Programme de la khôlle n°11

Chapitre 4 : Calcul intégral

II. Intégrales généralisées

Chapitre 5 : Algèbre bilinéaire

I. Espaces préhilbertiens réels

II. Espaces vectoriels euclidiens

Chapitre 6 : Suites de fonctions

I. Modes de convergence

Convergence simple. Exemples. Convergence uniforme. CVU ⇒ CVS. Critères de CVU et de non CVU.

II. Théorèmes d'interversion et régularité de la limite

Théorème de continuité. Application de la contraposée. Théorème d'intégration sur un segment. Théorème de dérivation C^1 puis C^k . Théorème de convergence dominée.

Savoirs-faire associés

Montrer la cv ou dv d'une intégrale : par th de comparaison (\leq , O , o ou \sim) voire par décomposition
(DL), par la définition (limite d'une primitive), comme intégrale faussement impropre (prolonge-
ment par continuité), par IPP, par th de changement de variable (C^1 + bijectif).

Produit scalaire: conna	uître parfaitement	les 4 axiomes,	l'identité (de polarisation,	les inégalités	s et
cas d'égalités de Cauch	y-Schwarz et de l'	inégalité triang	gulaire (pou	r 2 et <i>n</i> vecteur	s)	

- ☐ Savoir déterminer l'orthogonale d'un sev de dimension finie.
- □ Procédé de Gram-Schmidt : connaître parfaitement la formule (celle faisant intervenir la projection orthogonale est plus facile et plus intéressante à retenir) et savoir l'appliquer.
- ☐ Projection orthogonale : savoir calculer son expression suivant les cas (notamment sur une droite et un hyperplan) et connaître toute la méthode pour calculer la distance à un sev de dim finie.

Remarque

Cette semaine tout exercice sur les chapitres 4 (intégrales généralisées) et 5 et uniquement du cours sur le chapitre 6.

Preuves et exercices de cours

- Preuve 1 : Inégalités de Cauchy-Schwarz et triangulaire avec cas d'égalité sur un espace préhilbertien.
- Preuve 2 : Si F sev de dimension finie de E alors F et F^{\perp} sont en somme directe, si E de dimension finie ils sont supplémentaires dans E.
- Preuve 3 : Procédé d'orthonormalisation de Gram-Schmidt.
- Preuve 4 : Théorème de la distance à un sev de dimension finie.
- Preuve 5 : Théorème de représentation des formes linéaires.
- Preuve 6 : Théorème de continuité pour les suites de fonctions.
- Preuve 7 : Théorème de dérivation C^1 pour les suites de fonctions.
- Exercice 1 : Soit $w:[a,b] \to \mathbb{R}$ une fonction continue et strictement positive. On considère le produit scalaire défini sur $\mathbb{R}[X]$ par $\langle P,Q \rangle = \int_a^b P(t)Q(t)w(t)\,\mathrm{d}t$. Montrer qu'il existe une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes orthogonaux tels que $\forall n\in\mathbb{N}$, $\deg(P_n)=n$ et $\|P_n\|=1$. Montrer que P_n possède exactement n racines réelles distinctes appartenant toutes à l'intervalle [a,b].

Prévisions

- Chapitre 7 : Intégrales à paramètres.
- Chapitre 8 : Réduction des endomorphismes et des matrices carrées.