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FICHE 1 - CALCUL VECTORIEL : RAPPELS

Produit scalaire
1) Définition
Le produit scalaire de deux vecteurs est un nombre algébrique, noté v et vaut

-cos(,V)

it =| |l |||

2) Propriétés
Commutativité : #-v=v-u

Distributivité avec l'addition : #-(v +W)=u-v +u-w

=y
Il

— —

Si #-v=v-11=0 alors trois cas de figure peuvent se présenter :

= =
|
= O <y

L duv . |[dv du| - . L
Deérivation o =1 o + 2 ‘v (la notation indicée b sera vue lors du cours sur la dérivation
b\ b

vectorielle).

(nota : on peut rapprocher cette notation de la dérivation d’un produit : (7-V) =2V '+ "V)

Produit vectoriel

1) Définition i
Le produit vectoriel de deux vecteurs est un vecteur, noté U AV =¥ .
Direction de ¥ : ozrliogoyale acellesde U etde V (donc orthogonale fi.,_%_ﬁ_ﬁ
au plan génere par U et V) = r{:‘/c >
Sens de W : tel que la base | 5’, 174 i W ) soit une base directe =
Nome de 7 : ([ a7 |<|([&|[7]-sin(@ 7))

2) Propriétés
Anticommutativité : UAV =—V AU
Distributivité avec l'addition : UA(V+W )= UANV+UAV =0
Si UAV =—V AU=0 alors trois cas de figure peuvent se présenter : V=0

unv

Siune base b (¥, 3, Z) est orthonormée directe : FAF=Z, FAZ=F et ZAF=7
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Produit mixte

1) Définition

Le produit mixte de trois vecteurs V. ¥V, et V', pris dans cet ordre est le produit vectoriel des deux
1 2 3
premiers scalairement par le troisieme. Il est note :

(V,V,, V)=V ,AV,):

"
£

I/_*'_’»

2) Propriétés importantes

* Le signe du produit mixte ne change pas si on fait une permutation circulaire des vecteurs 7, |
V, et V5.1l change si la permutation n’est pas circulaire. Donc :

(VL V,, V)=V, V,V,)=(V,,V,,V,)

V)=V, V,, V==V, V,,V,)

2
2

APPLICATION au calcul

Soient 3 reperes R;(O,X%;,Y;,Z;) définis de la fagon suivante :
» R, est obtenu par une rotation de R; d'angle 6 et d'axe (O,y,) ;
* Rj; est obtenu par une rotation de R, d'angle ¢ et d'axe (0O,z,).

1. Représenter les figures planes correspondant aux 2 changements de base.

X, Yo

x|
)

<
)
Il
<
v

FIGURE 1 FIGURE 2

2. Déterminer les composantes des vecteurs unitaires X, et y, dans la base liée a R;.

—_—

3. Calculer : z Ux, , z.x, , y;0z , y5.z, , y,Uz, , y.2,

4. On donne les vecteurs V, = ax +bZ, et V, =ax, ; calculer la projection de W =V, 0V, surX,.
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FICHE 2 - FERMETURE GEOMETRIQUE : METHODES

Exemple : Maxpid
L:F] K | %2 L.'Fl . 2
4 P - ¥ H
”ﬁ A W s 3 A" g
\F \ B/ w
\ x
- A g -
A i ™
= =~
t 1 -
a C F*H a , .:l:u
’ h d ’ ’
}
Schéma cinématique plan parameétré Squelette géomérrique du schéma
Parametre géometrique X L Parametre geometrique de
2 X 2 R K . . i !
d'entrée (de commnande) ? sortie (posiion utile)

La fonction de wansfert de cette chaine s'obtient par la « Lol Entrée-Sortie » géomeétrique. oblenue par

la mise en équation géomeéirique du schéma.
La méthode de fermeture géometrique consiste a écrire une equation « fermee » :

OA+ AB+ BC+C0O=0 (1)
(2)

by +tax —Ad —ax,=0
L’équation de fermeture (2) est la mise en équation geomeétrique du meécanisme. Projeter cette équation
sur les vecteurs d'une base fournira toutes les eéquations scalaires linéairement indépendantes. Toutefols.

cette méthode n'est pas (et de loin !) la plus rapide.

Figure de caleul :

Précision des « enfrées » ef « sorties » o encore des « données » et des « mconmies »

1* exemple :
On donmne (a. b, A. ), on cherche w (inconuue principale). On veut done éliminer des équations la
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variable x (inconnue secondaire).

Régle pratique :
Lorsque l'inconmuie a éliminer (ici x) est un scalaire en facteur d'un vecteur unitaire (ici ¥, ). la
projection de I'équation vectorielle sur un vecteur unitaire orthogonal (ici ¥, ) élimine cette inconnue.

2™ exemple :

On donne (a, b. 4, 8). on cherche x. on veut éliminer y-.

Régle pratique :
Pour eliminer la direction angulaire mconnue defimissant la position d'un vecteur unitaire (ici ¢)., on

1sole ce vecteur unitaire d'un cote de I'équation vectorielle, que l'on €éléve au carre.

Remarque : 1l s'agit bien de s'intéresser a la variable qure 'on souhaite supprimer. Celle-c1 détermine
alors la méthode a employer.
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FICHE 3 - Ce qu’il faut retenir de la CINEMATIQUE

Notation : la vitesse du point M appartenant a 1 dans le mouvement de 1 par rapport a R, un repére ou
bien par rapport a un solide associé a un repere R, est notée soit :

- _ d(om)
V(MO1/R) =V (M1/R) = 5

A

« /R » ne signifie pas qu’on exprime le vecteur dans la base associée au repére R

la difficulté ici est de dériver un vecteur.

=>» En effet, on pourra exprimer une vitesse a I'aide de vecteurs de bases différentes. Cela n’a
rien de choquant, le principal étant en Sl de réduire le nombre de termes obtenus afin d’avoir
une expression simple du vecteur vitesse.

« /R » signifie que I'on va effectuer des dérivations mathématiques de vecteur par rapport a
la base associé aR.

=>» on va voir cela par la suite avec le théoréme de dérivation de vecteur par changement de
base, théoréme indispensable en Sl en raison de la présence de nombreuses bases en
mouvement relatif. En physique, vu le faible nombre de base en présence, on se contente
de projeter dans la base liée au bati afin de dériver un vecteur en se ramenant a dériver

plusieurs scalaires & en sl

La vitesse d'un point correspond donc a la variation, au cours du temps, de sa position. Elle s'obtient donc
en dérivant par rapport au temps la fonction trajectoire. Elle est tangente a la trajectoire. Son unité est le
m/s.

L'accélération correspond a la variation de la vitesse. Elle s'obtient donc en dérivant la vitesse par
rapport au temps. Son unité est le m/s-2.

o’ (OM) _ d(V(MO1/R))

dt? dt
R R

r(MO1/R)=T(M1/R) =

L’indispensable théoréme de dérivation de vecteur par changement de base :

Z—U = Z—U +§Ri/RjDU
t Rij t Ri

Méthode 1 pour le calcul de vitesse : dérivation directe avec la formule suivante qui s'appelle la «
Formule de BOOR ». Elle est indispensable pour calculer la vitesse d'un point dont les coordonnées sont
exprimées dans un repére mobile par rapport a un autre repére (c'est-a-dire dans quasiment tous les
calculs de cinématique !)

V(MO1/R) = @ = @ +Qnyyr 0(OM)
R R1
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Méthode 2 pour le calcul de vitesse : composition des torseurs cinématique

Torseur cinématique du solide (1) dans son mouvement par rapport au solide (0): 2_maniéres de
I’écrire !

{ } a Qo Q. Vi (P,l/O)
Vinfp = V(P,l/()) o @ {vl/O}p = Qyuo v, (P,l/O)
T ’ Qzl/O ‘/Z(EK)) P.R

(Vecteurs Résultante et Moment en lignes)
(Composantes Résultante et Moment en
colonnes en projection dans R)

La formule suivante est connue sous les noms de « relation de Varignon » ou « formule de distribution
des vitesses ». Elle permet de déterminer complétement le torseur cinématique d'un solide (1) en
mouvement par rapport a un solide (0)

— —_

V:Q,lf'()] =V 10T Q}alueo A PO

Les relations de composition des vecteurs vitesses et des vecteurs vitesse de rotation,
pour trois solides (0) , (1) et (2), se résument ainsi :

[ [ L+l 1 { 50=C1+Q ]
Vo=V 21l TUY woip . - -

{ Vire2o=V pean) TV pernn) JP

Attention !!! On ne peut additionner deux torseurs que lorsqu'ils sont exprimés au méme point !

Condition de roulement sans glissement : on dit qu’il y a roulement sans glissement entre un solide i et
un solide j au point M lorsque :

V(MOi/j) =0=V(MLi/0) - V(MDj/0)
Torseur 3D > torseur 2D (forme simplifiée du torseur) : si le probléme est plan, de normale z alors

Q,, V.(P,1/0) N v.(r.10)
" > {vo}, =1 v (P10

{Vuo} =1Q V,(P,l/O) 10

P Y0 Y

Q  V.(P,10) Q e

PR z1/0 PR

z1/0

avec R(?c, y,Z)

NB2 :. signifie n’existe pas !
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FICHE 4 - Ce gu’il faut retenir de la STATIQUE

Notation : le moment des actions mécaniques exercé par K sur S au point P, est notée :

M(PK - S)

On utilise I'outil torseur pour modéliser I'action mécanique de (K) sur (S).

Rk s

T =]
{Tics}, M(P.K - S)|

Avec la formule de déplacement du moment entre les points P et N :
M(PK - 8)=M(NK - S)+Rk_.s ONP ou M(PK - S)=M(NK - S)+Rk_.s ONP

Remarque : L'écriture des composantes en colonnes est souvent privilégiée en statique.

En posant, dans le repére R(%,7,Z) : |
cR=XT+Y7+72 | Rkes
e M=L3+M7V+NZ (s}, = M(P,K - S) .,
on a alors I'écriture classique du torseur statique : 1 '
Xgs Ls
{Tqu}P =4 Yig My
Zys Nis P.R

Torseur 3D > torseur 2D (forme simplifiée du torseur) : si le probléme est plan, de normale Z alors

Xgs Lys Xis I
{Tqu}P =9 Yig My =>{Tqu}P =9 Yks ls
Zys Nis ) p g s Nis ) pr

avec R\ X, y,Z)
NB2 : signifie n’existe pas !

Le torseur de I'action de la pesanteur sur notre solide S de masse m s'écrit donc, au centre de gravité

mg
{ e s} =
pesanteur - S} p -

0

P
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Modélisation des actions mécanique de contact exercée en P sur S par S1 :

L’action élémentaire dF définit sur la figure I'action de contact en M sur dS ; elle s’écrit dans le cas général:
dF‘:—PdSﬁ+deS? avec P, la pression de contact et f, le coefficient de frottement. 7 , normale
« sortante » au contact et 7, vecteur tangentiel « opposé au mouvement » (cf. Lois de Coulomb ci
dessous). En I'absence de frottement, la seule force de pression s’exprime : dF =— PdS ii

Méthodologie pour le passage local = global

- On modélise I'action mécanique locale au lieu de contact (en M)

_|dF (M)
(54, = "

M

- On transporte I'action mécanique locale au lieu de calcul (en P)

(r,,= 0
W |dF (M) OMP)

- On globalise I'action mécanique locale au lieu de calcul (en P)

(1, ) - [ s dF (M)
V| [ s dF (M) OMP)

NB ; pour cette derniére étape, il faut étre vigilant dans l'intégration et projeter sur une base fixe. On
analysera également les symétries afin d’éviter tout calcul inutile.
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Principe fondamental de la statique (PFS) :

Dans un repére galiléen R, si un systeme matériel () est en équilibre, le torseur de "ensemble des
actions mécaniques extéricures de S sur S estnul :

“ R< . _
( §) en équilibre dans R, = {I 3 =[ (§—5) 1 =0}

Remarques :

* Le théoréme de 1'équilibre est trés souvent appelé « Principe Fondamental de la Statique »
(PES). Cette appellation est abusive car ce n’est qu'un cas particulier du Principe Fondamental
de la Dynamique ( PFD ). (1l nous arrivera d'abuser de temps en temps et de parler de PFS !)

* Le théoreme de I'équilibre ne se démontre pas, puisque c'est un cas particulier du PFD.

* Siun torseur est nul alors 1l est nul en tout point. Il n’est donc pas nécessaire d’imposer un point
pour exprimer le torseur des actions extérieures. En revanche, 1l est judicieux de choisir
correctement ce point afin de simplifier au maximum les calculs : en particulier ce point peut
étre I’origine d’une force inconnue.

* Les reperes galiléens sont des repéres ou le théoréme de 1'équilibre est vérifié. Pour des
applications des systémes mécaniques classiques (voiture, avion, machine,...), la Terre est une
bonne approximation d’un repére Galiléen.

* L’analyse du PFD montre qu’il est possible d’étendre le champ d’application du PFS a des
systemes mobiles dans les trois cas particuliers suivants :
- mouvement de translation uniforme
- mouvement de rotation uniforme d’un solide équilibré dynamiquement
- lorsque les effets des masses et des merties peuvent étre négligés devant les efforts extérieurs

Théoréme des actions réciprogues :

Soient deux ensembles solides S, et S, , alors :

[f fsﬁsz)} = _'[f sz—)SI}}

Cas particulier d’isolement simples :

Si un systéme matériel soumis a deux glisseurs est en équilibre, alors les deux résultantes sont égales ef
opposees.

Si un systéme matériel soumis a trois glisseurs est en équilibre, alors les résultantes de ceux-ci sont :
* de somme géométrique nulle
* coplanaires

* concourantes ou paralleles. Dans ce dernier cas, les distances entre les directions paralleles sonf
iversement proportionnelles aux intensités des forces portées par ces directions.

10
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Lois de Coulomb : entre deux solides (S1) et (S2) en contact ponctuel peuvent se transmettre des actions

mécaniques avec frottement (di aux irrégularités de contact, et au bourrelet de contact). Coulomb a
déterminé empiriquement des lois sur les efforts.

Soit F —, la force exercée par (S;) sur (8:) au niveau du point I qui se decompose en :

O VHq la force normale de (S;) sur (S,) au niveau du point I. N, 122 =(F, ,7).

o T,., laforce tangentielle de (S)) sur (S;) au niveau du point L. T, ,=F, ,—1

| =

<

1-2

Les lois de Coulomb spécifient que :

En cas de glissement entre (S)) et (.S5) : ?( 1201 )?&6 :

-> ?(H 2 _.( 1271 )=6 (ces deux vecteurs sont colinéaires)

> T(l_, 2}'?( 1.21)<0 (I'effort tangentiel s'oppose au glissement)

> H?[ 1 2)H =[N (1= 2)H (I'effort tangentiel est proportionnel a I'effort normal)
ou f estle coefficient de frottement de glissement entre (5;) et (.5>).

La force FFIHZ est située sur le cone de frottement de demi-angle au sommet @ tel que :

En cas de non-glissement entre (5;) et (S5) : T/’b( 1201 )=6

H IADZH_fO

J o estle coefficient d'adhérence entre (S)) et (S5).

NB : Souvent, on confond f et f

11




THEMEZ : chapitre 0 REVISIONS DE MPSI et PCSI Lycée Jean Perrin PSI*

FICHE 5 - TABLEAU DES LIAISONS NORMALISEES

Représentation Représentation
plane 3D

A

Liaisons

Encastrement
ou complete

Pivot
d'axe (0O, x)

Pivot glissant
d'axe (0, x)

Glissiére
de direction x

e
Hélicoidale . ‘
d'axe (0, x)
de pas p

Rotule ou

Sphérique
de centre O

Linéaire annulaire
ou sphére cylindre
d’axe (O, x)

Rotule a doigt
de centre O
bloquée suivant x

Appui plan

de normale z

Linéaire Rectiligne

ou cylindre plan
d'axe (0, x)

et de normale z

Ponctuelle ou
sphere plan
De normale (O, z)
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FICHE 6 - TABLEAU DES LIAISONS NORMALISEES

Liaisons

Lycée Jean Perrin PSI*

Représentation Représentation

plane

Nomb
de DI

Encastrement
ou complete

Pivot
daxe (O, x)

Torseur statique des
inter-efforts

A

Pivot glissant
d’axe (O, x)

Glissiére
de direction x

0
v
£

wMefox] L

Hélicoidale
d'axe (O, x)
de pas p

Rotule ou

Sphérique
de centre O

Linéaire annulaire
ou sphére cylindre
d'axe (O, x)

Rotule a doigt
de centre O
bloquée suivant x

Appui plan

de normale z

Linéaire Rectiligne

ou cylindre plan
d'axe (O, x)

et de normale z

Ponctuelle ou
sphére plan
De normale (O, z)

r‘\
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FICHE 6 — Torseur des LIAISONS non parfaites et motorisées

Cas de la glissiére parfaite (sans moteur , sans frottement et sans jeu)

Glissiére 1
de direction x
. $ .
- x “l.

La présence d’'un moteur linéaire ou bien d'un | La présence d’une force de frottement sec —F, et de
vérin exercant au sein de la liaison une action frott Vi —aV imoli )
F implique - rottement visqueux —aV,implique :
F L -F -aV_ L
{T}DM =\ YM {T}DM = Y M NB: a en %md )
Z Ny Z N, s

Cas de la liaison pivot (sans moteur , sans frottement et sans jeu)

P1ivot ) 1
d’axe (O, x) x v
~ x Y

La présence d’un couple de frottement sec —C, et de

La présence d’un moteur ou bien d’un vérin frottement visqueux — faimplique :

rotatif exercant au sein de la liaison une action

C implique :
XC X -C-fw

{T}DM =Y M {T}DM =Y M NB: f en
ZN]|_, Z N .
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FICHE 7 - LIAISONS EQUIVALENTES

1) Liaisons en série I Point de vue cinématique I

000

Dans le cas de liaisons en série, la piece intermédiaire (2) peut étre une piece interposée pour des
raisons technologiques (suppression des frottements, ¢largissement des appuis, etc.) mais ses
mouvements propres n'ont pas d'influence sur la cinématique de 1'ensemble.

Cherchons alors la liaison équivalente aux liaisons L + Lo :

O—-+—0

S . I | | | %" 1 [~ |
Par C-OlllpOSlthll des vitesses, on peut ecrire : | Z/uo =i 7 1/2 | +l 4 2/0 |

Le torseur cinématique de la liaison équivalente Lo aux deux liaisons en série est donc la somme des
torseurs de ces deux liaisons.

Exemple : Liaisons rotule et appui-plan en série

=i

e c|£, O mm c|£2,, @)
Qf Vf
C ,

Q,+Q,, 0 G575

Soit un torseur cinématique €équivalent a une liaison ponctuelle au point C et de normale 7 .

Cette association de liaisons est couramment utilisée pour obtenir une liaison ponctuelle tout en
conservant des contacts surfaciques entre les pieces (pour la transmission des efforts).

La présence du terme {2,,+(2,, pour la rotation suivant 7 indique que la piéce (2) peut avoir une
rotation relativement a (0) et (1). Cependant, celle-ci n'ayant aucune incidence sur la rotation propre de
(1) par rapport a (0), on parle dans ce cas de mobilité interne.

15
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2) Liaisons en paralléle I Point de vue cinématique I

L

1

(0) et (1) sont liées par I'intermédiaire de deux surfaces différentes, cherchons la liaison équivalente a
cette association en parallele de L, et L,.

O——0

Le torseur cinématique i V”g I , c'est-a-dire celle de la liaison équivalente L, doit etre compatible
avec les blocages introduits par les liaisons L; et L,. Pratiquement. un zéro sur une composante de I'un
ou l'autre des torseurs de liaison implique un zéro dans le torseur cinématique de (1) par rapport a (0).

Exemple : Association série d'une pivot glissant et d'une appui-plan

Soit le torseur cinématique d'une liaison Pivot d'axe (4, 7 ).

On remarque que des blocages en rotation suivant les axes 7 et 7 sont a la fois introduits parL; et L,.
Ceci indique que la liaison entre (0) et (1) est hyperstatique (ici d'ordre 2).

3) Résumé et généralisation du point de vue cinématique et des inter-effort pour n liaisons
en série ou en paralléle : torseur cinématique ou d’inter-effort équivalent.

Liaisons placées en

série parallele

n
cinématique {VH/O}M:Z{Vi/i-1}M {V2/1}M :{V2/1i}M
i=1

d'inter-effort {Teq,o - n}M ={ti-1- i}M {Teq,l - Z}M = i{f,]Db_.Z}M
i=1

Liaison equivalente
caractérisée par son
torseur

16
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CORRECTION

17
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FICHE 1 - CALCUL VECTORIEL : RAPPELS

APPLICATION au calcul

Soient 3 reperes R;(O,X;,Y;,z;) définis de la fagon suivante :
« R, est obtenu par une rotation de R; d'angle 6 et d'axe (O,y,) ;
« Rj; est obtenu par une rotation de R, d'angle ¢ et d'axe (O,z,).

5. Représenter les figures planes correspondant aux 2 changements de base.

Y

<l

FIGURE 1 FIGURE 2
6. Déterminer les composantes des vecteurs unitaires X, et y, dans la base liée a R;.
A l'aide de la figure 1 : X, =cos6x, —-sin0z,  z, =cos0z, +sinbx, vy, =y,
A l'aide de la figure 2 : X; =cosXx, +sindy, y; = cosdy, —sindx, Z2,=2,
> X3 =cos¢d(cos6X, ~sinbZ ) +sindy, ¥, =cosdy, —sind(cosoX, —sin6Z,)

z, =cos Bz, +sinbx,

7. Calculer : z Ux, , z.x, , y;Uz , y,.z, , Uz, , y.2,
- Méthode 1 : avec produits scalaires/produits vectoriels de vecteurs d’une base orthonormée

2 Ox, =z O(cos 6%, —sin 87, ) = cos 8,

Z.x, =Z.(cos 0% —sin6z,) = —sin @

y, Oz, = (cos @y, —sin ¢%,) Oz = (cos ¢3, —sin ¢ (cos G%, —sin «921)) Oz, =trop long....
Yoz, = (cos @y, —sin ¢)?2).Z = (cos #3, —sin ¢ (cos G%, —sin 921)).212 trop long....
»0z, =5,0z, =%,

Y2y = Y,.2, =0

18
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- Méthode 2: avec les figures planes et la définition du produit scalaire/produit
vectoriel

z, Ox, =+sin(§+6’j§l =cos 8y,
Z.x, =c0s(§+9j=—sin9

y, 0z = (cos @y, —sin ¢?c2) Oz, = (cos @y, —sin ¢7c2) Oz, =cos @% —sin @, Oz, =cos @, +sin ¢ cos G5,
Vo2, = (cos @y, —sin ¢)?2).Z =(cos ¢y, —sin ¢)?2).Z = —sin @%,.z, = sin sin &
»wUz, =y, 0z, =%,

V2, = ¥,.2, =0

8. On donne les vecteurs V, = ax ,+bz, et V, =ax, ; calculer la projection de W =V, OV, sur¥,.

= (cjxlﬂcj 3) ifl + (?21 Dam)jﬁ (Permutation produit mixte)
= (%,0ax, ) .ax ,+ (% 0b7, ) .ax,
=0+ab(% 0Z).% ,=ab(-5) .5 ,

- Méthode 1 avec le produit scalaire de vecteurs d’une base orthonormée

ab(~-y,).% ;= —aby,.(cos p%, +sin Py, )
= —abjzz.(cos @x, +sin ¢)72) =—absin ¢

- Méthode 2 avec la figure plane 2 et la définition du produit scalaire
ab(“ﬁ) 3= _ab(yz)js

X
= —abcos( —¢j =—absin ¢

SIS
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FICHE 2 - FERMETURE GEOMETRIQUE : METHODES

Exemple : Maxpid

19 \ f e ‘.
A R 7 2
- AT 5
1
B
X
A C -
~
< <
) J -
a ¥ (e} a § Xg

1*" exemple :

On donne (a, b, 4, 6), on cherche y (inconnue principale). On veut donc €liminer des équations la

variable x (inconnue secondaire).
L'opération projection de (2) sur 7, élimine x.

(2). 3, == byg-y+xx 0 —Ax; -y —axy- ¥ =0

| 0=hcosO@—Asin(iy—0)}+asin (@) ] que I'on résout en . données a. b, A, 6.

bcnsﬁ:—asmﬂ) S e hcosf+asing +0

sin [_u:—ﬁ]=( A

Régle pratique :

Lorsque l'inconnue a éliminer (ici x) est un scalaire en facteur dun vecteur unitaire (ici %) la
projection de l'équation vectorielle sur un vecteur unitaire orthogonal (ici ¥, ) élimine cette inconnue.

2™ exemple :

On donne (a, b. 4. &), on cherche x. on veut elinuner .

(2) == Ax,=bhye+xx, —ax; (2
(2'y == A=+t a2 by, xy — 2abxy: vy —2ax xy X,

or yo-x =—sing ; 557 =0 ; xy-x;=cos@

d'on : I_rj' +2 x{ .'F’_f"i?‘_ _{J— a cqs_{I_f_‘;l +.|":r_2 + a —ff =ID

Régle pratique :

Pour éliminer la direction angulaire inconnue définissant la position d'un vecteur unitaire (ici ¢). on
isole ce vecteur unitaire d'un coté de I'équation vectorielle, que I'on éleve au carre.

Remarque : il s'agif bien de s'intéresser a la variable que 'on souhaire supprimer. Celle-¢i détermine
alors la méthode a employer.
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