Q.1

Q.2

Q.3

Q.4

Q.5

Le terme général de AX est Z a;;T;.
j=1
Par hypothese, Vi, 7, a;; > 0 et z; > 0. Comme X # 0, I'un des z; est

strictement positif. Donc le terme général est strictement positif.
n

Z @by

k=1
n

Le terme général de |AB| est que I'on peut majorer, grace

a l'inégalité triangulaire par Z |aix]|bk;j| qui est le terme général de
k=1
Al BJ.
De ce fait le terme général de |A||B| — | AB]| est positif et ainsi |[AB| <
| Al B
CS (X)) < XYL
Il suffit de poser xp = |z| et yr, = |wgl, réels (positifs) pour obtenir
I'inégalité proposée avec le produit scalaire canonique.
|1+ 2| = 1+]z|. On éleve au carré et on transforme le carré du module
en zz.
On obtient alors 1 + 2 4+Z+ 22 =1+ 2|2| + 2Z dol 2 + Z = 2|2|.
On utilise I’écriture algébrique, soit 2a = 2v/a? + b2. Donc a > 0 et
en élevant au carré de nouveau, on récupere b = 0.
/
.y (1 ¥ ‘i> .
2]

z est bien un réel positif.
z

On simplifie donc par |z| et on retrouve le cas précédent. Donc — est
z

/

Comme |z| # 0, |z+2'| = |z|+]|7/| devient |z| |1 + z
z

un réel positif comme voulu.

Quitte a renuméroter, on peut supposer que z; # 0.
En utilisant 1'inégalité triangulaire, on a

oyl <latal+ Y 15l <) ]l

j=1 j#Lk j=1

Or les sommes initiale et finale sont égales donc Vk € [[1,n]], |z1+21] =
|z1|+|zk|. Ce qui prouve, en utilisant la Q3, qu’il existe oy, réel positif,
tel que z, = az;. Dit autrement, les z; possedent le méme argument
et cela fournit I’écriture exponentielle de zy.

xa=X?—(a+d)X +ad—bc donc A = (a + d)? — 4(ad — bc) =
(a — d)? + 4bc




Q.6

Q.7

Q.8

Q.9

Q.10

Q.11

b>0etc>0donc A > 0. Le polynome caractéristique possede donc
deux racines distinctes A et pu. La matrice A est donc diagonalisable
et est donc semblable a la matrice proposée.

On a choisi A < p. Ainsi, comme a et d sont positifs, strictement,
a+d—+vA a+d+vVA

A=—0oZ—cetu= —

On utilise de nouveau I'inégalité triangulaire : |a+d —VA| < |a+d| +

VA Comme a+d > 0, on obtient bien le numérateur de p. L’inégalité

est stricte car A > 0

Notons D la matrice diagonale formée des deux valeurs propres. Il
existe P inversible telle que A = PDP~!.

Une récurrence élémentaire fournit A¥ = PD*P~1. Ainsi (A¥) converge
si et seulement si (D¥) converge. Or D* =diag(u*, \¥).

Ces quantités convergent si et seulement si A €] —1,1] et p €] — 1, 1].
Si p < 1 alors la limite est la matrice nulle.

De ce fait (A¥) converge vers une matrice L non nulle si et seulement
1 0\ 4

00 P

La matrice diagonale est clairement de rang 1. Comme P est inver-
sible, L est de rang 1 et L? = L évidemment.

si 4 = 1. On obtient alors L = P

On applique ce qui précede a B car ses coefficients sont strictement
positifs. A = (8 — a)* +4af = (a + §)?

Donc)\:@_a_ﬁ)_(&—i_ﬁ =l—-a—pfetp=1.

Un vecteur propre associé a 1 est ([, «), un vecteur propre associé a
1 —a—fest (—1,1) Cela fournit donc la matrice S.

Un calcul d’inverse fournit la matrice L calculée précédemment : L =

o)
a+p\o o

On montre d’abord que ||.||o est une norme. La positivité et 1'ho-
mogénéité sont claires. Pour la séparation, si |Al|o = 0, alors pour
tout 7 € {1,...,n}, 37 |a;;| = 0 donc comme c’est une somme de
termes positifs, pour tout j € {1,...,n}, a;; = 0 donc A = 0. Pour
I'inégalité triangulaire, si A et B sont deux matrices et i € {1,...,n},

D aig +bigl < laigl + > 1bigl < [ Allse + | Blloo-
j=1 j=1 Jj=1
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Q.12

Q.13 v

Q.14

Q.15

Par passage au max, ||A + Blloo < ||A]loc + || Bllo-
On montre ensuite qu’elle est sous-multiplicative :

14B]loc = max (Z > aby )

j=1 k=1
Or
n n n n
D12 aabig| <Y lailb
j=1 k=1 =1 k=1

On échange les sommations. Or ) [by;| < || B|oo. Il reste alors Y 21 |as|
que ’on majore de méme.

n n n 2
HABH% = ZZ Zaikbkj

i=1 j=1 | k=1

< zz(mu zw)
=1 j=1 =

< ZZ\GMPZZVDM?
i=1 k=1 j=1 k=1

< A1PBI?

A) est un réel positif.

A+ B) = N(SAS™! + SBS™) < N(SAS ') + N(SBS™') <
4)+v(B)
A
A

K <

<
/\/\/—\/-\

A) = N(SANAS~ ) IAIN(SAS™YH = |Mv(A)

)=0= N(SAS™!). Comme N est une norme SAS™ = 0 et ainsi

=0
Donc v est une norme.
Et enfin v(AB) = N(SAS™'SBS™) < N(SAS™H)N(SBS™) < v(A)v(B)
A et SAS™! sont semblables donc ont mémes valeurs propres. Leur
rayon spectral est donc le méme.

=5

Le polynome caractéristique est toujours factorisable dans C donc A

est trigonalisable.
A = PT P! Les valeurs propres de T* sont A} et ainsi p(A4*) = p(A)*
Les valeurs propres de oA sont a\; donc p(aA) = |a|p(A)
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Q.16 Soit A une valeur propre de A. Il existe X # 0 tel que AX = AX. No-
tons alors H la matrice dont la premiere colonne est X et les colonnes
suivantes sont nulles. Alors, évidemment, AH = \H
Comme N est sous-multiplicative, N(AH) < N(A)N(H) soit N(AH) <
N(A)N(H) puis |A] < N(A) car N(H) > 0.

Cela prouve que p(A) < N(A)

Q.17 Quand on multiplie par la gauche avec une matrice diagonale, on
multiplie la ligne par le coefficient diagonal correspondant. La multi-
plication a droite multiplie la colonne.

On obtient donc une matrice triangulaire supérieure de coefficient, en
position (z,7), 7' Ty77 1 = 77T,

Q.18
IDFTD o = max (ZT“!%\) = max (!Tii\ + ) T“!%\)
j=i j=it1
< A ( > T“|Tij|>
j=it+1

Et il existe § tel que pour 7 < 4, les sommes soient inférieures a €

Q.19 T = P'AP. On a donc |D-'P7'APD,|s < p(A) + €. Et ainsi,
d’apres la question 13, on a bien créé une norme sous-multiplicative
vérifiant 'inégalité demandée.

Q.20 Sip(A) < 1, s0it € > 0 tel que p(A)+€ < 1. Par la question précédente
il existe une norme sous-multiplicative N telle que N(A) < p(A) + €.
Par sous-multiplicativité de N, pour tout k > 1, N(A*) < N(A)* <
(p(A)+€)* qui tend vers 0. Ainsi N(A*) tend vers 0 donc A* tend vers
0 (comme on est en dimension finie, le fait pour une suite de tendre
vers 0 ne dépend pas de la norme choisie).
Réciproquement, p(A¥) < N(A*) donc p(A)* tend vers zéro ce qui
fournit p(A4) < 1.

Q.21 A est sym réelle donc d’apres le théoreme spectral, elle est diago-

nalisable et les sous-espaces propres associés a des valeurs propres
distinctes sont orthogonaux.

Q.22 Si p(A) = 0 alors la seule valeur propre est zéro. Comme A est diago-
nalisable, A = 0 ce qui est contraire a '’hypothese.



Q.23

Q.24

Q.25

Q.26

Q.27

Q.28

Il existe une base orthonormée de vecteurs propres (e;). Notons (z, . ..
les composantes de X relativement a cette base. Alors AX = (\;x;);
n

et XTAX = Z M\iz? par orthogonalité.

i=1
Il suffit alors de majorer \; par p et utiliser le fait que X est unitaire
pour obtenir I'inégalité voulue.

Si X est un vecteur propre assocne a p alors on obtlent évidemment
I’égalité. Réciproquement, si Z \ix? = p alors Z (p—N)x? =0.11

s’agit d’'une somme de termes p081t1fs nulle. Donc chaque terme est
nul. Si u # A; cela signifie que z; = 0. Par contre, lorsque u = \;, x;
peut étre non nul et comme la somme des x? vaut 1, 'un au moins est
non nul. Cela signifie donc que X est vecteur propre associé a .

Il suffit d’utiliser 'inégalité triangulaire et de réutiliser la technique
de la question 23 pour majorer ensuite par p

Pour X vecteur propre unitaire associé a une valeur propre \ de A,
Al = | XTAX| < p par la question précédente, d’ott p(A) < p. Or u
est une valeur propre de A donc p < p(A) et finalement p = p(A) = 7.

Soit X un vecteur propre de A associé a r, alors X # 0 donc | X| # 0.
On utilise la question 25 :

r=rl=|XTAX| < |X|TAIX| < r

donc il n’y a que des égalités. Donc | X|TA|X| = r et, par la question
24, r| X| = A|X]| et | X| est vecteur propre associé a r.

Montrons maintenant que |X| > 0. Si I'une des coordonnées de | X|
est nulle cela signifie que ) a;;|z;| = 0 pour cette ligne i. Or A > 0.
Cela signifierait que tous les x; sont nuls ce qui est absurde.

La question revient a montrer que tous les coefficients de X sont de
méme signe. On a |X| > 0 donc aucun coefficient de X n’est nul.
Par ce qui précede |AX| = |rX| = r|X| = A|X| et on revient aux
coordonnées, c’est-a-dire que pour tout ¢ entre 1 et n :

n
= aijlaj]
j=1

i,

, Tn)



Q.29

Q.30

Q.31
Q.32

Q.33

Q.34

en utilisant que les a; ; sont strictement positifs. On peut donc appli-
quer la question 4. Comme les z; sont réels, il vient ¢ = £1, ce qui
signifie que tous les x; sont de méme signe.

On considere donc X; et X5 deux vecteurs propres orthogonaux as-
sociés a r. D’apres ce qui précede, tous les coefficients de X; et X,
sont non nuls et de signe constant.

On a X7 X, = 0 ce qui impossible d’apres le signe de la somme. Donc
le sous-espace propre est de dimension 1.

Comme A est diagonalisable, la multiplicité de r est la dimension du
sous-espace propre soit 1.

Considérons A tel que |[A| = r et AX = AX alors A|X| = r|X|. Or
X = +|X]|. Donc on a AX = rX c’est-a-dire que X est aussi vecteur
propre associé a r. Donc A = r.

1 0
APX = rPX et on peut appliquer le IV - B. Donc X = £|X] et | X| >0
et on obtient bien le sous espace propre de dimension 1 engendré par
un vecteur positif.

A= (0 1) possede les vp —1 et 1.

Si p est impair : p(AP) = rP et par la question 30 appliquée a AP, r? est
I'unique valeur propre de module 7P de AP, donc par stricte croissance
de x — 2P, r est 'unique valeur propre de A de module r.

Si p est pair, on a toujours p(AP) = 7P, et par la question 30 P est
I"unique valeur propre de module r? de AP. Il faut montrer que —r n’est
pas valeur propre de A. Or comme A est diagonalisable, AP aussi et :

dim(ker(A” —r"1,)) = dim(ker(A — r1,)) + dim(ker(A + r1,)).

Par la question 29 on sait que la dimension de l’espace propre de
gauche est 1, et celle de ker(A —rI,) vaut également 1 par la question
32, donc nécessairement dim(ker(A + r1,,)) = 0 et —r ¢ Sp(A). Donc
r est 'unique valeur propre de module r de A.

Soit A une valeur propre de A. On sait qu’il existe X # 0 tel que AX =
AX. Considérons les composantes de X non nulles. L'une d’entre elles
est de module maximal. On la note zo

Alors on a Z Ajjri = Axy, soit Z Ajpiti = (A= Aigio)Tig

Jj=1,j#i0



Et |)‘ - Ai0i0||xi0| < Z |Ai0j||xj|‘
J=1,j7#i0
|7,
|xio‘
Q.35 Utilisons la proposition : le spectre de A est celui de D~'AD. On
applique alors la question 34 & la matrice D™'AD : si A € sp(A) =
sp(D7YAD), il existe ¢ entre 1 et n tel que :

On divise alors par |z;,| non nul et < 1 pour conclure.

A= Al = A= X7 AGX <D XA < X7 YD B,
j=1,j#i =14

< X, '(p(B) — Bii)X;
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Ce qui fournit 'inégalité demandée.



