
ÉQUATIONS DIFFÉRENTIELLES

Dans tout le chapitre on prendra K = R ou C. Tous les intervalles considérés contiennent au moins deux
points. Quand on parlera d’ouvert, on sous-entendra qu’il s’agit d’un ouvert non vide.

1. EQUATIONS SCALAIRES LINÉAIRES DU PREMIER ORDRE

Dans tout ce paragraphe on s’intéresse à une équation scalaire du type

(E) ∶ ay′ + by = c

où les fonctions a, b et c sont continues sur I . Rappels:

▷ Une solution de (E) sur I est une fonction y ∶ I → K dérivable telle que:

∀t ∈ I , a(t)y′(t) + b(t)y(t) = c(t)

▷ L’équation est dite homogène lorsque c = 0.

▷ L’équation homogène associée à (E) est (E0) : ay′ + by = 0.

1.1. Structure de l’espace des solutions. On a le théorème de structure des solutions:

Proposition 1.2. (i) L’ensemble H des solutions sur I de l’équation homogène associée à (E) est un
sev de l’ensemble des fonctions dérivables sur I .

(ii) Si ỹ est solution de (E) sur I , alors l’ensemble des solutions sur (i) de (E) est ỹ +H .

1.3. Résolution dans le cas d’une ED écrite sous forme résolue. On commence par traiter le cas d’une
ED mise sous forme normalisée: y′ = αy+β (E) où α et β sont des fonctions continues sur un intervalle
I . Alors on a le résultat suivant:

Proposition 1.4. (i) L’ev H des solutions sur I de (E0) est de dimension un et, pour tout t0 dans I , la
droite vectorielle H est engendré par la fonction y0 ∶ t ↦ exp(A(t)) où A est une primitive de α sur I .
En particulier toute solution de (E0) est de classe C1 sur I .

(ii) L’équation avec second membre (E) admet au moins une solution ỹ et l’ensemble des solutions de
(E) sur I est ỹ + Vect(y0).

En outre on peut prendre ỹ ∶ t↦ eA(t)∫
t

t0
e−A(s)β(s)ds pour un t0 arbitrairement choisi dans I .

Les solutions peuvent alors s’écrire sous la forme: ỹ ∶ t↦ eA(t)(λ + ∫
t

t0
e−A(s)β(s)ds) avec λ ∈ R.

(iii) En particulier, pour tout couple (t0, y0) ∈ I ×R, le problème de Cauchy cosntitué de (E) et de la
condition initiale de y(t0) = y0 admet une solution et une seule.

exercice 1.4.1. Soit g une fonction continue de limite nulle en =∞etα un réel strictment négatif. Montrer
que toute solution de l’ED: y′ + αy = g tend vers 0 en +∞.

Revenons à une équation différentielle d’ordre 1 générale : ay′ + by = c avec a, b, c fonctions continues
sur I . Sur tout intervalle J sur lequel a ne s’annule pas, on peut transformer (E) en y′ = − b

ay −
c
a et

appliquer le résultat précédent, ce qui donne:

Proposition 1.5. Supposons que la fonction a ne s’annule pas sur I .

Alors l’ev H des solutions sur I de (E0) est de dimension 1 .

En particulier toute solution de (E0) est de classe C1 sur I .
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† On ne dispose pas de résultat général sur la dimension des solutions sur un intervalle où a s’annule
comme nous le verrons sur des exemples dans le paragraphe suivant.

Remarque 1.5.1. Avant de se lancer dans une résolution par formule intégrale (ou variation de la
constante), il est utile de vérifier s’il n’y a pas une solution évidente : voir par exemple le cas d’une
équation à coefficients constants avec second membre constant.

exercice 1.5.2. Résoudre l’équation différentielle t(2 − t)x′ + (1 − t)x = 1 sur I =] − ∞,0[ puis sur
I ′ =]0,2[.

1.6. Etude du cas où la fonction a s’annule sur I . On supposera que la fonction a s’annule un nombre
fini de fois sur I . Attention : dans ce cas l’espace des solutions de l’équation homogène associée n’est
pas nécessairement de dimension 1 comme nous le verrons sur des exemples. En pratique, on résoud
l’équation sur des intervalles (maximaux) sur lesquels f ne s’annule pas et on essaie de ”raccorder” les
solutions obtenues pour obtenir des fonctions dérivables.

exemple 1.6.1. On considère l’équation différentielle (E) ∶ ty′ − 2y = t3. Calculer la dimension de
l’espace des solutions sur R.

exercice 1.6.2. Reprendre l’exercice précédent avec (E) ∶ t2y′ − y = 0 puis avec (1 − t)y′ − y = t.

2. EQUATIONS LINÉAIRES SCALAIRES DU SECOND ORDRE

2.1. Généralités.

Définition 2.2. Soient a, b, c, d quatre fonctions de C(I,K) et (E) l’équation différentielle linéaire
scalaire du second ordre:

(E) ay” + by′ + cy = d

Une solution sur I de (E) est une fonction y ∶ I → K deux fois dérivables telle que:

∀t ∈ I , a(t)y”(t) + b(t)y′(t) + c(t)y(t) = d(t)

L’équation est dite homogène ssi d = 0.

L’équation homogène associée à l’équation (E) est l’équation:

ay” + by′ + cy = 0

On dispose d’un théorème de structure des solutions:

Proposition 2.3. On reprend les notations de l’énoncé précédent.

(i) L’ensemble H des solutions de l’équation homogène (E0) est un sev de l’espace des fonctions deux
fois dérivables sur I .

(ii) Si ỹ est une solution sur I de (E), alors l’ensemble des solutions sur I de (E) est ỹ +H .

exercice 2.3.1. Un exemple de problème avec conditions aux limites:
Soit f, g ∶ [a, b] → R continues telles que f ≤ 0. Montrer que l’équation différentielle y” + fy = g
possède une solution unique sur [a, b] telle que y(a) = y(b) = 0.

Rappelons le principe de superposition, utile par exemple lorsque le second membre est une fonction
trigonométrique:

Proposition 2.4. Si y1 est solution de ay”+ by′ + cy = d1 et y2 est solution de ay”+ by′ + cy = d2, alors
pour tout couple de scalaires (λ1, λ2), la fonction λ1y1+λ2y2 est solution de ay”+by′+cy = λ1d1+λ2d2.

exercice 2.4.1. Soient ω0 et ω deux réels strictement positifs. Etudier à quelle condition l’équation
(E) ∶ y” + ω2

0y = cos(ωt) n’admet que des solutions bornées.
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2.5. Théorème de résolution des équations linéaires d’ordre deux sous forme normalisée. On s’intéresse
dans cette section à des équations de la forme(E) ∶ y” = αy′ + βy + γ où α,β, γ sont des fonctions con-
tinues sur un intervalle I .

On reprend les notations précédentes.

Théorème 2.6. (i) L’espace H des solutions de l’équation homogène (E0) est un espace vectoriel de
dimension deux. Toute base de cet espace sera appelée système fondamental de solutions

(ii) Si ỹ est une solution particulière (dont on admettra l’existence), l’ensemble des solutions de (E) est
ỹ +H .

(iii) Pour tout (t0, yo, y1) dans I ×K ×K, le problème de Cauchy:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(E)
y(t0) = y0
y′(t0) = y1

admet une solution et une seule.

Remarque 2.6.1. Le théorème de Cauchy montre que pour t0, l’application x ↦ (y(t0), y′(t0)) est un
isomorphisme d’ev entre l’espace des solutions S et R2. En particulier un couple de solutions (y, z)
est une base de l’espace S ssi le déterminant y(t0)z′(t0) − y′(t0)z(t0) est non nul. Cette condition est
indépendante de t0. La fonction xy′ − x′y s’appelle le Wronskien du système de solutions (x, y). Voir la
dernière section pour des applications de cette notion.

2.7. Théorème de résolution des équations linéaires d’ordre deux sous forme normalisée. Revenons
à une équation linéaire d’ordre deux écrite sous forme générale:
(E) ∶ ay”+by+c = 0, les fonctions a, b, c étant continues sur un intervalle I . Si a ne s’annule pas sur I ,
les résultats du paragraphe précédent s’applique à l’équation mise sous forme résolue y” = − b

ay
′ − c

a +
d
a .

On trouve ainsi un espace affine de solutions de dimension deux.

exercice 2.7.1. On s’intéresse dans cet exercice à l’équation (E) : y” + φ(t)y = 0 avec φ une fonction
continue sur un intervalle I . On notera f1 et f2 les solutions des pbs de Cauchy associés à (E) avec
conditions initiales respectives (1,0) et (0,1).

On suppose que I = [−a, a] et φ paire. Montrer que si y est une solution sur I , la fonction t↦ y(−t) est
aussi solution.

En déduire que f1 et f2 sont respectivement paires et impaires. Caractériser alors les solutions paires et
les solutions impaires de (E).

2.8. Méthode de recherche de solutions. Citons quelques méthodes de recherche dun système fonda-
mental de solutions (SFS):

Dans le cas d’une équation à coefficients non constants, on ne dispose pas d’un théorème donnant un
système fondamental de solutions de l’équation homogène. On propose dans ce paragraphe quelques
méthodes permettant de résoudre ce problème dans des cas pratiques.

▸ Recherche d’une solution DSE.

Cette méthode fonctionne (parfois) lorsque les coefficients de l’équation sont polynomiaux.

Rappelons qu’il s’agit de chercher formellement une série ∑ant
n convergente sur un intervalle ] − r, r[

avec r > 0.

✓ En invoquant le théorème de dérivation terme à terme et le théorème d’unicité des coefficients, on
ramène l’équation différentielle étudiée à une relation de récurrence sur les coefficients an.
✓ On résout la récurrence précédente.
‡ Il ne faut pas oublier de vérifier que le rayon de convergence de la série entière obtenue∑ant

n est non
nul, ce qui permet de valider les calculs précédents.
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exercice 2.8.1. Résoudre sur R∗+ et R∗− l’équation différentielle (E) : xy” + 2y′ + xy = 0.

Touver les solutions de (E) sur R.

▸ Compléter une solution en une base On reprend les notations habituelles et on suppose que l’on
dispose déjà d’une solution y1 de l’équation ax”+ bx′ + cx = 0 qui ne s’annule pas sur I . L’idée de base
est d’effectuer le changement de fonction y = y1z. En reportant l’expression de y dans l’équation on
aboutit à une équation en z:

ay1z” + (2ay′1 + by1)z′ + (ay1” + by′1 + cy1)z = d
Comme y1 est solution, le coefficient de z est nul et on est donc ramené à une équation d’ordre 1 en y′.

exemple 2.8.2. Trouver une solution polynomiale évidente de (E): (t2 + 1)x” + tx′ − x = 0. Résoudre
alors complètement (E) sur R∗+.

▸Méthode de changement de variable. Cette méthode permet de se ramener à une équation différentielle
plus simple (idéalement à coefficients constants).

Commençons par une définition:

Définition 2.9. Soient k ∈ N∗, I et J deux intervalles et φ ∶ I → J .

On dira que φ est un Ck-difféomorphisme de I sur J si φ est une bijection de classe Ck dont la réciproque
est également de classe Ck.

En pratique pour vérifier que φ est un Ck-difféomorphisme, il suffit de vérifier que φ est bijective de I
dans J , de classe Ck et que : ∀t ∈ I , φ′(t) ≠ 0.

On cherche donc à résoudre sur I l’équation différentielle (E) : ax” + bx′ + cx = 0.

(a, b et c fonctions continues, a ne s’annulant pas sur I).

Si φ est un C2-difféomorphisme de I dans un autre intervalle J , alors pour toute fonction de classe C2
définie sur I , il existe une et une seule fonction y de classe C2 sur J telle que x = y ○φ (y est la fonction
x ○ φ−1).

En reportant x = y ○φ dans (E) on obtient une nouvelle équation différentielle (E′) dont l’inconnue est
la fonction y. La fonction x est solution de (E) sur I ssi y est solution de (E′) sur J .

exemple 2.9.1. Résoudre t2x”(t) + 2tx′(t) + x(t) = 0 en utilisant le changement de variable φ(t) =
ln t = u.

2.10. Recherche d’une solution particulière.

▸ Dans le cas d’une ED linéaire d’ordre deux à coefficients constants, il faut savoir trouver une solu-
tion particulière lorsque le second membre est polynomial, polynomial-exponentiel, trigonométrique,
polynomial-trigonométrique (on se ramène au cas précédent via une exponentielle complexe)

▸ Dans le cas d’une ED à coefficients polynomiaux, dont le second membre est également DSE, la
recherche d’une solution particulière DSE peut s’avérer efficace.

▸ La méthode de changement de variable s’applique de la même façon que dans le cas homogène.

▸ Enfin, si y1 est une solution de l’équation homogène qui ne s’annulle pas sur I , en effectuant le
changement de fonction y = y1z, on aboutit par les même calculs qu’à la section précédente à une ED
d’ordre 1 en z′ mais avec second membre. On sait en théorie résoudre cette ED, ce qui donne z′ puis z
(les calculs peuvent être laborieux...)

3. UN CAS PARTICULIER IMPORTANT: LES ÉQUATIONS DE STURM-LIOUVILLE

Ces équations ont déjà fait l’objet de nombreux problèmes et exercices de concours. Il s’agit d’équations
du type : (E) ∶ y′′ + py = 0 , où p est une fonction continue sur un intervalle I .
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On peut tout d’abord établir des résultats concernant les ”zéros” (càd les points d’annulation) des solu-
tions.

exercice 3.0.1. Soit y une solution de (E) qui n’est pas la fonction nulle.

(a) Montrer que si x0 ∈ I est tel que y(x0) = 0, alors il existe δ > 0 tel que y ne s’annule pas sur
]x0, x0 + δ[ (commencer par montrer que y′(x0) ≠ 0).

(b) Si y est une solution telle que y(x0) = 0 et qui s’annule pour au moins une valeur x > x0, justifier
l’existence de x1 = min{x > x0 , y(x) = 0}. On dira alors que x0 et x1 sont des ”zéros consécutifs” de
y.

De nombreux résultats portent sur ”l’entrelacement des zéros” des solutions de deux équations de Sturm-
Liouville.

exercice 3.0.2. Soient y1 et y2 deux solutions linéairement indépendantes de l’équation différentielle
y” + ay′ + by = 0, où a et b sont des fonctions réelles continues sur un segment I .

(a) Montrer que y1 n’admet qu’un nombre fini de zéros dans I .

(b) Montrer qu’entre deux zéros consécutifs de y1 il y a un unique zéro de y2 (on pourra s’intéresser au
Wronskien Wy1,y2).

exercice 3.0.3. Soient q et r deux fonctions continues sur un intervalle I telles que r ≥ q sur I . On
considère les deux équations de Sturm-Liouville associées:

(E1) ∶ y′′ + qy = 0 , (E2) ∶ z′′ + rz = 0

Dans tout l’exercice, on notera y une solution non nulle de (E1) et x0 < x1 deux zéros consécutifs de y
dans I .

(a) Etudier le signe de y′(x0) et y′(x1) (en fonction de celui de y sur ]x0, x1[).

(b) Soit z une solution de (E2). On note W = yz′ − y′z ; calculer W ′ puis W (x1) −W (x0).

Prouver que z s’annule au moins une fois sur [x0, x1].

(c) Soit x une solution de (E1) non proportionnelle à y. Montrer que x a un unique zéro dans ]x0, x1[.

On peut donner une application de l’exercice précédent:

exercice 3.0.4. Soit λ > 0 et y une solution de

y′′ + (1 + λ

t2
)y = 0

On admettra que y est définie sur R.

(a) Montrer que pour tout réel a, la fonction y s’annule au moins une fois sur l’intervalle ∣a, a + π].

(b)Montrer que les zéros de y forment une suite strictement croissante (xn) telle que xn+1−xn tend vers
π quand n → +∞ (indication: pour ϵ > 0 donné, encadrer 1 + λ

t2
entre 1 et 1 + ϵ et appliquer l’exercice

précédent).

Terminons par un exercice utilisant le lemme dit ”de Gronwall”:

exercice 3.0.5. (a) (Lemme de Gronwall). Soient u et v des fonctions continues sur [a,+∞[ à valeurs
positives et c > 0 tel que:

∀x ≥ a , u(x) ≤ c + ∫
x

a
u(t)v(t)dt

Montrer que pour tout x ≥ a:

u(x) ≤ c exp(∫
x

a
v(t)dt)
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(b) Soit q ∶ R+ → R+ une fonction de classe C1 telle que q′ soit intégrable.

Démontrer que les solutions de l’équation:

y′′ + (1 + q)y = 0

sont bornées ainsi que leur dérivée d’ordre 1 (indication: introduire E = 1
2(y

2 + y′2)).


