Devoir à la maison n°4 de Mathématiques

noir plutôt facile ou important, à faire par tous

Code couleur : bleu un peu plus dur, (ou complément)

rouge assez difficile (ou si on a fait le reste)

vert difficile (ou si on a le temps)

On soignera particulièrement la rédaction sur les parties en noires.

Exercice 1

a) Déterminer la nature des intégrales suivantes :

$$I_1 = \int_0^1 \frac{\sin(t)}{t^2} dt$$
 , $I_2 = \int_0^1 (\frac{\sin(t)}{t^2} - \frac{1}{t}) dt$, $I_3 = \int_0^{+\infty} \frac{\sin^3(t)}{t^2} dt$

- b) Pour x > 0, calculer : $\int_{x}^{3x} \frac{1}{t} dt$
- c) Déterminer $\lim_{x\to 0^+} \int_x^{3x} \frac{\sin(t)}{t^2} dt$
- d) Linéariser $sin^3(t)$
- e) Calculer I_3 .

Exercice 2: d'après Oral ccINP 2024 (Ryan D.)

Soit u un endomorphisme non nul de \mathbb{R}^3 tel que : $u^3=-u$

- 1) Montrer que : $Im(u^2 + Id_{\mathbb{R}^3}) \subset ker(u)$
- 2) Montrer que : $\mathbb{R}^3 = Ker(u^2 + Id_{\mathbb{R}^3}) \oplus ker(u)$
- 3) a) Calculer det(u)
- 3) b) En déduire que : $ker(u) \neq \{0_{\mathbb{R}^3}\}$
- 4) En déduire qu'il existe une base B de \mathbb{R}^3 telle la matrice de u relativement à B s'écrit :

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

Problème: Nilpotence

Dans cet exercice on note $E = M_n(\mathbb{R})$ avec n un entier naturel tel que $n \geq 2$.

On dira qu'une matrice M de E est **nilpotente** si et seulement si il existe un entier naturel $k \geq 1$ tel que $M^k = O$ avec $O = 0_{M_n(\mathbb{R})}$

On note ${\mathscr N}$ l'ensemble des matrices de E qui sont nilpotentes.

1°) (**Un exemple**)
Soit la matrice $A = \begin{pmatrix} -1 & 3 & 1 \\ 0 & 1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$

- 1°) a) Déterminer le rang, le déterminant et la trace de A.
- 1°) b) Montrer que A est nilpotente.
- 2°) Montrer que si $M \in \mathcal{N}$ alors l'entier $p = \inf(\{k \in \mathbb{N}^*, M^k = O\})$ est bien défini.

On appelle cette valeur, l'indice de nilpotence de M.

Déterminer l'indice de nilpotence de la matrice A du 1°).

- 3°) Soit $M \in \mathcal{N}$.
- 3°) a) Montrer que $M^T \in \mathcal{N}$
- 3°) b) Montrer que si $N \in E$ est semblable à M alors $N \in \mathscr{N}$
- 4°) Soit $M, N \in \mathcal{N}$ telles que MN = NMMontrer que $MN \in \mathcal{N}$ et $M + N \in \mathcal{N}$
 - 5°) Soit $M, N \in E$. Montrer que $MN \in \mathcal{N} \Rightarrow NM \in \mathcal{N}$
- 6°) Soit $M \in \mathcal{N}$, p son indice de nilpotence et f l'endomorphisme de \mathbb{R}^n admettant M comme matrice relativement à la base canonique de \mathbb{R}^n .
 - 6°) a) Montrer qu'il existe $x \in \mathbb{R}^n$ tel que $f^{p-1}(x) \neq 0_{\mathbb{R}^n}$
 - 6°) b) Montrer alors que la famille $(x, f(x), \ldots, f^{p-1}(x))$ est libre dans \mathbb{R}^n .
 - 6°) c) Montrer que $p \leq n$.
 - 7°) Montrer qu'une condition nécessaire et suffisante pour que $M \in E$ soit nilpotente est que $M^n = O$
 - 8°) Soit $M \in \mathcal{N}$, montrer que $I_n M$ est inversible et déterminer son inverse en fonction de M.

2

9°) Soit $M \in \mathcal{N}$ d'indice de nilpotence n.

Montrer que
$$M$$
 est semblable à
$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}$$

10°) Soit
$$K = (k_{i,j}) \in E$$
 définie par $\forall (i,j) \in [1;n]^2$ $k_{i,j} = \begin{cases} 0 \text{ si } i \geq j \\ 1 \text{ si } i < j \end{cases}$ et $S = K + K^T$.

- 10°) a) Calculer det(S) et en déduire que S est inversible.
- 10°) b) Est-ce que \mathcal{N} est un \mathbb{R} espace vectoriel?
- 10°) c) Montrer que $S^2 \in Vect(I_n, S)$ et calculer S^{-1}

Bonus : début de centrale PSI 2019, mathématiques 2

La partie I de ce problème permet de démontrer quelques résultats sur les matrices et les endomorphismes nilpotents et aborde l'étude de cas particuliers qui seront généralisés dans la partie II.

Notations et rappels

Dans tout le sujet, n désigne un entier naturel non nul et E un \mathbb{C} -espace vectoriel de dimension n.

Si $M \in \mathcal{M}_n(\mathbb{C})$, on note M^T la transposée de M.

Si M est une matrice de $\mathcal{M}_n(\mathbb{C})$, on définit la suite des puissances de M par $M^0 = I_n$ et, pour tout entier naturel k, par la relation $M^{k+1} = M M^k$.

De même, si u est un endomorphisme de E, on définit la suite des puissances de u par $u^0 = \operatorname{Id}_E$ et, pour tout entier naturel k, par la relation $u^{k+1} = u \circ u^k$.

Une matrice M est dite nilpotente s'il existe un entier naturel $k \ge 1$ tel que $M^k = 0$. Dans ce cas, le plus petit entier naturel $k \ge 1$ tel que $M^k = 0$ s'appelle l'indice de nilpotence de M.

Soit $\mathcal B$ une base de E, un endomorphisme de E est nilpotent d'indice p si sa matrice dans $\mathcal B$ est nilpotente d'indice p.

On pose
$$J_1 = (0)$$
 et, pour un entier $\alpha \geqslant 2$, $J_{\alpha} = \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{\alpha}(\mathbb{C}).$

Si $A \in \mathcal{M}_n(\mathbb{C})$ et $B \in \mathcal{M}_m(\mathbb{C})$, on note diag(A, B), la matrice diagonale par blocs

$$\operatorname{diag}(A, B) = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \in \mathcal{M}_{n+m}(\mathbb{C}).$$

Plus généralement, si $A_1 \in \mathcal{M}_{n_1}(\mathbb{C}), A_2 \in \mathcal{M}_{n_2}(\mathbb{C}), \cdots, A_k \in \mathcal{M}_{n_k}(\mathbb{C}),$ on note

$$\operatorname{diag}(A_1, A_2, \dots, A_k) = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & A_k \end{pmatrix} \in \mathcal{M}_{n_1 + n_2 + \dots + n_k}(\mathbb{C}).$$

I Premiers résultats

Q 1. Que peut-on dire d'un endomorphisme nilpotent d'indice 1?

I.A - Réduction d'une matrice de $\mathcal{M}_2(\mathbb{C})$ nilpotente d'indice 2

On suppose que n=2. Soit u un endomorphisme de E nilpotent d'indice $p\geqslant 2$.

- **Q 2.** Montrer qu'il existe un vecteur x de E tel que $u^{p-1}(x) \neq 0$.
- **Q 3.** Vérifier que la famille $(u^k(x))_{0 \le k \le p-1}$ est libre. En déduire que p=2.
- **Q 4.** Montrer que Ker(u) = Im(u).
- **Q** 5. Construire une base de E dans laquelle la matrice de u est égale à J_2 .
- **Q 6.** En déduire que les matrices nilpotentes de $\mathcal{M}_2(\mathbb{C})$ sont exactement les matrices de trace et déterminant nuls.

I.B - Réduction d'une matrice de $\mathcal{M}_n(\mathbb{C})$ nilpotente d'indice 2

On suppose que $n \ge 3$. Soit u un endomorphisme de E nilpotent d'indice 2 et de rang r.

- **Q** 7. Montrer que $\text{Im}(u) \subset \text{Ker}(u)$ et que $2r \leqslant n$.
- **Q 8.** On suppose que $\operatorname{Im}(u) = \operatorname{Ker}(u)$. Montrer qu'il existe des vecteurs e_1, e_2, \ldots, e_r de E tels que la famille $(e_1, u(e_1), e_2, u(e_2), \ldots, e_r, u(e_r))$ est une base de E.
 - \mathbf{Q} 9. Donner la matrice de u dans cette base.
- **Q 10.** On suppose $\operatorname{Im}(u) \neq \operatorname{Ker}(u)$. Montrer qu'il existe des vecteurs e_1, e_2, \ldots, e_r de E et des vecteurs $v_1, v_2, \ldots, v_{n-2r}$ appartenant à $\operatorname{Ker}(u)$ tels que $(e_1, u(e_1), e_2, u(e_2), \ldots, e_r, u(e_r), v_1, v_2, \ldots, v_{n-2r})$ est une base de E.
 - \mathbf{Q} 11. Quelle est la matrice de u dans cette base?