SESSION 2019 Co\ PSIMAO2

CONCOURS
COMMUN
INP

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES

Lundi29 avril: 14 h-18 h

N.B. : le candidat attachera la plus grande importance a la clarté, a la précision et a la concision de
la rédaction. Si un candidat est amené a reperer ce qui peut lui sembler étre une erreur d’énoncé, il le

signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives
qu’il a éte amené a prendre.

Les calculatrices sont interdites

Le sujet est composé de deux problemes indépendants.
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PROBLEME 1

Objectifs

Dans la partie I, on considere deux exemples de fonctions indéfiniment dérivables sur R et on s’inter-
roge sur I’existence d’un développement en série entiere dans un voisinage de O pour ces fonctions.
Dans la partie II, indépendante de la partie I, on démontre le théoreme de Borel en construisant,
pour toute suite réelle (b)) en, une fonction f indéfiniment dérivable sur R telle que pour tout p € N,

f(p)(o) — bp.
Partie I - Deux exemples de fonctions indéfiniment dérivables

On considere la fonction f définie sur R par :
+00 )
Vx € R, f(x) = f e 170 gy,
0

Q1. Montrer que la fonction f est bien définie sur R.
+00
Pour tout p € N, onnote I', = f tPe'dt.
0

Q2. Pour tout p € N, justifier I’existence de I', et déterminer une relation entre I, ; et I,
Q3. En déduire, pour tout p € N, la valeur de I',,.

Q4. Montrer que f est indéfiniment dérivable sur R et déterminer, pour tout x € R et tout p € N,

f(p)( X).

QS. En déduire le rayon de convergence de la série entiere Z

On considere la fonction g définie sur R par :

+00

VxeR,gx) = Z e KI=ikx)

k=0

Q6. Montrer que g est indéfiniment dérivable sur R et déterminer, pour tout x € R et tout p € N,
g(p)(x).
Q7. Montrer que pour tout p € N, |g(”)(0)| > p*Pe?.

xP.

O
Q8. En déduire le rayon de convergence de la série entiere Z §7O
p=>0
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Q9.

Q10.

Q11.

Q12.

Q13.

Partie II - Le théoréme de Borel

Déterminer deux nombres complexes a et b tels que pour tout x € R :

1 a b
2 = . + I
1+x X—1 Xx+1i

. . p 1
On considere la fonction ¢ définie sur R par : Vx € R, y(x) = —.
x—1i
Montrer par récurrence que pour tout p € Nettout x € R:

(-1D?p!
(x —i)p1”

y(x) =

Déterminer, pour tout p € N, la dérivée p-ieme de la fonction ¢; définie sur R par :

1
1+ x2

Vxe R, p(x) =

+1
Montrer que pour tout p € N et tout x € R, |(x +i)P (k- i)”+1| <21+ xz)pT.
En déduire que pour tout p € Nettout x € R*,ona:

|
< p_

[0 < (e

Pour tout réel a, notons ¢, la fonction définie sur R par :

Vx e R, (pa(.X) = m

Montrer que pour tout p € N et tout x € R :

p!
|x|p+1 :

lal - ¢ (x)] <

On considere une suite réelle (a,),n €t on lui associe la suite de fonctions (u,,),en définie sur R par :

a,x"

Vxe R, u,(x) = m
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Ql14.

QI5.

Q16.

Q17.

Q18.
Q19.

Pour tout n € N, on note @, = Vn!a,. Montrer que pour tout entier p > 0, tout entier n > p et

tout réel x, on a :
d !
(») - § p n: X'k pp=h)
u, (X) a, - (k) (l’l _ k)' (pozn (x)

En déduire que pour tout entier n > 0 et tout entier p € [0,n — 1], u%”(0) = 0 et déterminer
(n) 0
u,”’(0).
Montrer que pour tout entier n € N*, tout entier p € [0,n — 1] et tout réel x, on a :
n—p—1
M,

Vn!

u'? )(x)| <

+00
En déduire que la fonction U = Z u, est bien définie et indéfiniment dérivable sur R.
n=0
p-1
Montrer que U(0) = ay et pour tout entier p > 1, UP(0) = Z uP(0) + pla,.
n=0
Déduire de ce qui précede que pour toute suite réelle (b)) en, il existe une fonction f indéfini-
ment dérivable sur R telle que pour tout p € N, fP(0) = b,.
Ce résultat est appelé théoreme de Borel. Il a ét€ démontré par Peano et Borel a la fin du
XIx® siecle.
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PROBLEME 2

Notations et définitions

- Soientn € N* et (p, g) € (N*)%.

- R[X] désigne I’ensemble des polynomes a coefficients dans R. Si P € R[X], on notera encore
P la fonction polynomiale associée.

- M,(R) et M, (C) désignent respectivement les ensembles des matrices carrées de taille p a
coefficients dans R et dans C. M, ,(R) et M,, ,(C) désignent respectivement les ensembles des
matrices a p lignes et g colonnes a coeflicients dans R et dans C.

- On note /,, la matrice identité de M,,(C) et 0, la matrice de M,,(C) ne comportant que des 0.

- On note y4 le polyndme caractéristique d’une matrice A € M,(C), c’est-a-dire le polynome
det(X1, — A).

- Etant donnée une matrice M € M,,(C), on note Sp(M) I’ensemble des valeurs propres com-
plexes de M.

Objectifs

Dans la partie I, on détermine les valeurs propres d’une matrice tridiagonale symétrique réelle parti-
culiere. On utilise les résultats démontrés dans la partie I pour résoudre, dans la partie II, un systeme
différentiel.

Partie I - Eléments propres d’une matrice

I.1 - Localisation des valeurs propres

On considere une matrice A = (a; j)1<; j<n € M,(C). Soient une valeur propre A € C de A et un vecteur
X1
propre associ€ x = | : | € M,,;(C) \ {Om,,0)}-

Xn
n
Q20. Montrer que pour tout i € [1,n],ona: Ax; = Z a; jx;.
=1

n

Q21. Soit iy € [1,n] tel que |x;| = max _|x;|. Montrer que : || < Z lai, -

JE s n ]:]
En déduire que :
|/l| < max { |Cli,j|} .
ie[[l ,n JZ:;
Soient @ et S deux nombres réels. On considere la matrice A, (a, 8) € M, (R) définie par :
a B 0 - 0
B a B oo
Afa,p=10 . - 0f-
: B a pB
0 0 B «a
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Q22. Justifier que les valeurs propres de A, («, 5) sont réelles.

Q23. Soit A € R une valeur propre de A,(a,3). Montrer que :

1] < lal + 28]

I.2 - Calcul des valeurs propres de A, (@, 8)

Q24. En utilisant la question Q23, montrer que pour toute valeur propre A de A,(0, 1), il existe
0 € [0, ] tel que A = 2 cos 6.

On note U, le polyndome y A 2X).

(0, 1)

Q25. Etablir, pour n > 3, une relation entre XAn(O, 1),XAn—1(07 1 et XAn_z(O, 1)

En déduire, pour n > 3, une relation entre U,, U,_; et U,,_,.

Q26. Montrer par récurrence sur n que pour tout 6 €]0, z[ :

sin((n + 1)0)

U,(cos0) = sin )

Q27. Déduire de la question précédente que ’ensemble des valeurs propres de A,(0,1) est

{2 cos( J+ l); Je 1, n]]} Déterminer la multiplicité des valeurs propres et la dimension des
n
espaces propres associés.

. . r
Consid € [1,n] et 0; = —.
onsidérons j € [1,n] et posons 6, m—r
X1
Q28. Montrer que pour tout vecteur propre x = | : | € M, ;(R) de A,(0, 1) associé a la valeur propre
Xn

2cos(f)),ona:
—2cos(0))x; +x, =0
Xp—p —2c08(0)xx + x40y =0, Vke[2,n-1].

Xp—1 — 2cos(0j)x, =0
Soit E I’ensemble des suites réelles (1 )ien VErifiant la relation de récurrence :
Vk € N*, Up_1 — 2COS(9.,') Uy + U1 = 0.
Q29. Montrer que E est un espace vectoriel sur R dont on précisera la dimension.
Q30. Déterminer I’ensemble E des suites (u)ien € E telles que vy = u,11 = 0.

Q31. En déduire I’espace propre de A,(0, 1) associ€ a la valeur propre 2 cos(6;).

Q32. En déduire, pour tout (a,8) € R*, I’ensemble des valeurs propres de A, (e, 3) et les espaces
propres associés. On distinguera le cas 8 # 0 du cas 5 = 0.
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Partie II - Systeme différentiel

I1.1 - Matrices par blocs

On considere A, B, C et D des matrices de M,,(C) telles que C et D commutent.

A B\(D 0,
Q33. Calculer (C D) (_ c In).

L’ objectif des trois prochaines questions est de démontrer la relation :
A B
det ((C D)) = det(AD — BC). (D

Q34. Montrer I’égalité (1) dans le cas ou D est inversible.

Q35. On ne suppose plus D inversible. Montrer qu’il existe p, € N* tel que pour tout entier p > po,
D + —1I, est inversible.

Q36. En déduire que I’égalité (1) est également vraie dans le cas ot D n’est pas inversible.

Considérons une matrice M € M,,(C) et formons la matrice :
0, 1,
)

Q37. Montrer que Sp(N) = {u € C; we Sp(M)}.
X1
Q38. Soient u € Sp(N) et x = | : | € M, ;(C) un vecteur propre de M associé a la valeur propre .

Xn

X N
Montrer que le vecteur (,U x) € M,,.1(C) est vecteur propre de N associé a la valeur propre u.

Q39. Montrer que si M est diagonalisable et inversible, alors N est également diagonalisable et
inversible.

I1.2 - Application a un systéme différentiel dans le cas ou n = 2

On considere le systeme différentiel :

X = =2x+x
{ X, = x-2x 2
Q40. Déterminer (o, 8) € R? tel que le systéme (2) soit équivalent au systeme différentiel du premier
X1
ordre X' = BX, ou X = | 2| et B = 0 < € M4(R)
I P “\Ax@p) 0) T
X
Que déduit-on du théoreme de Cauchy quant a la structure de 1I’ensemble des solutions de ce

systeme ?

Q41. En utilisant la question Q37, déterminer les valeurs propres de B et en déduire que B est
diagonalisable.
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On considere la matrice :

-iV3 0
0
-1

0

D =

~ O O O

0
0
0

Q42. En utilisant la question Q38, déterminer une matrice inversible P € My(C) dont la premiere
ligne ne comporte que des 1 et telle que B = PDP™".

V1

Y2

|

V4

Q44. Déterminer la solution du systeme différentiel (2) avec conditions intiales
(x1(0), x2(0), x1(0), x5(0)) = (1,0,0,0).

Q43. Déterminer I’ensemble des solutions du systeme différentiel Y = DY, avec Y =

FIN
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