
Corrigé succinct X-ens PSI 2007 par Christophe Hénocq

1.1 On applique la formule de Taylor avec reste intégral à f : x 7−→ lnx à l’ordre n + 1. Cela donne :

ln(2) =
n∑

k=0

(−1)k

k + 1
+
∫ 1

0

(1− t)n+1

(n + 1)!
f (n+2)(t)dt.

Il est ensuite facile de montrer que la valeur absolue de l’intégrale est majorée par
1

n + 2
, ce qui entrâıne

ln(2) = ζa(1).
1.2 Il suffit de choisir n tel que n + 1 > ε. la somme partielle d’ordre n de la série définissant ζa(1) convient.

1.3 On a facilement
1

k + 1
≤ ln(k + 1)− ln k ≤ 1

k
, par exemple en appliquant l’inégalité des accroissements

finis à ln sur [k, k + 1]. On en déduit, en additionnant : un ∈ [0, 1].
1.4 On en déduit aussi l’inégalité un+1 − un ≤ 0. La suite (un) est décroissante et minorée. Elle converge.

1.5 Dessin à l’appui, l’aire de Dn est
∫ n+1

n

dx

x
− 1

n + 1
= un − un+1.

1.6 On utilise la convexité de la fonction x 7−→ 1
x

. Sur le segment [n, n + 1] sa courbe est située entre la
tangente au point d’abscisse n + 1 et la corde. On arrive ainsi à l’encadrement :

1
2

( 1
n + 1

− 1
n + 2

)
=

1
2(n + 1)(n + 2)

≤ 1
2(n + 1)2

≤ un − un+1 ≤
1
2

( 1
n
− 1

n + 1

)

1.7 On a un − γ =
+∞∑
k=n

(uk+1 − uk). En utilisant l’encadrement précédent, on en déduit en additionnant :

1
2(n + 1)

≤ un − γ ≤ 1
2n

. En écrivant
1

n + 1
=

1
n
− 1

n(n + 1)
, on obtient l’encadrement demandé.

1.8 On obtient une approximation de γ à la précision
1

4n(n + 1)
en prenant un−

1
2n

+
1

4n(n + 1)
. On choisit

pour n le premier entier tel que 1
4n(n+1) < ε

2.1 On étudie la fonction fa. On a f ′a(x) = fa(x)
(
ln
(
1− a

x

)
+

a

x− a

)
. On pose ga(x) = ln

(
1− a

x

)
+

a

x− a
. On

a g′a(x) = − a2

x(x− a)2
< 0. Comme lim

+∞
ga = 0, ga est positive et fa est croissante. En +∞, ln(fa(x)) ∼ −a

d’où lim
+∞

fa = e−a.

2.2 L’intégrale In converge car lorsque t → 0, ft(n) ∼ ln t. Pour l’intégrale I le même argument prévaut en
0 et en +∞, e−t ln t = o

(
1
t2

)
.

2.3 On applique le théorème de convergence dominée : on considère la fonction hn définie sur R∗
+par

hn(t) = ft(n) si t ≤ n et hn(t) = 0 si t > n. On a In =
∫
]0,+∞[

hn. La suite (hn) converge simplement vers la
fonction h : t 7−→ e−t ln t et est majorée en valeur absolue par |h| qui est intégrable sur ]0,+∞[( en utilisant
ln(1 + u) ≤ u).

2.4 On calcule In en posant t = nu : In = n

∫ 1

0

(1−u)n(ln(u)+ln(n))du =
n

n + 1
lnn+n

∫ 1

0

(1−u)n ln(u)du.

On pose dans la dernière intégrale v = 1− u et on l’intègre par parties, ce qui donne

∫ 1

0

vn ln(1− v)dv =
[vn+1 − 1

n + 1
ln(1− v)

]1
0
− 1

n + 1

∫ 1

0

1− vn+1

1− v
dv = −

n+1∑
k=1

1
k
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On en tire l’expression de In demandée. En passant à la limite quand n → +∞, on obtient −γ = I.

2.5 Soit x > 0. La fonction t 7−→ 1− e−t

t
est continue sur R∗

+ et prolongeable par continuité en 0 par 1.

Donc F (x) est bien défini. Par ailleurs en +∞,
e−t

t
= o

( 1
t2

)
, ce qui montre l’existence de R(x). On écrit

γ = −
∫ x

0

e−t ln t dt−
∫ +∞

x

e−t ln t dt et on intègre chacune de ces deux intégrales par parties en veillant à ce

que les crochets soient bien définis : γ =
[
(e−t− 1) ln t

]x
0

+ F (x) +
[
e−t ln t

]+∞
x

−R(x) = F (x)− lnx−R(x)

2.6 On a F (x) =
∫ x

0

(∑
n≥1

(−1)n−1 tn−1

n!

)
dt =

∑
n≥1

(−1)n−1 xn

nn!
car la série entière que l’on primitive a un

rayon de convergence infini.

2.7 La suite
( xn

nn!

)
n≥N

est décroissante parce que le quotient de deux termes consécutifs est
nx

(n + 1)2
≤ 1.

En utilisant le critère spécial on peut écrire :∣∣∣∣∣F (x)−
N−1∑
n=1

(−1)n−1 xn

nn!

∣∣∣∣∣ =
∣∣∣∣∣
+∞∑
n=N

(−1)n−1 xn

nn!

∣∣∣∣∣ ≤ xN

NN !

Pour obtenir le résultat souhaité, il suffit de montrer que N ! ≥ NNe−(N−1). Posons xN = N !N−NeN−1 .

La suite (xN ) est croissante :
xN+1

xN
= e

(
N

N + 1

)N

= exp

[
1−N ln

(
1 +

1
N

)]
≥ 1 d’après ln(1 + u) ≤ u.

En écrivant xN ≥ x1 = 1, on obtient la première inégalité demandée. Par ailleurs, avec une intégration par

parties : 0 ≤ R(x) =
e−x

x
−
∫ +∞

x

e−t

t2
dt ≤ e−x

x
2.8 On a ∣∣∣∣∣

N−1∑
n=1

(−1)n−1 xn

nn!
− lnx− γ

∣∣∣∣∣ =
∣∣∣∣∣
N−1∑
n=1

(−1)n−1 xn

nn!
− F (x)

∣∣∣∣∣+ |R(x)| ≤ 1
eN

(ex

N

)N

+
e−x

x

On choisit donc x tel que
e−x

x
<

ε

2
et N tel que

1
eN

(ex

N

)N

<
ε

2
.

3.1 On montre la convergence uniforme de la série de fonctions définissant ζa sur tout segment [a, b] de R∗
+.

Si s ∈ [a, b], la suite
( 1

ns

)
n≥1

décrôıt et converge vers 0. Donc, en appliquant le critère spécial, ζa(s) est

bien défini et on a la majoration du reste d’ordre n :

∣∣∣∣∣∣
∑

k≥n+1

(−1)k−1

ks

∣∣∣∣∣∣ ≤ 1
(n + 1)s

≤ 1
(n + 1)a

. Lest fonctions

s 7−→ 1
ns

étant continues, ζa est continue sur R∗
+.

3.2 De la même façon, on établit la convergence uniforme sur tout segment [a, b] de R∗
+ de la série des

dérivées :
∑
n≥1

(−1)n lnn

ns
. On fixe s ∈ [a, b], on étudie la fonction h : x 7−→ lnx

xs
. On a h′(x) =

1− s lnx

xs+1
.

Donc h décrôıt dès que x ≥ e
1
s . La suite

(
lnn

ns

)
décrôıt à partir du rang E(e

1
a + 1). On en déduit,

d’après le critère spécial, la convergence de la série des dérivées et on a la majoration uniforme du reste :

|Rn| ≤
ln(n + 1
(n + 1)s

≤ ln(n + 1
(n + 1)a

→ 0

3.3 Pour s > 1 on a ζa(s)− ζ(s) =
∑
n≥1

(−1)n−1 − 1
ns

=
∑
p≥1

−2
(2p)s

= −21−sζ(s)
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3.4 On remarque
1
ns

= s

∫ +∞

n

dt

ts+1
. Donc ζ(s) =

∑
n≥1

s

∫ +∞

n

dt

ts+1
= s

∑∫ +∞

1

ϕn(t) dt où l’on définit ϕn

par : ϕn(t) =
1

ts+1
si t ≥ n et ϕn(t) = 0 si t ∈ [1, n]. La série

∑
ϕn converge simplement sur [1,+∞[ :∑

n≥1

ϕn(t) =
E(t)
ts+1

. La série
∑∫

[1,+∞[

|ϕn| converge. On peut donc intervertir intégrale et somme, ce qui

donne l’égalité demandée.

3.5 On a s

∫ +∞

1

dt

ts
=

s

s− 1
. On en déduit : ζ(s)− s

s− 1
=
∫ +∞

1

s

(
E(t)
ts+1

− 1
ts

)
dt. Montrons que, lorsque

s → 1+, la limite de cette intégrale est γ − 1. Pour cela considérons une suite (sn) de ]1,+∞[ convergeant

vers 1 et appliquons le théorème de convergence dominée : sn

(
E(t)
tsn+1

− 1
tsn

)
−→ E(t)

t2
− 1

t
et on a la

majoration sn

∣∣∣∣ E(t)
tsn+1

− 1
tsn

∣∣∣∣ ≤ sup(sn)
t2

.

On en déduit que lorsque s −→ 1+, ζ(s) − s

s− 1
→
∫ +∞

1

(
E(t)
t2

− 1
t

)
dt = lim

n→+∞

n∑
k=1

∫ k+1

k

(
k

t2
− 1

t

)
dt.

On trouve ainsi
∫ +∞

1

(
E(t)
t2

− 1
t

)
dt = γ − 1. Donc ζ(s) − s

s− 1
= γ − 1 + o(1) quand s −→ 1, d’où l’on

tire ζ(s) =
1

s− 1
+ γ + o(1).

3.6 On a ζ(s) =
ζa(s)

1− 21−s
. La fonction ζa étant dérivable en 1 on a au voisinage de 1 :

ζa(s) = ζa(1) + ζ ′a(1)(s− 1) + o(s− 1) = ln 2 +
(

ln 2
2
− S

)
+ o(s− 1)

Par ailleurs 1− 21−s = (s− 1) ln 2− ln2 2
2

(s− 1)2 + o[(s− 1)2].

On trouve en faisant le quotient ζ(s) =
1

s− 1
+
(

ln 2
2

+
1
2
− S

ln 2

)
+ o(1) d’où l’expression de γ demandée.

4.1 Soit ε > 0. Il existe n0 tel que n ≥ n0 =⇒ |an] < ε. Posons sn =
n∑

k=0

λk. On a, pour n > n0 :

1
sn

∣∣∣∣∣
n∑

k=0

λkak

∣∣∣∣∣ ≤ 1
sn

n0∑
k=0

λk|ak|+ ε −→ ε. Donc, à partir d’un certain rang
1
sn

∣∣∣∣∣
n∑

k=0

λkak

∣∣∣∣∣ ≤ 2ε.

4.2 On introduit l’endomorphisme t de l’espace vectoriel des suites complexes qui à une suite u fait corre-

spondre la suite tu définie par (tu)k = uk+1. On a ∆ = Id−t. Comme Id◦t = t◦Id, ∆n =
n∑

i=0

(−1)i

(
n
i

)
ti,

ce qui donne la formule demandée.

4.3 (∆na)k =
n∑

i=0

(−1i

(
n
i

)
ak+i −→ 0 quand k −→ +∞ car il s’agit d’une somme de n + 1 suites qui

convergent vers 0.
Par ailleurs, k étant fixé, on fixe ε > 0. Il existe n0 tel que i ≥ n0 =⇒ |ak+i| < ε. Soit n > n0. On a

1
2n
|(∆na)k| ≤

1
2n

∣∣∣∣∣
n0∑
i=0

(−1)i

(
n
i

)
ak+i

∣∣∣∣∣+ ε

Or, pour i ∈ [[0, n0]],
1
2n

(
n
i

)
=

n(n− 1)...(n− i + 1)
2n

−→ 0 quand n −→ +∞ par croissances comparées.

On peut conclure qu’à partir d’un certain rang
1
2n
|(∆na)k| ≤ 2ε.
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4.4 D’après la question précédente
1
2n

(∆na)k −→ 0 quand n −→ +∞. La série
∑
n≥0

a(k)
n est une série

télescopique convergente dont la somme est (−1)kak.
A n fixé,

+∞∑
k=0

a(k)
n =

n∑
i=0

(−1)i

2n+1

[
2
(

n
i

)
−
(

n + 1
i

)]∑
k≥i

(−1)k−iak

+
(−1)n

2n+1

∑
k≥n+1

(−1)n+1−kak

On pose ϕn =
∑

k≥n+1

(−1)kak, ce qui permet d’écrire :

+∞∑
k=0

a(k)
n =

n∑
i=0

1
2n+1

[
2
(

n
i

)
−
(

n + 1
i

)]( n∑
k=i

(−1)kak + ϕn

)
− 1

2n+1
ϕn

Or
n∑

i=0

[
2
(

n
i

)
−
(

n + 1
i

)]
− 1 = 0 donc

+∞∑
k=0

a(k)
n =

n∑
i=0

1
2n+1

[
2
(

n
i

)
−
(

n + 1
i

)]( n∑
k=i

(−1)kak

)
.

On permute les symboles
∑

et on remarque, en utilisant la formule du triangle de Pascal que
k∑

i=0

[
2
(

n
i

)
−
(

n + 1
i

)]
=
(

n
k

)
, d’où l’égalité

+∞∑
k=0

a(k)
n =

1
2n+1

(∆na)0.

4.5 On a r
(k)
m =

+∞∑
n=m

a(k)
n =

(−1)k

2m
(∆ma)k =

1
2m

m∑
i=0

(−1)i

(
m
i

)
[(−1)kak+i]. C’est une combinaison linéaire

de termes généraux de séries vérifiant les hypothèses du critère spécial donc convergentes. Il en résulte que
Rm =

∑
k≥0

r(k)
m converge.

4.6 Rm =
1

2m

m∑
i=0

(−1)i

(
m
i

)∑
k≥0

(−1)kak+i

 On sait que
∑
k≥0

(−1)kak+n −→ 0 quand n −→ +∞ comme

reste d’une série convergente. On peut appliquer 4.3 d’où lim
m→+∞

Rm = 0.

Par ailleurs
n∑

m=0

(∆ma)0
2m+1

=
n∑

m=0

∑
k≥0

a(k)
m

 =
∑
k≥0

(r(k)
0 − r

(k)
n+1) = R0 −Rn+1.

4.7 Dans l’égalité précéente, on fait tendre n vers +∞. Cela donne :

+∞∑
m=0

(∆ma)0
2m+1

= R0 =
+∞∑
k=0

r
(k)
0 =

+∞∑
k=0

(
+∞∑
n=0

a(k)
n

)
=

+∞∑
k=0

(−1)kak = S

4.8 On montre (∆na)k ≥ 0 par récurrence sur n. C’est une évidence pour n = 0. Soit n ≥ 0. Supposons que
pour toute fonction f de classe C∞ sur R+ vérifiant l’hypothèse : ∀k ∈ N, ∀x ∈ R+, (−1)kf (k)(x) ≥ 0, on
a, en considérant la suite a = (f(k))k∈N, (∆na)k ≥ 0.
Démontrons la propriété au rang n + 1. On a ∆n+1a = ∆n(∆a).
Or ∆a est la suite définie par (∆a)k = f(k)− f(k + 1).
On introduit donc la fonction g : x 7−→ f(x)−f(x+1). On a (−1)kg(k)(x) = (−1)kf (k)(x)−(−1)kf (k)(x+1).
Mais l’hypothèse faite sur f permet de dire que, pour tout k la fonction (−1)kf (k) est décroissante, ce qui
permet de dire (−1)kg(k)(x) ≥ 0. Ainsi on peut appliquer l’hypothèse de récurrence à g, ce qui achève la
démonstration.
On en déduit

0 ≤ (∆ma)0
2m+1

=
a0

2m+1
−

m−1∑
i=0

(−1)i

(
m

i + 1

)
ai+1 =

a0

2m+1
−m

m−1∑
i=0

(−1)i

(
m− 1

i

)
ai+1

i + 1
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Mais, en appliquant le résultat précédent à la fonction g : x 7−→ f(x + 1)
x + 1

(il est facile de montrer, en utilisant

la formule de Leibnitz, que g vérifie la bonne hypothèse), on voit que la dernière somme est positive et on
en déduit l’inégalité demandée.

4.9 On applique ce qui précède à la fonction f : x 7−→ 1
1 + x

qui vérifie l’hypothèse de la question 4.8.

Ainsi ln 2 =
∑
k≥0

(−1)k

k + 1
=

+∞∑
m=0

(∆ma)0
2m+1

. Cette dernière série est à termes positifs. Son reste d’ordre m est

majoré d’après la question précédente par
∑

k≥m+1

1
2k+1

=
1

2m+1
. Il suffit de choisir m tel que m ln 2 ≥ − ln(ε).

L’expression de ln 2 ainsi trouvée est :

ln 2 =
∑
m≥0

(∆ma)0
2m+1

=
∑
m≥0

1
2m+1

(
m∑

i=0

(−1)i

(
m
i

)
1

i + 1

)
=
∑
m≥0

1
(m + 1)2m+1

(
m∑

i=0

(
m + 1
i + 1

)
(−1)i

)

On retrouve l’expression ln 2 =
∑
m≥0

1
(m + 1)2m+1

= − ln
(
1− 1

2

)

5.1 L’intégrale définissant bk est définie car 0 ≤ xkw(x) ≤ w(x). La suite (bk) est décroissante et converge
vers 0 d’après le théorème de convergence dominée.
5.2 Par une récurrence immédiate le degré de Pn est n.
De plus on a pour tout n ∈ N∗ Tn+1(x)+Tn−1(x) = 2xTn(x). On en déduit pour tout n : Pn(x) = Tn(1−2x).
5.3 On raisonne par récurrence P1(x) = 1− 2x ; P2(x) = 1− 8x+8x2. On suppose la formule vraie jusqu’au
rang n ≥ 2. On remplace dans la relation de récurrence définissant Pn+1. C’est un calcul très fastidieux que
j’ai fait ! On obtient la formule au rang n + 1 !! On en déduit Pn(−1) > 0.
5.4 On a :

Qn(x) =
1

Pn(−1)

n∑
m=1

n

n + m

(
n + m
2m

)(
1− (−x)m

1 + x

)
=

1
Pn(−1)

n−1∑
k=0

cn,k(−1)kxk

En intégrant sur le segment [0, 1] on obtient le résultat.
5.5 La suite (Pn(−1)) satisfait la relation de récurrence Pn+1(−1) = 6Pn(−1) − Pn−1(−1) avec au départ

P0(−1) = 1 et P1(−1) = 3. On trouve Pn(−1) =
1
2
[(3−

√
8)n + (3 +

√
8)n].

En appliquant le théorème de convergence dominée aux sommes partielles, on a :

S =
+∞∑
k=0

∫ 1

0

(−x)kw(x) dx =
∫ 1

0

(
+∞∑
k=0

(−x)kw(x)

)
dx =

∫ 1

0

w(x)
1 + x

dx

On en déduit |S − s(n)| =
1

Pn(−1)

∣∣∣∣∫ 1

0

Pn(x)
1 + x

dx

∣∣∣∣ ≤ S

Pn(−1)
≤ 2S

(3 +
√

8)n
(on a utilisé l’expression de Pn

en fonction de Tn qui permet d’écrire |Pn| ≤ 1)
5.6 Cet algorithme construit d1 = Pn(−1) puis sn = s(n)

5.7 En prenant w : x 7−→ 1 on trouve bk =
1

k + 1
et on obtient une approximation de ln 2 à ε−près dès que

2S

(3 +
√

8)n
< ε
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