7

Interrogations Orales PSI*

2025-2026

Semaine du 10 novembre 2025

D2 - Électrocinétique

Questions de cours:

- Densité volumique de porteurs de charges n(M), densité volumique de charges électriques ρ(M), vecteur densité de courant électrique j élec(M), intensité du courant électrique I. Unités de chaque grandeur. Relations entre ces grandeurs. Cas où plusieurs types de porteurs de charges sont présents.
 - Bilan de charges : citer l'équation locale dans le cas tridimensionnel et en interpréter chacun des termes à l'aide de schémas.
 - Régime stationnaire : ligne de courant, tube de courant, conservation du flux de $\overrightarrow{j}_{\text{élec}}$ (théorème de Green-Ostrogradski), loi des noeuds
- Conducteur ohmique : modèle de Drüde, démonstration de la loi d'Ohm locale, ordre de grandeur de la conductivité électrique du cuivre.
 - Démonstration de la résistance électrique d'un conducteur filiforme en régime stationnaire : expression de la résistance d'un câble cylindrique parcouru uniformément par un courant parallèle à son axe.
- Démonstration de la puissance volumique cédée aux porteurs de charges par la force électrique et expression de la puissance.
 - Cas d'un conducteur ohmique : puissance dissipée par effet Joule

Savoir faire:

- Savoir passer d'une description microscopique (porteurs de charges, vitesse des porteurs) aux grandeurs mésoscopiques ρ et \overrightarrow{j} élec dans le cas d'un seul type de porteur de charges ou dans le cas de plusieurs porteurs de charges (solution ionique, semi-conducteur).
- · Savoir distinguer les charges mobiles et les charges fixes.
- Savoir écrire l'intensité comme le flux du vecteur densité de courant électrique à travers une surface orientée.
- Savoir réaliser un bilan de charges sur un volume infinitésimal, ou un volume fini.
- Savoir déterminer l'expression de la résistance d'un conducteur ohmique à partir de la définition ou à partir de la puissance.
- Savoir déterminer la puissance cédée aux porteurs de charges à partir de la puissance volumique.

D3 - Magnétostatique

Questions de cours:

- Équation de Maxwell pour le champ magnétique (cas général, et cas particulier en régime stationnaire), Relation de Stokes-Ampère, démonstration du théorème d'Ampère.
 - Plans de symétrie et d'anti-symétrie de la distribution de courant, conséquence pour le champ magnétique.
- Démonstration de l'expression du champ magnétique et inductance propre d'un tore bobiné.
- Démonstration de l'expression du champ magnétique créé par un conducteur rectiligne infini.
- Démonstration de l'expression du champ magnétique créé par un conducteur cylindrique de longueur infini parcouru par un courant uniforme.
- Force de Lorentz, force de Laplace s'exerçant sur un conducteur filiforme, force volumique de Laplace (expliquer le passage d'une force à l'autre)

F3 - Onde électrique dans un câble coaxial

Questions de cours:

- Onde électrique dans un câble coaxial sans perte : modéle électrique équivalent d'une portion de câble coaxial, équations de couplage, démonstration de l'équation de propagation pour v(x,t) ou i(x,t), Impédance caractéristique d'un câble coaxial (démonstration, cas d'une OPH+ et d'une OPH-)
- Coefficients de réflexion et de transmission : présentation de la situation physique, définition, démonstration de l'expression des coefficients en amplitude en fonction des impédances caractéristiques des deux câbles Z_{c1} et Z_{c2} . Autres questions possibles non abordées en cours :
- Fréquences propres pour un câble coaxial de longueur *L* court-circuité à ses deux extrémités.
- Fréquences propres pour un câble coaxial court-circuité à l'une de ses extrémités et ouvert à l'autre.
- Fréquences de résonance pour un câble coaxial alimenté par la tension $e(t) = \hat{V}\sin(\omega t)$ à l'une de ses extrémités et court-circuité à l'autre.
- Fréquences de résonance pour un câble coaxial alimenté par la tension $e(t) = \hat{V} \sin(\omega t)$ à l'une de ses extrémités et ouvert à l'autre.

Savoir faire:

- Savoir utiliser le concept d'impédance caractéristique pour passer de u(x, t) à i(x, t) et inversement dans le cas d'onde progressive.
 - A Savoir que le concept d'impédance caractéristique n'est pas applicable à une onde stationnaire.
- Connaissant l'expression d'une onde incidente, savoir définir l'expression des ondes réfléchies et transmises créées par une discontinuité du milieu de propagation.
- Savoir définir des coefficients de réflexion et de transmission en amplitude.

F4 - Phénomènes de propagation linéaires : Dispersion - Absorption

Questions de cours:

- **Pseudo-OPH**: expression avec \underline{k} complexe, interprétation de sa partie réelle k' et de sa partie imaginaire k'' (présentation des différents cas). Vitesse de phase et vitesse de groupe, définition des termes suivants : milieu dispersif, atténuation, amplification, absorption d'une onde
- Superposition de deux ondes de fréquences proches dans un milieu non absorbant et dispersif : position du problème, hypothèses, expression de l'onde résultante, représentation de l'onde, vitesse de phase v_{φ} , vitesse de groupe v_{g} .
- Paquet d'ondes centré sur une fréquence centrale f_0 : définition, étendue du domaine spectral pour un paquet d'onde de durée finie, relation en ordre de grandeur entre la durée temporelle du paquet d'onde et la largeur fréquentielle de son spectre.

Savoir faire:

- Savoir déterminer une relation/équation de dispersion $k = f(\omega)$.
- Savoir déterminer à partir d'une relation de dispersion les vitesses de phase et de groupe et savoir préciser si le milieu est dispersif.
- Lorsque des raisons physiques le justifient, savoir déterminer un expression simplifiée de \underline{k} à l'aide d'un DL
- Pour des relations de dispersion de type $k^2 = \frac{\omega^2 \omega_0^2}{c^2}$ savoir retrouver la relation v_g . $v_{\varphi} = c^2$.
- Savoir résoudre une équation de diffusion ou une équation de propagation en régime temporel, comme par exemple avec une excitation sinusoïdale et donc une solution du type $T(x, t) = f(x) \cdot \exp(j \cdot \omega \cdot t)$.