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Les calculatrices sont interdites

Le sujet est composé de deux problèmes indépendants.
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PROBLÈME 1

Objectifs

Dans la partie I, on considère deux exemples de fonctions indéfiniment dérivables sur R et on s’inter-
roge sur l’existence d’un développement en série entière dans un voisinage de 0 pour ces fonctions.
Dans la partie II, indépendante de la partie I, on démontre le théorème de Borel en construisant,
pour toute suite réelle (bp)p∈N, une fonction f indéfiniment dérivable sur R telle que pour tout p ∈ N,
f (p)(0) = bp.

Partie I - Deux exemples de fonctions indéfiniment dérivables

On considère la fonction f définie sur R par :

∀x ∈ R, f (x) =
∫ +∞

0
e−t(1−itx)dt.

Q1. Montrer que la fonction f est bien définie sur R.

Pour tout p ∈ N, on note Γp =

∫ +∞

0
tpe−tdt.

Q2. Pour tout p ∈ N, justifier l’existence de Γp et déterminer une relation entre Γp+1 et Γp.

Q3. En déduire, pour tout p ∈ N, la valeur de Γp.

Q4. Montrer que f est indéfiniment dérivable sur R et déterminer, pour tout x ∈ R et tout p ∈ N,
f (p)(x).

Q5. En déduire le rayon de convergence de la série entière
∑
p≥0

f (p)(0)
p!

xp.

La fonction f est-elle développable en série entière au voisinage de 0?

On considère la fonction g définie sur R par :

∀x ∈ R, g(x) =
+∞∑
k=0

e−k(1−ikx).

Q6. Montrer que g est indéfiniment dérivable sur R et déterminer, pour tout x ∈ R et tout p ∈ N,
g(p)(x).

Q7. Montrer que pour tout p ∈ N,
∣∣∣g(p)(0)

∣∣∣ ≥ p2pe−p.

Q8. En déduire le rayon de convergence de la série entière
∑
p≥0

g(p)(0)
p!

xp.

La fonction g est-elle développable en série entière au voisinage de 0?
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Partie II - Le théorème de Borel

Q9. Déterminer deux nombres complexes a et b tels que pour tout x ∈ R :

1
1 + x2 =

a
x − i

+
b

x + i
.

Q10. On considère la fonction ψ définie sur R par : ∀x ∈ R, ψ(x) =
1

x − i
.

Montrer par récurrence que pour tout p ∈ N et tout x ∈ R :

ψ(p)(x) =
(−1)p p!

(x − i)p+1 .

Q11. Déterminer, pour tout p ∈ N, la dérivée p-ième de la fonction ϕ1 définie sur R par :

∀x ∈ R, ϕ1(x) =
1

1 + x2 .

Q12. Montrer que pour tout p ∈ N et tout x ∈ R,
∣∣∣(x + i)p+1 − (x − i)p+1

∣∣∣ ≤ 2(1 + x2)
p+1

2 .
En déduire que pour tout p ∈ N et tout x ∈ R∗, on a :

∣∣∣ϕ(p)
1 (x)

∣∣∣ ≤ p!
|x|p+1 .

Q13. Pour tout réel α, notons ϕα la fonction définie sur R par :

∀x ∈ R, ϕα(x) =
1

1 + α2x2 .

Montrer que pour tout p ∈ N et tout x ∈ R∗ :

|α| ·
∣∣∣ϕ(p)
α (x)

∣∣∣ ≤ p!
|x|p+1 .

On considère une suite réelle (an)n∈N et on lui associe la suite de fonctions (un)n∈N définie sur R par :

∀x ∈ R, un(x) =
anxn

1 + n!a2
nx2 .
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Q14. Pour tout n ∈ N, on note αn =
√

n!an. Montrer que pour tout entier p ≥ 0, tout entier n ≥ p et
tout réel x, on a :

u(p)
n (x) = an

p∑
k=0

(
p
k

)
n!

(n − k)!
xn−kϕ(p−k)

αn
(x).

Q15. En déduire que pour tout entier n ≥ 0 et tout entier p ∈ �0, n − 1�, u(p)
n (0) = 0 et déterminer

u(n)
n (0).

Q16. Montrer que pour tout entier n ∈ N∗, tout entier p ∈ �0, n − 1� et tout réel x, on a :

∣∣∣u(p)
n (x)

∣∣∣ ≤ |x|
n−p−1

√
n!

p!2n.

Q17. En déduire que la fonction U =
+∞∑
n=0

un est bien définie et indéfiniment dérivable sur R.

Q18. Montrer que U(0) = a0 et pour tout entier p ≥ 1, U (p)(0) =
p−1∑
n=0

u(p)
n (0) + p!ap.

Q19. Déduire de ce qui précède que pour toute suite réelle (bp)p∈N, il existe une fonction f indéfini-
ment dérivable sur R telle que pour tout p ∈ N, f (p)(0) = bp.
Ce résultat est appelé théorème de Borel. Il a été démontré par Peano et Borel à la fin du
xixe siècle.
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PROBLÈME 2

Notations et définitions

- Soient n ∈ N∗ et (p, q) ∈ (N∗)2.
- R[X] désigne l’ensemble des polynômes à coefficients dans R. Si P ∈ R[X], on notera encore

P la fonction polynomiale associée.
- Mp(R) et Mp(C) désignent respectivement les ensembles des matrices carrées de taille p à

coefficients dans R et dans C. Mp,q(R) et Mp,q(C) désignent respectivement les ensembles des
matrices à p lignes et q colonnes à coefficients dans R et dans C.

- On note Ip la matrice identité de Mp(C) et 0p la matrice de Mp(C) ne comportant que des 0.
- On note χA le polynôme caractéristique d’une matrice A ∈ Mp(C), c’est-à-dire le polynôme

det(XIp − A).
- Étant donnée une matrice M ∈ Mp(C), on note Sp(M) l’ensemble des valeurs propres com-

plexes de M.

Objectifs

Dans la partie I, on détermine les valeurs propres d’une matrice tridiagonale symétrique réelle parti-
culière. On utilise les résultats démontrés dans la partie I pour résoudre, dans la partie II, un système
différentiel.

Partie I - Éléments propres d’une matrice

I.1 - Localisation des valeurs propres

On considère une matrice A = (ai, j)1≤i, j≤n ∈Mn(C). Soient une valeur propre λ ∈ C de A et un vecteur

propre associé x =


x1
...

xn

 ∈Mn,1(C) \ {0Mn,1(C)}.

Q20. Montrer que pour tout i ∈ �1, n�, on a : λxi =

n∑
j=1

ai, jx j.

Q21. Soit i0 ∈ �1, n� tel que |xi0 | = max
j∈�1, n�

|x j|. Montrer que : |λ| ≤
n∑

j=1

|ai0, j|.

En déduire que :

|λ| ≤ max
i∈�1, n�


n∑

j=1

|ai, j|
 .

Soient α et β deux nombres réels. On considère la matrice An(α, β) ∈Mn(R) définie par :

An(α, β) =



α β 0 · · · 0

β α β
. . .

...

0 . . .
. . .

. . . 0
...
. . . β α β

0 · · · 0 β α



.
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Q22. Justifier que les valeurs propres de An(α, β) sont réelles.

Q23. Soit λ ∈ R une valeur propre de An(α, β). Montrer que :

|λ| ≤ |α| + 2|β|.

I.2 - Calcul des valeurs propres de An(α, β)

Q24. En utilisant la question Q23, montrer que pour toute valeur propre λ de An(0, 1), il existe
θ ∈ [0, π] tel que λ = 2 cos θ.

On note Un le polynôme χAn(0, 1)(2X).

Q25. Établir, pour n ≥ 3, une relation entre χAn(0, 1), χAn−1(0, 1) et χAn−2(0, 1).

En déduire, pour n ≥ 3, une relation entre Un, Un−1 et Un−2.
Q26. Montrer par récurrence sur n que pour tout θ ∈]0, π[ :

Un(cos θ) =
sin((n + 1)θ)

sin(θ)
.

Q27. Déduire de la question précédente que l’ensemble des valeurs propres de An(0, 1) est{
2 cos

( jπ
n + 1

)
; j ∈ �1, n�

}
. Déterminer la multiplicité des valeurs propres et la dimension des

espaces propres associés.

Considérons j ∈ �1, n� et posons θ j =
jπ

n + 1
.

Q28. Montrer que pour tout vecteur propre x =


x1
...

xn

 ∈Mn,1(R) de An(0, 1) associé à la valeur propre

2 cos(θ j), on a : 

− 2 cos(θ j)x1 + x2 = 0
xk−1 − 2 cos(θ j)xk + xk+1 = 0, ∀k ∈ �2, n − 1�
xn−1 − 2 cos(θ j)xn = 0

.

Soit E l’ensemble des suites réelles (uk)k∈N vérifiant la relation de récurrence :

∀k ∈ N∗, uk−1 − 2 cos(θ j) uk + uk+1 = 0.

Q29. Montrer que E est un espace vectoriel sur R dont on précisera la dimension.

Q30. Déterminer l’ensemble E des suites (uk)k∈N ∈ E telles que u0 = un+1 = 0.

Q31. En déduire l’espace propre de An(0, 1) associé à la valeur propre 2 cos(θ j).

Q32. En déduire, pour tout (α, β) ∈ R2, l’ensemble des valeurs propres de An(α, β) et les espaces
propres associés. On distinguera le cas β � 0 du cas β = 0.
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Partie II - Système différentiel

II.1 - Matrices par blocs

On considère A, B,C et D des matrices de Mn(C) telles que C et D commutent.

Q33. Calculer
(
A B
C D

) (
D 0n

−C In

)
.

L’objectif des trois prochaines questions est de démontrer la relation :

det
((

A B
C D

))
= det(AD − BC). (1)

Q34. Montrer l’égalité (1) dans le cas où D est inversible.

Q35. On ne suppose plus D inversible. Montrer qu’il existe p0 ∈ N∗ tel que pour tout entier p ≥ p0,

D +
1
p

In est inversible.

Q36. En déduire que l’égalité (1) est également vraie dans le cas où D n’est pas inversible.

Considérons une matrice M ∈Mn(C) et formons la matrice :

N =
(
0n In

M 0n

)
.

Q37. Montrer que Sp(N) = {µ ∈ C ; µ2 ∈ Sp(M)}.

Q38. Soient µ ∈ Sp(N) et x =


x1
...

xn

 ∈ Mn,1(C) un vecteur propre de M associé à la valeur propre µ2.

Montrer que le vecteur
(

x
µ x

)
∈M2n,1(C) est vecteur propre de N associé à la valeur propre µ.

Q39. Montrer que si M est diagonalisable et inversible, alors N est également diagonalisable et
inversible.

II.2 - Application à un système différentiel dans le cas où n = 2

On considère le système différentiel :
{

x′′1 = − 2x1 + x2

x′′2 = x1 − 2x2
. (2)

Q40. Déterminer (α, β) ∈ R2 tel que le système (2) soit équivalent au système différentiel du premier

ordre X′ = BX, où X =



x1

x2

x′1
x′2


et B =

(
02 I2

A2(α, β) 02

)
∈M4(R).

Que déduit-on du théorème de Cauchy quant à la structure de l’ensemble des solutions de ce
système?

Q41. En utilisant la question Q37, déterminer les valeurs propres de B et en déduire que B est
diagonalisable.
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On considère la matrice :

D =



− i
√

3 0 0 0
0 i

√
3 0 0

0 0 − i 0
0 0 0 i


.

Q42. En utilisant la question Q38, déterminer une matrice inversible P ∈ M4(C) dont la première
ligne ne comporte que des 1 et telle que B = PDP−1.

Q43. Déterminer l’ensemble des solutions du système différentiel Y ′ = DY , avec Y =



y1

y2

y3

y4


.

Q44. Déterminer la solution du système différentiel (2) avec conditions intiales
(x1(0), x2(0), x′1(0), x′2(0)) = (1, 0, 0, 0).

FIN
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