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NOTATIONS

Dans tout le probleéme, pour tout (a,b) € N2 tel que a < b, on notera [a,b] = {ie N | a < i < b}
I’ensemble des entiers compris entre a et b.

Soient p, ¢ € N* deux entiers strictement positifs. On note M, ;(R) ensemble des matrices a
coefficients réels de taille p x g (p lignes et ¢ colonnes). Lorsque p = ¢, on notera M, (R) 'ensemble
des matrices carrées de taille p x p.

Pour tout A € M,, ,(R), AT € M, ,(R) désignera la transposée de A. Un vecteur u € RP pourra
étre identifié & un vecteur colonne de M, 1(R) et uT sera le vecteur ligne associé¢ de Mj ,(R).

Pour tous A, B € M, 4(R), on note A® B la matrice de M, ,(R) définie pour tous 1 < i <p
et 1 <j<qgpar:

(AO B)i; = AijBy;
ol pour toute matrice M € M, ,(R), M;; désigne le coefficient de la ligne i et de la colonne j.

Pour tout A € M, ,(R), on définit A©) € M, ,(R) la matrice telle que Al(»?) = 1 pour tous
1<i<petl<j<qpuis par récurrence, A"t = A" © A pour tout n e N.

Enfin, on dira qu’une matrice 4 € M, (R) est symétrique positive si AT = A et uT Au > 0 pour

tout u € M, 1(R). L’ensemble des matrices symétriques positives de M, (R) sera noté Sym™ (p).

DEPENDANCES DES PARTIES

Les parties III et IV sont indépendantes des parties I et II et la partie V dépend des parties

précédentes.

PARTIE 1

1) Montrer que pour toutes matrices A et B dans Sym™ (p) et tous réels positifs a et b, on a
y
aA+bB e Sym™(p)
2) Montrer que si v € R? alors la matrice A = (A4;:)¢; el o2 définie par A = vvT est dans
3)(i,5)€l1,p]
Sym™ (p).
(3) (a) Montrer que pour tous u,v € RP, on a (uu’) ® (vv?) = (u®v)(u®v)T.
oit A € dym"' (p). On note Ay, ---, es valeurs propres (avec multiplicité) de
b) Soit A € Sym™ ¢ A Ay les val Itiplicité) de A
et (u1,--- ,up) une famille orthonormale de vecteurs propres associés. Montrer que
Ak = 0 pour tout k € [1,p] et que A = >7_, Apugul.
(c) En déduire que si A, B € Sym™ (p) alors A® B € Sym™ (p).

PARTIE 11

Pour f: R — R et A e M,(R), on note f[A] € M,(R) la matrice définie par f[A];; = f(As;)
pour tout (i, ) € [1,p]?.
(4) Soient n € N et P: R — R défini par P(z) = Y,;_, axz”® olt a > 0 pour tout k € [0, n]
un polynoéme a coefficients positifs.
(a) Vérifier que P[A] = Y1_, arA®) pour toute matrice A € M, (R).
(b) Montrer que si A € Sym™ (p) alors P[A] € Sym™ (p).
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On pose, pour tout n = 0 et tout z € R, P, (z) = >;_, %T ol k! désigne la factorielle de k.
(5) Soit A € Sym™ (p).
(a) Montrer que pour tout (i,7) € [1,p]?, on a

lim Pn[A]z] = exp(Aij) .

n—aoo
(b) Montrer que exp[A] € Sym™ (p).
(c) Soit u € RP. Montrer que exp[A] ® (uuT) € Sym™ (p).

(6) Soit d € N*. On consideére un p-uplet (z;)1<i<p d’éléments de R? et la matrice

A = ((&i, T5)) i, j)el1.p)?
ott {a,b) désigne le produit scalaire usuel entre deux vecteurs a et b de RY. On notera
la| = v/{a, a) la norme de a.
(a) Montrer que A € Sym™ (p).
(b)

2 2
On note u € R? le vecteur de coordonnées (exp(f%), e ,exp(f%)). Montrer

que (exp[A] ® (uum));; = exp(—%) pour tout (i,7) € [1,p]?.
(c) Soient A > 0 et K € My(R) la matrice définie par K;; = exp(—%) pour tout
(i,7) € [1,p]?. Montrer que K € Sym™ (p).

PARTIE II1

Soit A > 0 fixé. On considere ici 'espace €' (R, R) des fonctions continues de R dans R. Dans
toute la suite, on désigne par & le sous-espace vectoriel de € (R, R) (on ne demande pas de vérifier

ce fait) défini par
&={feCRR)|I(a,A) e (R¥)*tel que VyeR |f(y)| < Aexp(—y?/a) }.

Pour tout z € R, on note 7, : ¥(R,R) — ¥(R,R) lapplication définie pour tout f € €(R,R)
par

= ()Y) = fly — )
pour tout y € R. Enfin on définit la fonction «) : R — R par

M(y) = exp(—y*/A) .
(7) Pour tout (f,g) € &2, montrer que fg est intégrable sur R.

Pour tous f,g € &, on définit

+00

(flg) = F(y)g(y)dy.

(8) (a) Montrer que pour tout f € &, ona (f| f) = 0 avec égalité si et seulement si f = 0.
(b) Montrer que pour tout € R, 7,(v,) appartient & &.

(9) (a) Soit a > 0. Montrer qu’il existe ¢ = 0 tel que pour tout z € R on a

f+ooexp —M exp —f dy =cexp | — s .
—» A a a+ A

Indication : On pourra montrer [’égalité

(y—x)2+£_a+)\ ax
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(b) Soit g € &. On considere C(g) : R — R définie pour tout = € R par

Clg)(x) = (tz(m) ] 9) -

Montrer que C(g) € &.
(¢) Montrer que C : & — & définit un endomorphisme de &.

PARTIE IV

Soit A > 0 fixé. On considéere maintenant ’ensemble G des fonctions g s’écrivant sous la
forme g = Y.\ | 75, (7A) ol n est un entier strictement positif et ((z;, ;))1<i<n est une famille
d’éléments de R? :

n
G={ Z%‘Tzi(%\) | neN* Vie[l,n] (z;,0;) ERxR}.
i=1
On notera H = C(G) l'image de G par 'endomorphisme C' introduit dans la question (9b).

(10) Montrer que G est un sous-espace vectoriel de & et que c’est le plus petit sous-espace

vectoriel de & qui contient toutes les fonctions 7,(vx) pour z € R arbitraire.

(11) (a) Montrer qu’il existe ¢y > 0 telle que pour tout (z,2') e R x R on a

(T2(7A) | 721 (72)) = exvan(e — 2').

Indication : On pourra remarquer que +((y —2)*+ (y —2)%) = 3(y — (z +2/)/2)* +

i(x’ — )2

(b) En déduire que pour tout x € R

C(1e(2)) = eate(722)

et que
H={ Zn:aﬂxi(ng) | ne N* Vie[l,n] (z;,05) ER xR }.
i=1
(12) (a) Soient n € N* et (z;)1<i<n une famille de réels telle que pour tous 4,j € [1,n] on
a x; # x; lorsque i # j. Montrer que la fonction Y ;| ;7y,(72x) est nulle si et
seulement si o; = 0 pour tout 1 < ¢ < n (Indication : On pourra procéder par
récurrence surmn).
(b) En déduire qu’il existe une unique application linéaire D de H dans G telle que
Do C(g) = g pour tout g € G et C o D(h) = h pour tout h € H.
(¢) Montrer que pour tout h € H, on a pour tout x € R que h(z) = (7.(7x) | D(h)).
(13) Pour tout (hi,hs) € H x H, on note (hy | ha)y = cx(D(h1)| D(ha)) ol ¢y est introduit
dans la question (11a).
(a) Vérifier que (| )3 définit un produit scalaire sur H.
(b) Montrer que pour tous z € R et h € H on a h(z) = (7:(72r) | h)x-

(¢) Montrer que pour tout h € H on a

Ihllee < [l

ol on a posé |h|e = sup,cg [h(z)| et |hllx = (h] h);{/Z.



PARTIE V

On fixe dans cette partie deux p-uplets (2;)ie[1,p] €t (ai)ie[1,p] de réels. On suppose que les z;

sont deux & deux distincts. On note S = { h e H | h(z;) = a; } 'ensemble des h € H qui valent a;

en z; pour tout i € [1,p] (on dira qu’une telle fonction est une interpolante). On note J : H — R
défini par J(h) = §|h|}, et J, =inf{ J(h) | he S }.

On veut montrer dans cette partie qu’il existe une unique interpolante h, € S qui atteint le
minimum de J c’est-a-dire telle que J(hy) = Jx. On notera Sy = { he S| J(h) = Jx }.

(14)
(15)

(16)

(17)

Montrer Sy a au plus un élément.

Soient Ho = { h e H | h(z;) = 0 Vi € [1,p] } et h € Sy (on suppose ici Sy non vide).

Montrer que (iL| ho)x = 0 pour tout hg € Ho.

On note Hg = { he H | Yho € Ho (k| ho)s = 0 } le sous-espace orthogonal & Ho dans H.

(a) Montrer que Sy = S N Hp.

(b) Montrer que Hg contient le sous-espace vectoriel de H engendré par les fonctions
Tz, (Y2x) pour i € [1, p].

Soient o € RP (resp. a € RP) le vecteur de coordonnées (ai)ie1,p) (resp. (aq)ie[1,p)) €t

ho = Zf;l @i Ty, (Y2nr)-

(a) Montrer que h, est une interpolante si et seulement si Ko = a o K est la matrice
introduite dans la question (6) (ici dans le cas d = 1).

(b) Montrer que K est inversible.

En déduire qu'il existe ay € RP tel que Sy = {hq, } et calculer la valeur de Jy en fonction

de K et a.



