EQUATIONS DIFFERENTIELLES

Dans tout le chapitre on prendra K = R ou C. Tous les intervalles considérés contiennent au moins deux
points. Quand on parlera d’ouvert, on sous-entendra qu’il s’agit d’un ouvert non vide.

1. EQUATIONS SCALAIRES LINEAIRES DU PREMIER ORDRE

Dans tout ce paragraphe on s’intéresse a une équation scalaire du type
(E) : ay' +by=c
ou les fonctions a, b et ¢ sont continues sur /. Rappels:
> Une solution de (E) sur I est une fonction y : I — K dérivable telle que:

Vtel, a(t)y'(t) +b(t)y(t) = c(t)

> L’équation est dite homogene lorsque ¢ = 0.

> L’ équation homogene associée a (E) est (Ey) : ay’ + by = 0.

1.1. Structure de I’espace des solutions. On a le théoréeme de structure des solutions:

Proposition 1.2. (i) L’ensemble H des solutions sur I de I’équation homogéne associée a (E) est un
sev de I’ensemble des fonctions dérivables sur I.

(i) Si g est solution de (E) sur I, alors I’ensemble des solutions sur (i) de (E) est g+ H.
1.3. Résolution dans le cas d’une ED écrite sous forme résolue. On commence par traiter le cas d’une

ED mise sous forme normalisée: y’ = ay+ 5 (E) ot a et 3 sont des fonctions continues sur un intervalle
1. Alors on a le résultat suivant:

Proposition 1.4. (i) L’ev H des solutions sur I de (Ey) est de dimension un et, pour tout ty dans I, la
droite vectorielle H est engendré par la fonction vy : t — exp(A(t)) o A est une primitive de o sur 1.
En particulier toute solution de (Ey) est de classe C* sur 1.

(i1) L’équation avec second membre (E) admet au moins une solution § et I’ensemble des solutions de
(E) sur I est § + Vect(yo).

t
En outre on peut prendre j : t — eA® [ e_A(S)B(s)ds pour un ty arbitrairement choisi dans 1.
to

t
Les solutions peuvent alors s’écrire sous la forme: i : t = e (X + [ A 3(s)ds) avec X € R,
to

(ii1) En particulier, pour tout couple (to,yo) € I x R, le probléme de Cauchy cosntitué de (E) et de la
condition initiale de y(to) = yo admet une solution et une seule.

exercice 1.4.1. Soit g une fonction continue de limite nulle en = coeta un réel strictiment négatif. Montrer
que toute solution de 'ED: y' + oy = g tend vers 0 en +oo.

Revenons a une équation différentielle d’ordre 1 générale : ay’ + by = ¢ avec a, b, ¢ fonctions continues
sur . Sur tout intervalle J sur lequel a ne s’annule pas, on peut transformer (E) en 3’ = —Sy - et
appliquer le résultat précédent, ce qui donne:

Proposition 1.5. Supposons que la fonction a ne s’annule pas sur I.
Alors 'ev H des solutions sur I de (Ey) est de dimension 1 .

En particulier toute solution de (Eq) est de classe C' sur I.



T On ne dispose pas de résultat général sur la dimension des solutions sur un intervalle ou a s’annule
comme nous le verrons sur des exemples dans le paragraphe suivant.

Remarque 1.5.1. Avant de se lancer dans une résolution par formule intégrale (ou variation de la
constante), il est utile de vérifier s’il n’y a pas une solution évidente : voir par exemple le cas d’une
équation a coefficients constants avec second membre constant.

exercice 1.5.2. Résoudre I’équation différentielle t(2 — t)x' + (1 —t)x = 1 sur I =] — oo, 0[ puis sur
' =]0,2[.

1.6. Etude du cas ou la fonction ¢ s’annule sur /. On supposera que la fonction a s’annule un nombre
fini de fois sur I. Attention : dans ce cas I’espace des solutions de I’équation homogene associée n’est
pas nécessairement de dimension 1 comme nous le verrons sur des exemples. En pratique, on résoud
I’équation sur des intervalles (maximaux) sur lesquels f ne s’annule pas et on essaie de “raccorder” les
solutions obtenues pour obtenir des fonctions dérivables.

exemple 1.6.1. On considére I’équation différentielle (E) : ty' — 2y = t3. Calculer la dimension de
I’espace des solutions sur R.

exercice 1.6.2. Reprendre I’exercice précédent avec (E) : t%y' —y =0 puis avec (1 —t)y' —y = t.

2. EQUATIONS LINEAIRES SCALAIRES DU SECOND ORDRE

2.1. Généralités.

Définition 2.2. Soient a,b,c,d quatre fonctions de C(I,K) et (E) I’équation différentielle linéaire
scalaire du second ordre:
(E) ay’ +by +cy=d

Une solution sur I de (E) est une fonction y : I - K deux fois dérivables telle que:
Vtel, a(t)y” (t) +b(t)y'(t) +c(t)y(t) = d(t)

L’équation est dite homogene ssi d = Q.
L’équation homogéne associée a I’équation (E) est I'équation:

ay’ +by +cy=0

On dispose d’un théoreme de structure des solutions:

Proposition 2.3. On reprend les notations de I’énoncé précédent.

(i) L’ensemble H des solutions de I’équation homogéne (Ey) est un sev de ’espace des fonctions deux
fois dérivables sur 1.

(i) Si g est une solution sur I de (E), alors I’ensemble des solutions sur I de (F) est §+ H.

exercice 2.3.1. Un exemple de probléme avec conditions aux limites:
Soit f,g : [a,b] - R continues telles que f < 0. Montrer que I’équation différentielle y”’ + fy = g
posseéde une solution unique sur [a,b] telle que y(a) = y(b) = 0.

Rappelons le principe de superposition, utile par exemple lorsque le second membre est une fonction
trigonométrique:

Proposition 2.4. Si y; est solution de ay” + by’ + cy = dy et y3 est solution de ay” + by’ + cy = da, alors
pour tout couple de scalaires (A1, \2), la fonction A\1y1 +\ays est solution de ay” +by’+cy = A\1dy +Aads.

exercice 2.4.1. Soient wg et w deux réels strictement positifs. Etudier a quelle condition I’équation
(E) : y" +wly = cos(wt) n’admet que des solutions bornées.



2.5. Théoreme de résolution des équations linéaires d’ordre deux sous forme normalisée. On s’intéresse
dans cette section a des équations de la forme(E) : y” = ay’ + By + 7 o v, 3,y sont des fonctions con-
tinues sur un intervalle 1.

On reprend les notations précédentes.

Théoreme 2.6. (i) L’espace H des solutions de I’équation homogéne (Ey) est un espace vectoriel de
dimension deux. Toute base de cet espace sera appelée systeme fondamental de solutions

(i1) Si g est une solution particuliere (dont on admettra I’existence), I’ensemble des solutions de (E') est

y+ H.
(i11) Pour tout (to,yo,y1) dans I x K x K, le probleme de Cauchy:

(E)
y(to) = o
y'(to) = n

admet une solution et une seule.

Remarque 2.6.1. Le théoréme de Cauchy montre que pour to, 'application x — (y(to),y'(to)) est un
isomorphisme d’ev entre ’espace des solutions S et R2. En particulier un couple de solutions (y,2)
est une base de I'espace S ssi le déterminant y(to)z'(to) — y'(to)z(to) est non nul. Cette condition est
indépendante de t(. La fonction xy' — z'y s’appelle le Wronskien du systeme de solutions (x,y). Voir la
derniere section pour des applications de cette notion.

2.7. Théoreme de résolution des équations linéaires d’ordre deux sous forme normalisée. Revenons

a une équation linéaire d’ordre deux écrite sous forme générale:

(E) : ay” +by+c =0, les fonctions a, b, ¢ étant continues sur un intervalle /. Si a ne s’annule pas sur 1,
. ‘o , s e : 5 o _byl_cd

les résultats du paragraphe précédent s’applique a I’équation mise sous forme résolue y” = -y +

a a’
On trouve ainsi un espace affine de solutions de dimension deux.

exercice 2.7.1. On s’intéresse dans cet exercice a I'équation (E) : y” + ¢(t)y = 0 avec p une fonction
continue sur un intervalle 1. On notera fi et fo les solutions des pbs de Cauchy associés a (E) avec
conditions initiales respectives (1,0) et (0,1).

On suppose que I = [—a, a] et @ paire. Montrer que si y est une solution sur I, la fonction t — y(—t) est
aussi solution.

En déduire que fy et fo sont respectivement paires et impaires. Caractériser alors les solutions paires et
les solutions impaires de (F).

2.8. Méthode de recherche de solutions. Citons quelques méthodes de recherche dun systéme fonda-
mental de solutions (SFS):

Dans le cas d’une équation a coefficients non constants, on ne dispose pas d’un théoréme donnant un
systeme fondamental de solutions de I’équation homogene. On propose dans ce paragraphe quelques
méthodes permettant de résoudre ce probleme dans des cas pratiques.

» Recherche d’une solution DSE.

Cette méthode fonctionne (parfois) lorsque les coefficients de I’équation sont polynomiaux.

Rappelons qu’il s’agit de chercher formellement une série ). a,,t™ convergente sur un intervalle | — 7, r[
avec r > 0.

v~ En invoquant le théoréme de dérivation terme a terme et le théoreme d’unicité des coefficients, on
ramene 1’équation différentielle étudiée a une relation de récurrence sur les coefficients a,,.

v~ On résout la récurrence précédente.

1 11 ne faut pas oublier de vérifier que le rayon de convergence de la série entiere obtenue Y. a,,t" est non
nul, ce qui permet de valider les calculs précédents.




exercice 2.8.1. Résoudre sur R} et R* I’équation différentielle (E) : xy” + 2y’ + xy = 0.

Touver les solutions de (E) sur R.

» Compléter une solution en une base On reprend les notations habituelles et on suppose que 1’on
dispose déja d’une solution y; de I’équation ax” + bx’ + cx = 0 qui ne s’annule pas sur I. L’idée de base
est d’effectuer le changement de fonction y = y;z. En reportant I’expression de y dans 1’équation on
aboutit a une équation en z:

ay12” + (2ayy +by1) 2’ + (ayr” +by| +cy1)z =d
Comme 3 est solution, le coefficient de z est nul et on est donc ramené a une équation d’ordre 1 en y/'.
exemple 2.8.2. Trouver une solution polynomiale évidente de (E): (t* + 1)z” + ta’ — x = 0. Résoudre
alors complétement (E) sur R7.
» Méthode de changement de variable. Cette méthode permet de se ramener a une équation différentielle
plus simple (idéalement a coefficients constants).
Commencons par une définition:
Définition 2.9. Soient k € N*, I et J deux intervalles et p: [ — J.

Ondira que p estun C k_difféomorphisme de I sur J si  est une bijection de classe C ¥ dont la réciproque
est également de classe C*.

En pratique pour vérifier que @ est un CF-difféomorphisme, il suffit de vérifier que @ est bijective de 1
dans J, de classe C* et que : Vte I, '(t) #0.

On cherche donc a résoudre sur I I’équation différentielle (E) : ax” + bx' + cx = 0.

(a, b et c fonctions continues, a ne s’annulant pas sur I).

Si ¢ est un C?-difféomorphisme de I dans un autre intervalle .J, alors pour toute fonction de classe C?
définie sur I, il existe une et une seule fonction y de classe C2 sur J telle que x = y o ¢ (y est la fonction
zopl).

En reportant = = y o ¢ dans (E) on obtient une nouvelle équation différentielle (£”) dont I’inconnue est
la fonction y. La fonction z est solution de (E') sur I ssi y est solution de (E”) sur J.

exemple 2.9.1. Résoudre t*x” (t) + 2tz'(t) + x(t) = 0 en utilisant le changement de variable ¢(t) =
Int =w.
2.10. Recherche d’une solution particuliére.

» Dans le cas d’une ED linéaire d’ordre deux a coefficients constants, il faut savoir trouver une solu-
tion particuliere lorsque le second membre est polynomial, polynomial-exponentiel, trigonométrique,
polynomial-trigonométrique (on se ramene au cas précédent via une exponentielle complexe)

» Dans le cas d’une ED a coefficients polynomiaux, dont le second membre est également DSE, la
recherche d’une solution particuliere DSE peut s’avérer efficace.

» La méthode de changement de variable s’applique de la méme facon que dans le cas homogene.

» Enfin, si y; est une solution de I’équation homogene qui ne s’annulle pas sur 7, en effectuant le
changement de fonction y = y;z, on aboutit par les méme calculs qu’a la section précédente a une ED
d’ordre 1 en 2’ mais avec second membre. On sait en théorie résoudre cette ED, ce qui donne 2’ puis z
(les calculs peuvent étre laborieux...)

3. UN CAS PARTICULIER IMPORTANT: LES EQUATIONS DE STURM-LIOUVILLE

Ces équations ont déja fait 1’objet de nombreux problemes et exercices de concours. Il s’agit d’équations
dutype: (E) : y" +py =0, ol p est une fonction continue sur un intervalle I.



On peut tout d’abord établir des résultats concernant les ’zéros” (cad les points d’annulation) des solu-
tions.

exercice 3.0.1. Soit y une solution de (E) qui n’est pas la fonction nulle.

(a) Montrer que si xo € I est tel que y(xzo) = 0, alors il existe § > 0 tel que y ne s’annule pas sur
|zo, x0 + 6 (commencer par montrer que y'(xg) + 0).

(b) Si y est une solution telle que y(xo) = 0 et qui s’annule pour au moins une valeur x > x, justifier
Pexistence de x1 = min{x > z¢ , y(x) = 0}. On dira alors que x et x1 sont des "zéros consécutifs” de

Y.
De nombreux résultats portent sur ”’I’entrelacement des zéros” des solutions de deux équations de Sturm-

Liouville.

exercice 3.0.2. Soient y; et yo deux solutions linéairement indépendantes de 1’équation différentielle
Yy’ +ay' +by =0, ot a et b sont des fonctions réelles continues sur un segment 1.

(a) Montrer que y1 n’admet qu’un nombre fini de zéros dans 1I.

(b) Montrer qu’entre deux zéros consécutifs de vy il y a un unique zéro de yo (on pourra s’intéresser au
Wronskien Wy, , ).

exercice 3.0.3. Soient q et r deux fonctions continues sur un intervalle I telles que v > q sur I. On
considere les deux équations de Sturm-Liouville associées:

(B1) =y +ay=0, (B2) : 2" +rz=0
Dans tout I’exercice, on notera y une solution non nulle de (FE1) et xg < x1 deux zéros consécutifs de y
dans 1.
(a) Etudier le signe de y'(x) et y'(x1) (en fonction de celui de y sur |xq, z1]).
(b) Soit z une solution de (E3). On note W =yz' —y'z ; calculer W' puis W (x1) — W (xo).
Prouver que z s’annule au moins une fois sur [xg, x1 .

(¢) Soit z: une solution de (E1) non proportionnelle & y. Montrer que x a un unique zéro dans |xq, x1][.

On peut donner une application de I’exercice précédent:

exercice 3.0.4. Soit \ > 0 et y une solution de
A
y”+(1+t_2)y20

On admettra que y est définie sur R.

(a) Montrer que pour tout réel a, la fonction y s’annule au moins une fois sur intervalle |a, a + 7).

(b) Montrer que les zéros de y forment une suite strictement croissante (z,,) telle que x,,+1 —x,, tend vers
m quand n — +oo (indication: pour € > 0 donné, encadrer 1 + t% entre 1 et 1 + € et appliquer I’exercice
précédent).

Terminons par un exercice utilisant le lemme dit ’de Gronwall”:

exercice 3.0.5. (a) (Lemme de Gronwall). Soient u et v des fonctions continues sur [a,+oo[ a valeurs
positives et ¢ > 0 tel que:

Ve>a, u(x)<c+ fx u(t)v(t)dt

Montrer que pour tout x > a:

u(x) < cexp([axv(t)dt)



(b) Soit ¢ : R, — R, une fonction de classe C telle que ¢’ soit intégrable.
Démontrer que les solutions de I’équation:

Y+ (1+q)y=0

sont bornées ainsi que leur dérivée d’ordre 1 (indication: introduire E = %(y2 +y"2)).



