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PREAMBULE

Le but général de ce probléme est d’étudier différentes méthodes d’approximation de
deux réels particuliers, In 2 d’une part et la constante d’Euler v d’autre part. La définition
de ces deux réels sous forme de limites de suites et les premiers encadrements associés
sont étudiés dans la partie I. Une autre méthode d’approximation de la constante d’Euler
4 I'aide d’une expression de celle-ci sous forme d’intégrale est proposée dans la partie IL
La partie III consiste & exprimer v & partir de la somme d’une certaine série alternée. Les
parties IV et V proposent ensuite deux méthodes générales d’accélération de convergence
pour le calcul des sommes de séries alternées et les appliquent & I'approximation de In2.
Les cing parties sont assez largement indépendantes.

Dans tout le probléme, on note pour tout s > 0, {5(s) la somme de la série alternée de
-1 n—1
terme général g—n)s+ pour n > 1 et pour tout s > 1, {(s) la somme de la série de terme

1
général — pour n > 1.
ns
PREMIERE PARTIE

1.1 En appliquant une formule de Taylor & la fonction z — In(1+ x) définie pour z > —1,
montrer que

In2=((1) = lm » —=. - (1)
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1.2 En déduire une premiére méthode d’approximation permettant d’obtenir In2 avec
une précision € > 0 donnée.
1.3 On définit la suite de terme général u, pour n > 1 par la relation:
~ 1
Uy = — —Inn.
k=1
Montrer que pour tout n € N* u, € [0,1].

1.4 Montrer que la suite (up)nen+ est monotone. En déduire que la suite (un)nen+ est
convergente.

Dans toute la suite de ce probléme, on définit un réel, noté v et appelé
constante d’Euler, par la relation:

: , 1

1.5 Pour tout n € N*, on note D, le domaine de R? défini par:
1 1
D, = {(z, R? n<z< 1 et —<y<-=L
{(z,y) € n<z<n+1l e n—}-l_y"az}

Représenter graphiquement D,, dans le plan muni du repére orthonormé (O,;,j) et montrer
que aire de D, est égale & u, — Up41.

: 1, 1 1 1.1 1
1.6 Montrer que laire de D,, est comprise entre §(n oy ey 2) et E(E = 1).
1.7 En déduire 'encadrement suivant de la constante d’Euler valable pour tout n € N*:
U <v<u = + =
T o == T gy 2n(n+1)

1.8 Décrire une premiére méthode d’approximation permettant d’obtenir 7y avec une pré-
cision € > 0 donnée. On supposera connue une approximation de la fonction logarithme
avec une précision arbitraire.

DEUXIEME PARTIE

2.1 Soit a > 0. Montrer que la fonction réelle f, définie sur Ja, + oo[ et telle que

1 Oy . P _ -a
falx)=(1 :v) est croissante et vérifie mEI-Poo fa(z) =€

n +00
2.2 Montrer que les intégrales I, = / ft(n)Intdt pour n € N* et [ = / e tIntdt
0 0

sont correctement définies.

2.3 Montrer que lim I, =1.

n—-+00



2.4 Etablir I'expression suivante de I,:

n ey
In=n+1 <1nn——ZE).

k=1

En déduire que la constante d’Euler « définie par la relation (2) peut aussi s’exprimer
sous la forme d’une intégrale:

+oo
v = —/ e *Intdt. (3)
0

2.5 Montrer qu’on peut définir deux fonctions F' et R sur R, par les relations suivantes:

T 1 __ =t
F(x)z/l it
0 t

+o00 e—t

et que ces deux fonctions vérifient pour tout z € RY:
v=F(z) —Inz — R(z)

+o00 n
T
2.6 Montrer que pour tout z € R*, on a F(z) = E (—1)”_17-%—57.
n=1 ’

2.7 Etablir les inégalités suivantes valables pour tout z € R et tout entier N > z:
N-1

1z 1 ex .y
|F(z) — ;(_1)7; %| < W(N)

T

-
< [ —
0<R(z) < -

2.8 Proposer une méthode permettant de déterminer, a € > 0 fixé, une valeur de x > 0
et une valeur de N € N* de telle sorte qu’on ait:

N-1 £
1)1 _Inz—~|<e¢
DI 7l <
TROISIEME PARTIE

3.1 Montrer que la fonction {, définie dans le préambule est une fonction continue sur
RY.

3.2 Montrer que (, est une fonction dérivable sur R, et exprimer sa dérivée sous forme
de série.

3.3 Vérifier que pour tout s > 1, on a (,(s) = (1 — 2'7%){(s) ot la fonction ( a été définie
dans le préambule.
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+o00

1
3.4 En remarquant que — =s / tsTdt pour tout s > 0 et tout n € N*, établir que
n n

+o0
¢(s) = s/l iﬁ) dt

ou E(t) représente la partie entiére du réel ¢.

3.5 Montrer qu’au voisinage de s = 1 par valeurs supérieures, on a

((s) = === +7+0(1)

ou v désigne la constante d’Euler définie par la relation (2).

1 3
3.6 Vérifier que la série de terme général (—1)”% pour n € N est une série alternée.
En notant S sa somme, montrer 4 1’aide des questions précédentes que
In(2) +1 1
= - S 4
2 In(2) (4)

QUATRIEME PARTIE
Dans toute cette partie, (ax)ken désigne une suite réelle convergente vers 0. Cette suite
est supposée de plus décroissante a partir de la question 4.4.

4.1 Soit (Ax)ren une suite de réels strictement positifs telle la série de terme général \
diverge vers +00. Montrer que

4.2 On définit A Popérateur opérant sur une suite quelconque (ug)ren par la relation:
Vk €N, (Au) = ux— Uk

puis on note A™ la puissance itérée n-iéme de l'opérateur A:

A% = Id et pour tout n € N, A" = Ao A"
Montrer que pour tous k£ et n dans N, on a

(@), = Y (1) (”) Ui

1=0

An
4.3 Montrer, an fixé dans N, que kligrn (A"a), = Oet, a k fixé dans N, que lil}:l ( 2:)k =
— 400 n—-1+00
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4.4 On suppose a partir de maintenant que la suite (ak)ken est décroissante et convergente
vers 0. On note S la somme de la série alternée de terme général (—1)*ay pour tout k € N.
On definit pour tous k et n dans N:

a® = (-1)* [(Ana)’“ (A™*a)y

an - 2n+1

Montrer,a k fixé dans N, que la série de terme général (a% ))neN est convergente avec pour
somme:

+00
> a0 = (—1)kax
n=0

R , - ., k
et, & n fixé dans N, que la série de terme général (a%) JkeN €St convergente avec pour
somme:

-+00 n
3o = (A"a)o

n on+l °
k=0

+00
4.5 On note r® = Z a®). Montrer que la série de terme général (rﬁr’f))keN est conver-

n=m

gente. On note R,, sa somme.

n Am
4.6 Montrer que lim R,, =0 et Z (2":1)0 = Ry — Rp41.

m—-+00

m=0

(Ama)o
2m+1

4.7 En déduire que la série de terme général ( ) est convergente et a pour
meN

somme S.

4.8 On suppose en outre que la suite (ax)ren peut s’écrire sous la forme ax = f(k) pour
tout k£ € N ou f est une fonction appartenant & C*°(R,,R) et telle que

VkeN, VreRy, (-1)*f®(z)>0
Montrer dans ce cas que pour tout n € N et tout k € N, (A"a)r > 0. En déduire que
pour tout m € N,

(A™a)g ao
0< om+1 S2m+1'

1
. + 1
proposer une méthode d’approximation de In2 avec une précision € > 0 donnée. Quelle
expression de In 2 retrouve t-on? ’

4.9 En appliquant les résultats de cette partie & la suite de terme général ax =



CINQUIEME PARTIE

Dans toute cette partie, (bx)ren désigne une suite réelle pouvant s’écrire pour tout
ke N:

1
bkz/ o*w(z)dz
0

ol w est une fonction réelle continue sur ]0,1[, positive et dont l'intégrale sur ]0,1] est
convergente.

5.1 Montrer que la suite (bx)ren est décroissante et convergente vers 0.

5.2 Soit (Py)nen une suite de fonctions réelles telle que, pour tout z € R, Py(z) = 1,
P(z)=1-2zet

VzeR, VYneN* P,(zr)=2(1-2z)P,(z)— P_i(z).

Montrer que P, est un polynéme de degré n et établir une relation entre P, et la fonction
T, définie sur [—1,1] par ’expression:

Vr € [-1,1], Tn(z) = cos(nArccos(z)).

Indication: on pourra essayer d’établir une relation de récurrence linéaire a deux termes
sur les fonctions 75, du . méme type que celle portant sur les fonctions F,.

5.3 Montrer que pour tout z € R et tout n € N*:
_ - _1\m n n+m 2m,..m
Py (x) _ZB( " — ( o )2 ™.
En déduire que pour tout n € N, P,(—1) # 0.

P,(-1) — P,(z)

5.4 Pour tout n € N*, on définit le polynome Q,, tel que Q,(X) = P.(-1D)(1+2)

et on

1
note s(n) = / Qn(z)w(z)dz. Montrer que
0

n—1
> cni(—1)kbx
k=0

=T
avec .
. n n+m)\ ,om
Cnk = ;;Hn‘*'m( om )2

5.5 Calculer P,(—1). En déduire que pour tout n € N*
2
s(n) = 5] € —22—

(34 v8)"

ou S désigne la somme de la série alternée de terme général (—1)*b; pour tout k € N.
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5.6 Soit n > 2. On suppose connus les n premiers termes de la suite (bx)ren. On se
propose d’étudier I’algorithme suivant, écrit ici de maniére pseudo-informatique:

.d0=1,dl=3;

. Pour k allant de 0 & n — 2, faire:

. tmp = dl, dl = 6 xdl — d0, d0 = tmp;
. fin;
.b=-1,c=-dl, s=0;

. Pour k allant de 0 & n — 1, faire:
c=b—c, s =5+ cx*b;

. b=bx(k+n)x(k—n)/((k+1/2) % (k+1));
. fin;
. sn = s/dl;

Quelles valeurs respectives prennent d1 et sn a la fin de lalgorithme? Justifier la ré-
ponse.

5.7 En appliquant les résultats de cette partie & la suite de terme général by = P
proposer une méthode d’approximation de In2 avec une précision € > 0 donnée.



