
Q.1 Le terme général de AX est
n∑
j=1

aijxj.

Par hypothèse, ∀i, j, aij > 0 et xj > 0. Comme X 6= 0, l’un des xj est
strictement positif. Donc le terme général est strictement positif.

Le terme général de |AB| est

∣∣∣∣∣
n∑
k=1

aikbkj

∣∣∣∣∣ que l’on peut majorer, grâce

à l’inégalité triangulaire par
n∑
k=1

|aik||bkj| qui est le terme général de

|A||B|.
De ce fait le terme général de |A||B|− |AB| est positif et ainsi |AB| 6
|A||B|

Q.2 C-S : |(X|Y )| 6 ‖X‖.‖Y ‖.
Il suffit de poser xk = |zk| et yk = |wk|, réels (positifs) pour obtenir
l’inégalité proposée avec le produit scalaire canonique.

Q.3 |1+z| = 1+ |z|. On élève au carré et on transforme le carré du module
en zz.
On obtient alors 1 + z + z + zz = 1 + 2|z|+ zz d’où z + z = 2|z|.
On utilise l’écriture algébrique, soit 2a = 2

√
a2 + b2. Donc a > 0 et

en élevant au carré de nouveau, on récupère b = 0.
z est bien un réel positif.

Comme |z| 6= 0, |z+z′| = |z|+|z′| devient |z|
∣∣∣∣1 +

z′

z

∣∣∣∣ = |z|
(

1 +
|z′|
|z|

)
.

On simplifie donc par |z| et on retrouve le cas précédent. Donc
z′

z
est

un réel positif comme voulu.

Q.4 Quitte à renuméroter, on peut supposer que z1 6= 0.
En utilisant l’inégalité triangulaire, on a∣∣∣∣∣

n∑
j=1

zj

∣∣∣∣∣ 6 |z1 + zk|+
∑
j 6=1,k

|zj| 6
n∑
j=1

|zj|

Or les sommes initiale et finale sont égales donc ∀k ∈ [[1, n]], |z1+zk| =
|z1|+|zk|. Ce qui prouve, en utilisant la Q3, qu’il existe αk, réel positif,
tel que zk = αz1. Dit autrement, les zk possèdent le même argument
et cela fournit l’écriture exponentielle de zk.

Q.5 χA = X2 − (a + d)X + ad − bc donc ∆ = (a + d)2 − 4(ad − bc) =
(a− d)2 + 4bc
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Q.6 b > 0 et c > 0 donc ∆ > 0. Le polynôme caractéristique possède donc
deux racines distinctes λ et µ. La matrice A est donc diagonalisable
et est donc semblable à la matrice proposée.

Q.7 On a choisi λ < µ. Ainsi, comme a et d sont positifs, strictement,

λ =
a+ d−

√
∆

2
et µ =

a+ d+
√

∆

2
On utilise de nouveau l’inégalité triangulaire : |a+d−

√
∆| 6 |a+d|+√

∆ Comme a+d > 0, on obtient bien le numérateur de µ. L’inégalité
est stricte car ∆ > 0

Q.8 Notons D la matrice diagonale formée des deux valeurs propres. Il
existe P inversible telle que A = PDP−1.
Une récurrence élémentaire fournitAk = PDkP−1. Ainsi (Ak) converge
si et seulement si (Dk) converge. Or Dk =diag(µk, λk).
Ces quantités convergent si et seulement si λ ∈]− 1, 1] et µ ∈]− 1, 1].
Si µ < 1 alors la limite est la matrice nulle.
De ce fait (Ak) converge vers une matrice L non nulle si et seulement

si µ = 1. On obtient alors L = P

(
1 0
0 0

)
P−1

La matrice diagonale est clairement de rang 1. Comme P est inver-
sible, L est de rang 1 et L2 = L évidemment.

Q.9 On applique ce qui précède à B car ses coefficients sont strictement
positifs. ∆ = (β − α)2 + 4αβ = (α + β)2

Donc λ =
(2− α− β)− (α + β)

2
= 1− α− β et µ = 1.

Un vecteur propre associé à 1 est (β, α), un vecteur propre associé à
1− α− β est (−1, 1) Cela fournit donc la matrice S.

Q.10 Un calcul d’inverse fournit la matrice L calculée précédemment : L =
1

α + β

(
β β
α α

)
Q.11 On montre d’abord que ‖.‖∞ est une norme. La positivité et l’ho-

mogénéité sont claires. Pour la séparation, si ‖A‖∞ = 0, alors pour
tout i ∈ {1, . . . , n},

∑n
j=1 |ai,j| = 0 donc comme c’est une somme de

termes positifs, pour tout j ∈ {1, . . . , n}, ai,j = 0 donc A = 0. Pour
l’inégalité triangulaire, si A et B sont deux matrices et i ∈ {1, . . . , n},

n∑
j=1

|ai,j + bi,j| 6
n∑
j=1

|ai,j|+
n∑
j=1

|bi,j| 6 ‖A‖∞ + ‖B‖∞.
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Par passage au max, ‖A+B‖∞ 6 ‖A‖∞ + ‖B‖∞.

On montre ensuite qu’elle est sous-multiplicative :

‖AB‖∞ = max
16i6n

(
n∑
j=1

∣∣∣∣∣
n∑
k=1

aikbkj

∣∣∣∣∣
)

Or
n∑
j=1

∣∣∣∣∣
n∑
k=1

aikbkj

∣∣∣∣∣ 6
n∑
j=1

n∑
k=1

|aik||bkj|

On échange les sommations. Or
∑

j |bkj| 6 ‖B‖∞. Il reste alors
∑n

k=1 |aik|
que l’on majore de même.

Q.12

‖AB‖22 =
n∑
i=1

n∑
j=1

∣∣∣∣∣
n∑
k=1

aikbkj

∣∣∣∣∣
2

6
n∑
i=1

n∑
j=1

(
n∑
k=1

|aik|2
n∑
k=1

|bkj|2
)

6
n∑
i=1

n∑
k=1

|aik|2
n∑
j=1

n∑
k=1

|bkj|2

6 ‖A‖2‖B‖2

Q.13 ν(A) est un réel positif.
ν(A + B) = N(SAS−1 + SBS−1) 6 N(SAS−1) + N(SBS−1) 6
ν(A) + ν(B)
ν(λA) = N(SλAS−1) = |λ|N(SAS−1) = |λ|ν(A)
ν(A) = 0 = N(SAS−1). Comme N est une norme SAS−1 = 0 et ainsi
A = 0
Donc ν est une norme.
Et enfin ν(AB) = N(SAS−1SBS−1) 6 N(SAS−1)N(SBS−1) 6 ν(A)ν(B)

Q.14 A et SAS−1 sont semblables donc ont mêmes valeurs propres. Leur
rayon spectral est donc le même.

Q.15 Le polynôme caractéristique est toujours factorisable dans C donc A
est trigonalisable.
A = PTP−1 Les valeurs propres de T k sont λki et ainsi ρ(Ak) = ρ(A)k

Les valeurs propres de αA sont αλi donc ρ(αA) = |α|ρ(A)
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Q.16 Soit λ une valeur propre de A. Il existe X 6= 0 tel que AX = λX. No-
tons alors H la matrice dont la première colonne est X et les colonnes
suivantes sont nulles. Alors, évidemment, AH = λH
CommeN est sous-multiplicative,N(AH) 6 N(A)N(H) soitN(λH) 6
N(A)N(H) puis |λ| 6 N(A) car N(H) > 0.
Cela prouve que ρ(A) 6 N(A)

Q.17 Quand on multiplie par la gauche avec une matrice diagonale, on
multiplie la ligne par le coefficient diagonal correspondant. La multi-
plication à droite multiplie la colonne.
On obtient donc une matrice triangulaire supérieure de coefficient, en
position (i, j), τ 1−iTijτ

j−1 = τ j−iTij.

Q.18

‖D−1τ TDτ‖∞ = max
16i6n

(
n∑
j=i

τ j−i|Tij|

)
= max

16i6n

(
|Tii|+

n∑
j=i+1

τ j−i|Tij|

)

6 ρ(A) + max
16i6n

(
n∑

j=i+1

τ j−i|Tij|

)

Et il existe δ tel que pour τ 6 δ, les sommes soient inférieures à ε

Q.19 T = P−1AP . On a donc ‖D−1τ P−1APDτ‖∞ 6 ρ(A) + ε. Et ainsi,
d’après la question 13, on a bien créé une norme sous-multiplicative
vérifiant l’inégalité demandée.

Q.20 Si ρ(A) < 1, soit ε > 0 tel que ρ(A)+ε < 1. Par la question précédente
il existe une norme sous-multiplicative N telle que N(A) 6 ρ(A) + ε.
Par sous-multiplicativité de N , pour tout k > 1, N(Ak) 6 N(A)k 6
(ρ(A)+ε)k qui tend vers 0. Ainsi N(Ak) tend vers 0 donc Ak tend vers
0 (comme on est en dimension finie, le fait pour une suite de tendre
vers 0 ne dépend pas de la norme choisie).
Réciproquement, ρ(Ak) 6 N(Ak) donc ρ(A)k tend vers zéro ce qui
fournit ρ(A) < 1.

Q.21 A est sym réelle donc d’après le théorème spectral, elle est diago-
nalisable et les sous-espaces propres associés à des valeurs propres
distinctes sont orthogonaux.

Q.22 Si ρ(A) = 0 alors la seule valeur propre est zéro. Comme A est diago-
nalisable, A = 0 ce qui est contraire à l’hypothèse.
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Q.23 Il existe une base orthonormée de vecteurs propres (ei). Notons (x1, . . . , xn)
les composantes de X relativement à cette base. Alors AX = (λixi)i

et XTAX =
n∑
i=1

λix
2
i par orthogonalité.

Il suffit alors de majorer λi par µ et utiliser le fait que X est unitaire
pour obtenir l’inégalité voulue.

Q.24 Si X est un vecteur propre associé à µ alors on obtient évidemment

l’égalité. Réciproquement, si
n∑
i=1

λix
2
i = µ alors

n∑
i=1

(µ − λi)x2i = 0. Il

s’agit d’une somme de termes positifs, nulle. Donc chaque terme est
nul. Si µ 6= λi cela signifie que xi = 0. Par contre, lorsque µ = λi, xi
peut être non nul et comme la somme des x2i vaut 1, l’un au moins est
non nul. Cela signifie donc que X est vecteur propre associé à µ.

Q.25 Il suffit d’utiliser l’inégalité triangulaire et de réutiliser la technique
de la question 23 pour majorer ensuite par µ

Q.26 Pour X vecteur propre unitaire associé à une valeur propre λ de A,
|λ| = |XTAX| 6 µ par la question précédente, d’où ρ(A) 6 µ. Or µ
est une valeur propre de A donc µ 6 ρ(A) et finalement µ = ρ(A) = r.

Q.27 Soit X un vecteur propre de A associé à r, alors X 6= 0 donc |X| 6= 0.
On utilise la question 25 :

r = |r| = |XTAX| 6 |X|TA|X| 6 r

donc il n’y a que des égalités. Donc |X|TA|X| = r et, par la question
24, r|X| = A|X| et |X| est vecteur propre associé à r.
Montrons maintenant que |X| > 0. Si l’une des coordonnées de |X|
est nulle cela signifie que

∑
aij|xj| = 0 pour cette ligne i. Or A > 0.

Cela signifierait que tous les xi sont nuls ce qui est absurde.

Q.28 La question revient à montrer que tous les coefficients de X sont de
même signe. On a |X| > 0 donc aucun coefficient de X n’est nul.
Par ce qui précède |AX| = |rX| = r|X| = A|X| et on revient aux
coordonnées, c’est-à-dire que pour tout i entre 1 et n :∣∣∣∣∣

n∑
j=1

ai,jxj

∣∣∣∣∣ =
n∑
j=1

ai,j|xj|
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en utilisant que les ai,j sont strictement positifs. On peut donc appli-
quer la question 4. Comme les xi sont réels, il vient eiθ = ±1, ce qui
signifie que tous les xi sont de même signe.

Q.29 On considère donc X1 et X2 deux vecteurs propres orthogonaux as-
sociés à r. D’après ce qui précède, tous les coefficients de X1 et X2

sont non nuls et de signe constant.
On a XT

1 X2 = 0 ce qui impossible d’après le signe de la somme. Donc
le sous-espace propre est de dimension 1.

Q.30 Comme A est diagonalisable, la multiplicité de r est la dimension du
sous-espace propre soit 1.
Considérons λ tel que |λ| = r et AX = λX alors A|X| = r|X|. Or
X = ±|X|. Donc on a AX = rX c’est-à-dire que X est aussi vecteur
propre associé à r. Donc λ = r.

Q.31 A =

(
0 1
1 0

)
possède les vp −1 et 1.

Q.32 ApX = rpX et on peut appliquer le IV - B. Donc X = ±|X| et |X| > 0
et on obtient bien le sous espace propre de dimension 1 engendré par
un vecteur positif.

Q.33 Si p est impair : ρ(Ap) = rp et par la question 30 appliquée à Ap, rp est
l’unique valeur propre de module rp de Ap, donc par stricte croissance
de x 7→ xp, r est l’unique valeur propre de A de module r.
Si p est pair, on a toujours ρ(Ap) = rp, et par la question 30 rp est
l’unique valeur propre de module rp de Ap. Il faut montrer que−r n’est
pas valeur propre de A. Or comme A est diagonalisable, Ap aussi et :

dim(ker(Ap − rpIn)) = dim(ker(A− rIn)) + dim(ker(A+ rIn)).

Par la question 29 on sait que la dimension de l’espace propre de
gauche est 1, et celle de ker(A− rIn) vaut également 1 par la question
32, donc nécessairement dim(ker(A+ rIn)) = 0 et −r /∈ Sp(A). Donc
r est l’unique valeur propre de module r de A.

Q.34 Soit λ une valeur propre de A. On sait qu’il existe X 6= 0 tel que AX =
λX. Considérons les composantes de X non nulles. L’une d’entre elles
est de module maximal. On la note i0.

Alors on a
n∑
j=1

Ai0jxj = λxi0 soit
n∑

j=1,j 6=i0

Ai0jxj = (λ− Ai0i0)xi0
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Et |λ− Ai0i0||xi0| 6
n∑

j=1,j 6=i0

|Ai0j||xj|.

On divise alors par |xi0| non nul et
|xj|
|xi0 |

6 1 pour conclure.

Q.35 Utilisons la proposition : le spectre de A est celui de D−1AD. On
applique alors la question 34 à la matrice D−1AD : si λ ∈ sp(A) =
sp(D−1AD), il existe i entre 1 et n tel que :

|λ− Aii| = |λ−X−1i AiiXi| 6
∑

j=1,j 6=i

X−1i |Aij|Xj 6 X−1i
∑

j=1,j 6=i

BijXj

6 X−1i (ρ(B)−Bii)Xi

Ce qui fournit l’inégalité demandée.
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