Corrigé succinct X-ens PSI 2007 par Christophe Hénocq

1.1 On applique la formule de Taylor avec reste intégral a f : x — Inz a 'ordre n + 1. Cela donne :

N ) A B ) e
1n(2)—];) 1 +/0 TS FOTD(t)dt.

1

——, ce qui entraine
n+2’

Il est ensuite facile de montrer que la valeur absolue de l'intégrale est majorée par

In(2) = Ca(1).

1.2 T suffit de choisir n tel que n+ 1 > . la somme partielle d’ordre n de la série définissant (,(1) convient.

1 1
1.3 On a facilement Tl <In(k+1)—Ink < % par exemple en appliquant I'inégalité des accroissements
finis & In sur [k, k 4+ 1]. On en déduit, en additionnant : w, € [0, 1].
1.4 On en déduit aussi 'inégalité u,4+1 — u, < 0. La suite (u,,) est décroissante et minorée. Elle converge.

Ly 1
1.5 Dessin a I’appui, I'aire de D, est / — =
n x n+1

= Up — Up+1-

1
1.6 On utilise la convexité de la fonction  — —. Sur le segment [n,n + 1] sa courbe est située entre la

tangente au point d’abscisse n 4+ 1 et la corde. On arrive ainsi a ’encadrement :

1( 1 _ 1 )_ 1 < 1 < —u <1(l_ 1 )
2\n+1 n+2) 2m+1)m+2) " 2m+1)2 - " T =2\n n+l

+oo

1.70n a u, — v = Z(ukﬂ — ug). En utilisant 'encadrement précédent, on en déduit en additionnant :
1 1 1

— < up — v < —. En écrivant = — — ——— on obtient ’encadrement demandé.

2(n+1) 2n n+1l n nnh+1)

1 1

1.8 On obtient une approximation de v & la précision ———— en prenant u,, — — + ———. On choisit

bprox 7 P dn(n +1) P " 2n dn(n+1)

pour n le premier entier tel que m <e

a

. On

2.1 On étudie la fonction f,. On a f.(x) = fa(m)(ln(lfg)JrL). On pose gq(z) = 1n(1fg)+
' r—a x
2

a gl (r) = ———— < 0. Comme limg, = 0, g, est positive et f, est croissante. En +oco, In(f,(z)) ~ —a
z(z — a)? +00

d’ou lim f, = e °.

—+oo

r—a

2.2 L’intégrale I,, converge car lorsque t — 0, fi(n) ~ Int. Pour l'intégrale I le méme argument prévaut en
0 et en +oo, e ‘Int =o0(%).
2.3 On applique le théoreme de convergence dominée : on considere la fonction h, définie sur R par

hn(t) = fi(n)sit <net h,(t)=0sit>n. Onal, = jio 4o - La suite (hn) converge simplement vers la

fonction h : t — e~ tInt et est majorée en valeur absolue par |h| qui est intégrable sur ]0, +o00o[( en utilisant
In(1+u) < u).

1
2.4 On calcule I,, en posant t = nu : I,, = n/ (I—w)"(In(u)+1In(n))du = r
n

1
1 1nn+n/0 (1—w)" In(u)du.

0
On pose dans la derniére intégrale v = 1 — u et on l'intégre par parties, ce qui donne

1 n+1 1 n+1 n+1
v -1 1 1 1—-w 1

"1 = v)dv = [ (1 - )| - / dv—-5"1
/OU n(l = v)dv n+1 ( U)o n+1Jy 1-v v gk




On en tire 'expression de I,, demandée. En passant & la limite quand n — 400, on obtient —y = I.
—t

2.5 Soit x > 0. La fonction ¢t — est continue sur R} et prolongeable par continuité en O par 1.

et 1

Donc F(z) est bien défini. Par ailleurs en +oo, - = 0(152) ce qui montre 'existence de R(z). On écrit

T +oo
v =— / e tlntdt— / e Intdt et on inteégre chacune de ces deux intégrales par parties en veillant & ce
0 T
x “+ o0
que les crochets soient bien définis : v = {(e’t —1)ln t} + F(z)+ {e*t In t] —R(z) = F(z) —Inz — R(z)
0 T
x = 1 n
2.6 On a F(z) = /0 (Z( et ol )dt Z(—l)”*I% car la série entiere que 'on primitive a un

n>1 n>1

rayon de convergence infini.
n

X nr
2.7 La suite (—) est décroissante parce que le quotient de deux termes consécutifs est ——— < 1.
nnl/n>N (n+1)2
En utilisant le critere spécial on peut écrire :
N—-1 n +oo n N
T x x
F(z) — n—1" — -1 n—1"
(z) (=1) nn! Z( ) nn!| — NN!
n=1 n=N

Pour obtenir le résultat souhaité, il suffit de montrer que N! > NNe= (V=1 Posons zy = NIN“NeN-1 |

N \" 1
La suite (xy) est croissante : 33;\/;1 =e <N " 1> = exp [1 — Nn(1+ N)] > 1 d’apres In(1 + u) < w.

En écrivant zy > x1 = 1, on obtient la premiére inégalité demandée. Par ailleurs, avec une intégration par
e % OO o e *
parties:OgR(:v):—f/ —dt < —
T = t T
2.8 On a

+|R(z)] <

Z ) 1“” P~ Fla)

N-1 on
B R e
;( ) nn! n

—T

1 N
< % et N tel que —(g) < %

e
On choisit donc z tel que
d eN\N

3.1 On montre la convergence uniforme de la série de fonctions définissant ¢, sur tout segment [a,b] de R .

1
Si s € [a,b], la suite (—S) N décroit et converge vers 0. Donc, en appliquant le critére spécial, (,(s) est
n n>1

1)k=1 1 1
bien défini et on a la majoration du reste d’ordre n : E (=1) < < . Lest fonctions
ks (n+1)* ~ (n+1)°
k>n+1
s — — étant continues, (, est continue sur R .

3.2 De la méme facon, on établit la convergence uniforme sur tout segment [a,b] de R* de la série des

1 In —sl
dérivées : Z(fl) En On fixe s € [a,b], on étudie la fonction h : x — % On a h/(z) = %

n>1
Donc h décroit des que = > et. La suite <125n) décroit a partir du rang E(e% + 1). On en déduit,
d’apres le critere spécial, la convergence de la série des dérivées et on a la majoration uniforme du reste :
[l = I(E(ﬁ)l = I(Z(ZJ{)I —0
3.3 Pour s > 1 on a (4(s) — {(s) = Z (=1) = Z = —2175¢(5)

n>1 p>1




1 o dt
3.4 On remarque — = s Donc ((s
ns L st

oo dt :
Z prn Z t) dt ol 'on définit ¢,

n>1

1
par : @n(t) = pr sit>net ,(t) =0sit € [l,n]. La série Zg@n converge simplement sur [1,4o00] :

E(t) . N .
Z on(t) = tsil La série Z / |on| converge. On peut donc intervertir intégrale et somme, ce qui
n>1 1,4o00[

donne I’égalité demandée.

o dt te (BE() 1
3.50n a 5/1 P i T On en déduit : ¢(s) — i 1= /1 S <tsil) — té> dt. Montrons que, lorsque
s — 17, la limite de cette intégrale est v — 1. Pour cela considérons une suite (s,,) de ]1,+oo[ convergeant

E®) 1
2

E(t 1
vers 1 et appliquons le théoréeme de convergence dominée : s, (ts ( +)1 — t5> — 3 et on a la
. . E(t 1 sup(s
majoration s, tsn(+)1 - t(2 ")

On en déduit que lors 1+ i (ED ] 1 o d
n en déduit que lorsque s — ’C(S)_m_} 1 - 3 _nirilooz — t.

(T (El) 1 s .
On trouve ainsi ——)dt=~—-1. Donc {(s) — —— =7 —1+0(1) quand s — 1, d’otr I'on
1

12 -1
1
tire C(S) = m +v+ 0(1)
3.6 On a ((s) = 1 %(21) La fonction (, étant dérivable en 1 on a au voisinage de 1 :
, In2
Gu() = Gal1) + )5 = 1)+ ols — 1) =ln2+ (= = §) +o(s — 1)

In® 2
Par ailleurs 1 —2'7% = (s — 1)In2 — nT(s —1)%240[(s — 1)2].

1 In2 1 S
On trouve en faisant le quotient ((s) = T + (I; + 371 2) + 0(1) d’oui I’expression de v demandée.
s — n

1

4.1 Soit ¢ > 0. 1l existe ng tel que n > ng = |a,] < €. Posons s, = Z)\k. On a, pour n > ng :
< — Z Aklak| + € — e. Donc, & partir d’un certain rang — < 2e.

k=0
E)\kak
g

n
4. 2 On introduit l’endomorphlsme t de l'espace vectoriel des suites complexes qu1 a une suite u fait corre-

Z/\kak

spondre la suite tu définie par (tu)r = ug+1. Ona A = Id—t. Comme Idot = told, A" = Z(—l)i ( ; > t
i=0

ce qui donne la formule demandée.
n

3 (A"a)k = Z( 1 ( >ak_|r7 — 0 quand kK — 400 car il s’agit d’'une somme de n + 1 suites qui
i=0
convergent vers 0.
Par ailleurs, k étant fixé, on fixe £ > 0. Il existe ng tel que i > ng = |ag+i| < €. Soit n > ng. On a

n 1 - i
(A a)k \727 EO(—l) (i>ak+i +e
—D.(n—i4+1
Or, pour i € [0,n], on (?) = n(n ) 25? i+]) — 0 quand n — 400 par croissances comparées.

On peut conclure qu’a partir d’un certain rang 2—”\(A"a)k| < 2e.



1
4.4 D’apres la question précédente Q—n(A"a)k — 0 quand n — +oo. La série Zag“) est une série
n>0
télescopique convergente dont la somme est (—1)%ay.

A n fixé,

S-S B - (1)) (o) o 5F 5 e

k=0 =0

On pose ¢, = Z (=1)*ay, ce qui permet d’écrire :

k>n+1
Z W _Z 2n+1 [2 (T;) - (nJZFl)] (;(—l)kak+<ﬁn> - 2,1%%
SR (1] o £ () ()] (B0

On permute les symboles > et on remarque, en utilisant la formule du triangle de Pascal que

k +oo
n n—+1 _[n s N s s s (k) _ n
2[2(2>—< ; )}—(k)doulegahteZan W(A a)o.
1=0 k=0
0 (k) _ = (k) _ (=1)* A™M), — 1 & i [ m k C binaison linéai
450nary = z_: a,’ = 277”( a)g = Q—mZ(—l) ; [(—1)"ag+i]. Cest une combinaison linéaire
de termes généraux de séries vérifiant les hypotheses du critere spécial donc convergentes. Il en résulte que
R, = Z r,(ff) converge.
k>0

1 & (m
R, = 271;(—1)’ ( ; ) Z( 1)kak+l On sait que Z ak+n — 0 quand n — +o0o comme

k>0 k>0
reste d’une série convergente. On peut appliquer 4.3 d’ou lirE R, =
m—+00
Par ailleurs Z (A™a)o _ Z Za(k) — Z r(k) ) )=Ro—R
2m+1 - - 0 Tn+1 0 n+1-
m=0 m=0 \ k>0 E>0

4.7 Dans I’égalité précéente, on fait tendre n vers +oo. Cela donne :

+o00 (A * * +o00 .
Z_:O 2m+1 - Z Z Za :l;) —1far =S5

4.8 On montre (A™a); > 0 par récurrence sur n. C’est une évidence pour n = 0. Soit n > 0. Supposons que
pour toute fonction f de classe C* sur R* vérifiant Ihypothese : Vk € N, Vz € RT, (—=1)*f®) (z) >0, on
a, en considérant la suite a = (f(k))ren, (A™a); > 0.

Démontrons la propriété au rang n + 1. On a A" la = A"(Aa).

Or Aa est la suite définie par (Aa), = f(k) — f(k+1).

On introduit donc la fonction g :  +—— f(z)—f(z+1). Ona (=1)kg®) (z) = (=1)F f*) () — (=1)* fF) (x+1).
Mais I'’hypothese faite sur f permet de dire que, pour tout k la fonction (—1)¥f (k) est décroissante, ce qui
permet de dire (—1)¥g(®)(z) > 0. Ainsi on peut appliquer ’hypotheése de récurrence a g, ce qui acheve la
démonstration.

On en déduit

(A™a)y  ao N _ao ifm—1Y\ a1
0< = _2m+1_2(_1) i+1 ai+1—2m+1—m2(—1) i i+ 1

=0

4



flx+1)
1

la formule de Leibnitz, que g vérifie la bonne hypothese), on voit que la derniére somme est positive et on
en déduit I'inégalité demandée.

Mais, en appliquant le résultat précédent a la fonction g :  —— (il est facile de montrer, en utilisant

1
4.9 On applique ce qui précede a la fonction f: z +—— 172 qui vérifie I'hypothese de la question 4.8.
x

(—D)F X (Ama)
Ainsi In2 = = . Cette derniére série est a termes positifs. Son reste d’ordre m est

1 1
majoré d’apres la question précédente par Z ShFT = il 11 suffit de choisir m tel que mIn2 > —In(e).
k>m+1

L’expression de In 2 ainsi trouvée est :

A™a 1 = (m\ 1 1 N (m+1 ;
2= (2’”*1)0:22m+1 (Z(_I) (i)z‘+1> _Z:O(mﬂwﬂ@;(z:l)(_l))

m>0 m>0 i=0

1
On retrouve 'expression In2 = —_— = - ln(l — f)
mZZ:O (m 4+ 1)2m+1

5.1 L’intégrale définissant by est définie car 0 < z*w(x) < w(x). La suite (by) est décroissante et converge
vers 0 d’apres le théoreme de convergence dominée.

5.2 Par une récurrence immédiate le degré de P, est n.

De plus on a pour tout n € N* T, 11 (z)+ T —1(x) = 22T, (z). On en déduit pour tout n: P,(z) = T, (1—2x).
5.3 On raisonne par récurrence Py (z) = 1 — 2z ; Py(z) = 1 — 8z + 822, On suppose la formule vraie jusqu’au
rang n > 2. On remplace dans la relation de récurrence définissant P, ;1. C’est un calcul tres fastidieux que
j’al fait ! On obtient la formule au rang n + 1 !! On en déduit P,(—1) > 0.

54 0Ona:

@)= i > tn (n;mm> (1 Zti)m) g gc"”“(_l) -

m=1
En intégrant sur le segment [0, 1] on obtient le résultat.
5.5 La suite (P,(—1)) satisfait la relation de récurrence P,4+1(—1) = 6P,(—1) — P,—1(—1) avec au départ
1
Py(—1) =1 et P(—1) =3. On trouve P,(—1) = 5[(3 —V8)" + (3+V8)".
En appliquant le théoréeme de convergence dominée aux sommes partielles;, on a :

S = :Z:/Ol(—m)kw(ac) dx = /01 (f(—x)%u(w)) dx = /01 iu(jji dx

k=0

1 ' P, S 25

On en déduit |S — s(n)| = / (z) dSE‘ < < (on a utilisé I'expression de P,
P(-1)|Jy 142z P, (=1) = (34 /8)n

en fonction de T;, qui permet d’écrire |P,| < 1)

5.6 Cet algorithme construit d1 = P, (—1) puis sn = s(n)

5.7 En prenant w : x —— 1 on trouve by = et on obtient une approximation de In2 a e—pres des que

28
— < £

(3+8)n

kE+1



