 \Leftrightarrow (\alpha < 0 \text{ et } \beta > 0)$ ou $(\alpha > 0 \text{ et } \beta < 0) \Leftrightarrow \alpha > 0$ ou $\beta < 0$ (puisque $\alpha \ge \beta$) Donc si $\alpha\beta < 0 \Leftrightarrow \delta < 0$ alors f(x) = 0 admet trois solutions distinctes.

Enfin, si $\alpha\beta = 0 \Leftrightarrow \alpha = 0$ ou $\beta = 0$ alors f(x) = 0 admet une racine simple et une racine double

Bilan:

 $\delta < 0 \Leftrightarrow f(x) = 0$ admet trois solutions réelles distinctes. $\delta > 0 \Leftrightarrow f(x) = 0$ admet une unique solution réelle simple. $\delta = 0$ et $(p,q) \neq (0,0) \Leftrightarrow f(x) = 0$ admet une racine réelle simple et une racine réelle double. $(p,q) = (0,0) \Leftrightarrow f(x) = 0$ admet 0 pour une unique racine réelle triple.