Modélisation Multi-physique acausale du MOTEUR à courant continu avec MATLAB SIMULINK-SIMSCAPE

TD1

Définitions générales

La modélisation multi physique et multi échelle dans la recherche et l'industrie

- La modélisation multi physique permet de prendre en compte les couplages entre phénomènes physiques différents (couplage mécanique – chimique, couplage mécanique des structures neutronique – thermo hydraulique dans la physique des réacteurs...)
- La modélisation multi échelle permet, grâce au calcul numérique, de déduire des propriétés macroscopiques à partir de modèles microscopiques

La modélisation multi physique en SII

- Modélisation d'un système pluri technologique en intégrant tous les domaines de la physique nécessaires au fonctionnement de ce système

La modélisation dite « acausale »

- La modélisation acausale est une forme récente de modélisation des systèmes qui permet de décrire les équations modélisant les phénomènes physiques sans anticiper l'orientation des liens entre les composants ou phénomènes. Il n'y a notamment pas de choix particulier de variables échangées entre composants (force ou vitesse par exemple), ni de notion d'entrée / sortie. Cette particularité conduit à une très grande flexibilité des modèles de composants développés, une réutilisation des modèles sur de nouveaux projets et la possibilité de construire des bibliothèques de composants. Ces avantages en font un outil prisé en entreprise. D'un point de vue pédagogique, le modèle acausal est très proche de l'architecture matérielle et permet de simuler le comportement d'un système complexe sans avoir à écrire la moindre équation.

1

Modélisation acausale

Le circuit RL alimenté par une source de tension U₀ est représenté par le schéma électrique suivant :

R=20 Ω et L=0,01mH

La représentation acausale ne privilégie aucune grandeur physique particulière et est basée sur la notion de composants. Ainsi, dans Matlab-Simscape, le diagramme correspondant au circuit RLC est le suivant :

Fonction du composant Représentation Bibliothèque Simscape/Fondation Source de tension continue DC Voltage Source Library/Electrical/Electrical Sources ------Simscape/Fondation Résistance Library/Electrical/Electrical Element Resistor m Simscape/Fondation Inductance Library/Electrical/Electrical Element Inductor Simscape/Fondation Référence électrique Electrical Reference Library/Electrical/Electrical Element AL. Simscape/Fondation Capteur de courant Library/Electrical/Electrical Sensors Current Senso Simscape/Fondation Voltage Sensor Capteur de tension Library/Electrical/Electrical Sensors D PS S Conversion d'un signal Simscape/Utilities physique en signal Simulink č, X Moniteur Simulink/Sinks Scope f(x) = 0 Solveur Simscape/Utilities Solver Configuration

On trouve les composants dans la bibliothèque des composants :

NB : commandes utiles afin de relier et placer les composants

Commandes utiles		
Fonctions	Actions	Raccourcis clavier
Rotation d'un composant sens horaire	Clic droit sur le composant, Rotate&Flip/Clockwise	Ctrl+R
Rotation d'un composant sens antihoraire	Clic droit sur le composant, Rotate&Flip/CounterClockwise	Shift+Ctrl+R
Inversion gauche/droite d'un composant	Clic droit sur le composant, Rotate&Flip/Flip Bloc/Left Right	Ctrl+I
Inversion haut/bas d'un composant	Clic droit sur le composant, Rotate&Flip/Flip Bloc/Up Down	
Copier un composant	Clic droit sur le composant à dupliquer, puis glisser/déposer en gardant le bouton droit appuyé	
Supprimer un composant	Clic droit sur le composant puis sélectionnner Delete	Suppr

THEME6 : Modélisation multi physique

TD1

Lycée Jean Perrin PSI*

Avant de paramétrer les blocs et de lancer la simulation, analysons la nature des différentes connexions entre les blocs du modèle. Le modèle présenté utilise différents types de ports et de connexions. Les ports peuvent être classés en trois catégories.

- Les ports de type « Physical Conserving Port » (PCP) qui transmettent la puissance entre deux composants d'un même domaine. Les connexions relatives à ces ports ne sont pas orientées et sont analogues aux liens qui relient les composants dans la réalité et se situent dans le domaine de la modélisation acausale. Dans le cas de notre modèle qui ne fait intervenir que le domaine électrique, ces connexions sont des fils électriques. Ils sont donc traversés par un courant et il est possible de mesurer une différence de potentiel entre deux points appartenant à ces connexions. La mesure du courant dans le circuit se fait par un capteur de courant placé en série dans le circuit. La mesure de la tension aux bornes de la bobine se fait par un capteur de tension placé en parallèle, aux bornes de la bobine.
- Des ports de type « Physical Signal Port » (PSP) qui transmettent des signaux physiques prélevés à l'aide de capteurs sur le modèle. Ces signaux sont orientés et sont l'image de la grandeur physique prélevée. Ces ports et ces connexions fonctionnent selon le principe de causalité.
- Des ports de type « Simulink Signal » (SS), qui transmettent des signaux numériques orientés exploitables par les blocs de la bibliothèque Simulink. Ces ports et ces connexions fonctionnent selon le principe de causalité. Le type de connexion peut être identifié par le format du port qui lui est associé. La construction des modèles nécessite une parfaite compréhension de la nature des informations et des signaux qui parcourt les différentes connexions ainsi que l'identification de la nature des ports des blocs qui interviennent dans la modélisation. Des ports de natures différentes ne peuvent pas être reliés. De plus deux ports de types Physical Conserving Port (transmetteur de puissance) ne peuvent être reliés que s'ils appartiennent au même domaine physique. Afin d'apporter plus de lisibilité aux modèles réalisés avec Simscape, chaque domaine physique est représenté avec une couleur différente.

THEME6 : Modélisation multi physique

Il n'est pas nécessaire d'écrire les équations du système car chaque bloc les contient. Il suffit simplement de configurer les paramètres de chaque bloc (R, L et U) en double-cliquant dessus. Un lien entre deux blocs contient dans ce cas à la fois le potentiel et l'intensité. Cette modélisation permet d'exprimer des relations entre composants sans connaître la grandeur que l'on cherche à calculer. Pour extraire cette grandeur, on utilisera des blocs de type capteur et ainsi entrer dans le monde causal.

TD1

Modélisation acausale (rappel)

Dans une représentation purement causale, les liens représentent une grandeur physique particulière et le diagramme est alors une traduction des équations plutôt qu'une représentation des composants. Lors de la modélisation, la grandeur de sortie est donc exprimée dans une relation directe contenant des blocs « intégrale » pour chacune des équations contenant une dérivée. Cela donne :

$$U(p) = (R + Lp)I(p)$$

$$U(t) = U_R(t) + U_L(t) = Ri(t) + L\frac{di(t)}{dt}$$

$$I(p) = \frac{1}{(R + Lp)}U(p)$$

On peut alors modéliser les équations par un diagramme de ce type :

Celui-ci est plus compliqué que dans le diagramme de la modélisation acausale (et surtout moins explicite). On a aussi perdu la signification physique. L'utilisation de la transformée de Laplace permet, entre autre, de simplifier la représentation causale par le diagramme suivant en supprimant la boucle avec R par exemple.

On obtiendra fort heureusement une réponse simulée identique dans les deux cas de simulation.

Lycée Jean Perrin PSI*

LANCEMENT DU LOGICIEL

Lancer Matlab, cliquez sur SIMULINK et ouvrir un nouveau modèle SIMULINK.

PRESENTATION DU PROBLEME

La plupart des systèmes développés par les élèves en projet nécessite le pilotage d'un moteur à courant continu. Il est indispensable de modéliser ces moteurs à courant continu pour être capable de réaliser par exemple un asservissement ou bien pour évaluer les performances du système.

Le moteur à courant continu est modélisé, dans son régime linéaire, par les quatre équations :

N°	Équation	En régime transitoire et phase motrice :
1	électrique :	$u(t) = e(t) + Ri(t) + L\frac{di(t)}{dt}$
2	mécanique :	$C_m - C_R - f\omega(t) = J_{eq} \frac{d\omega(t)}{dt} C_R \ge 0$
3	mécatronique :	$e = K_e \omega(t)$ $C_m = K_i i(t)$

L'équation de la mécanique issue de la dynamique est obtenue en isolant l'arbre moteur et en lui appliquant le théorème de l'énergie cinétique sachant qu'il est soumis au couple moteur Cm, à un couple résistant $C_R = C_C + C_s$.

- \checkmark C_c : Couple de charge
- \checkmark C_s : Couple de frottement sec

L'objectif du TP est de montrer comment modéliser le moteur sous le module SIMULINK-SIMSCAPE en utilisant un modèle acausal et une modélisation multi-physique

MODÉLISATION MÉCANIQUE

La structure cinématique du moteur soumis à des actions mécaniques peut directement être traduite dans SIMULINK-SIMSCAPE

La bibliothèque de SIMULINK de bibliothèques sous MATLAB vous propose plusieurs sous dossier et pour ce TP on va utiliser les blocs définis dans le dossier SIMSCAPE qui est lui-même décomposé en plusieurs sous dossiers. La copie d'écran ci-dessus vous donne la structure.

Pour commencer, on considère le rotor en liaison pivot soumis à un couple Cm et un couple C_R . Un solide en rotation autour d'un axe fixe est caractérisé mécaniquement par son moment d'inertie autour de l'axe de rotation

⇒ <u>Modèle sans frottement visqueux</u>

Mettre en place les blocs suivants comme indiqué sur le schéma ci dessous :

Ce schéma mécanique se traduit par

On utilisera les composants suivants :

Désignation	Représentation	Localisation (bibliothèque)	Paramétrage Double click
Solide en rotation autour d'un axe fixe	Inertia1	Simscape/Foundation Library/Mechanical	J = 0,00002 kg.m ²
2 Couples extérieurs Couple moteur Cm	deal Torque Source	Simscape/Foundation Library/Mechanical	Cm C _R

Ne pas lancer de simulation à ce stade car il manque des éléments.

@Question n°1 : A quelle équation correspond ce schéma ?

<u>Réponse : l'équation mécanique N°2 sans prise en compte des frottements visqueux.</u>

Sur un tel schéma on ne spécifie pas les évolutions des grandeurs. De la même manière, il faut indiquer dans SIMSCAPE comment évoluent les couples Cm et C_R.

Désignation	Représentation	Localisation (bibliothèque)	Paramétrage Double click
Deux valeurs Contantes	PS Constant	Simscape/Foundationlibrary/Phys icalsignals/sources	Cm = 0.11Nm C _R = -0.01Nm

De plus, on veut visualiser les grandeurs qui transitent sur chaque lien entre les composants. Pour cela il faut choisir l'outil de mesure en fonction du type de signal qui parcourt ce lien (électrique, mécanique ou autre) et lui associer un oscilloscope.

Désignation	Représentation	Localisation (bibliothèque)	Paramétrage <i>Double click</i>
Capteur de position	Ideal Rotational Motion Sensor	Simscape/Foundation Library/Mechanical	
Oscilloscope	Scope1	Simulink/Commonly Used Blocks	
PS-Simulink Converter (changement de format de la constante vers la source)	PS-Simulink Converter	Simscape/Utilities	

RQ: Dans un modèle mécanique 1D de type rotation, ces grandeurs sont l'accélération, la vitesse et la position angulaires ainsi que le couple. Le Capteur nous restituera l'angle avec le port A et la vitesse avec le port W.

Quelques composants supplémentaires sont nécessaires pour compléter le tout :

Désignation	Représentation	Localisation (bibliothèque)	Paramétrage Double click
Référence mécanique (références communes ici : bâti)	Mechanical Rotational Reference3	Simscape/Foundation Library/Mechanical	
Solver(la connection du circuit avec un solver est indispensable dans Matlab , sous Scilab c'est implicite)	f(x) = 0 Solver Configuration	Simscape/Utilities	

Mechanica

RQ : le bâti doit toujours être spécifié dans une étude mécanique (référentiel galiléen d'étude) :

Ici les couples Cr et Cm sont exercés par le bâti !!!

Vous obtenez le schéma ci-contre. Lancer la simulation.

^T<u>Question n°</u>2 : Expliquer la forme et les caractéristiques de la courbe obtenue par simulation pour la vitesse. Retrouver par le calcul de résultat.

 $\frac{d\omega}{dt} = \frac{1}{J} (C_m - C_R) = \frac{0.11 - 0.1}{0.00001} = 5000 rad / s^2$

⇒ <u>Modèle avec frottement visqueux</u>

Cependant ce modèle ne prend pas en compte la limitation de l'apport en énergie, ni les frottements...

Le couple de frottement visqueux existe **entre le bâti et le rotor**. Pour le modéliser, il suffit d'ajouter sur le lien représentant l'axe :

Désignation	Représentation	Localisation (bibliothèque)	Paramétrage Double click
Viscosité	Rotational Damper	Simscape/Foundation Library/Mechanical	f = 0.0001Nm.s

On attend le modèle suivant :

Lancer la simulation.

Question n°3 :

- Expliquer la forme et les caractéristiques de la courbe de vitesse obtenue par simulation. Retrouver par le calcul le résultat.

- Donner le modèle causal équivalent, créer le schéma bloc équivalent et faire une simulation avec Matlab dans la même fenêtre ; Comparer les résultats entre modélisation causale et acausale

MODELISATION ELECTRIQUE ET COUPLAGE

Le moteur à courant continu est modélisé, dans son régime linéaire, par les quatre équations :

N°	Équation	En régime transitoire et phase motrice :
1	électrique :	$u(t) = e(t) + Ri(t) + L\frac{di(t)}{dt}$
2	mécanique :	$C_m - C_R - f\omega(t) = J_{eq} \frac{d\omega(t)}{dt}$ $C_R \ge 0$
3	mécatronique :	$e = K_e \omega(t)$ $C_m = K_i i(t)$

Dans la représentation multi physique, le schéma électrique est à nouveau comparable au circuit électrique. Il ne faut pas oublier de mettre une masse dans le circuit. De la même manière le bâti doit toujours être spécifié dans une étude mécanique (référentiel galiléen d'étude).

⇒ Modèle de connaissances du système

• <u>**Question n°4**</u>: Trouver la fonction de transfert $H(p) = \frac{\Omega(p)}{U(p)}$ et déterminer

le temps de réponse à 5% avec l'abaque du temps réduit $T_{r5\%}$ $\omega0$ ou avec Pysylic.

`<u>∧ Réponse :</u>

$$H(p) = \frac{\Omega(p)}{U(p)} = \frac{Ke}{(Ke^2 + Rf) + (Lf + RJ)p + LJp^2} = \frac{50}{1 + 0.1005p + 0.0001p^2}$$

K = 50 ω0=100rad/s z=5.025 \rightarrow T_{r5%} ω0=30 d'où T_{r5%}=0.3s

La valeur finale est de $\frac{Ke}{Ke^2 + Rf}U_0 = \frac{0.01}{0.01^2 + 1^* 0.0001}12 = 600 rad / s$

Afin de réaliser la modélisation, on utilisera les composants suivants et on prendra Cr=0 N.m

⇒ <u>Modélisation multi physique</u>

Désignation	Représentation	Localisation (bibliothèque)	Paramétrage Double click
Source de tension	Controlled Voltage	Simscape/Electrical	12 Volts
Résistance	Resistor	Simscape/Electrical	R = 1 Ohm
Inductance	Inductor	Simscape/Electrical	L = 0,001 H
мсс	Rotational Electromechanical Converter	Simscape/Electrical	Ke = 0,01 Nm.A ⁻¹
Référence électrique (masse)	Electrical Reference	Simscape/Electrical	

On partira du dernier schéma et on remplacera la partie concernant Cm par la modélisation électromécanique du moteur :

NB : le solver peut être indifféremment relié à la partie électrique ou la partie mécanique, car ces deux dernières sont reliées par le composant convertisseur électromécanique :

Lancer la simulation.

Cuestion n°5 : Expliquer la forme et les caractéristiques de la courbe de vitesse obtenue par simulation.

A Réponse : Réponse à un second ordre produit de 2 premiers ordre

La valeur finale est de 600rad/s

Le temps de réponse : T_{r5%}=0.3s

PS : Vous pouvez refaire une simulation avec un temps de simulation plus court pour voir l'évolution de la vitesse dans le régime transitoire.

On veut développer davantage l'instrumentation et mesurer l'intensité parcourant le circuit et le couple moteur :

Désignation	Représentation	Localisation (bibliothèque)	Paramétrage Double click
Ampèremètre	Current Sensor	Simscape/Electrical	Le port I mène à l'oscillo. Le capteur est monté en série
Capteur de couple	Ideal Torque Sensor	Simscape/Mechanical	Le port T mène à l'oscillo. Le capteur est monté en série

N'oubliez pas l'oscilloscope permettant de visualiser les courbes. Lancer une simulation et optimiser le temps de simulation.

On doit trouver les résultats suivants :

Cuestion n°6 : Que peut-on dire des courbes obtenues? A quelle équation correspond ce résultat? Retrouver par calcul les valeurs de Cm et I en régime permanent

▷ <u>*Réponse*</u>: On constate effectivement que le couple moteur est proportionnel à l'intensité. On peut également étudier l'influence de l'inductance sur la vitesse angulaire avec la valeur de Ke = 0.01Nm/A

En régime établi : U=E+RI= Ke Ω +RI

I=(12-0.01*600)/1=6A

Cm= Ke*I = 0.06Nm

⇒ Prise en compte d'un couple résistant

On veut simuler le fonctionnement du moteur avec un couple résistant Cr **de -0.05Nm** en échelon avec un temps de décalage de **0.5s.**

On procèdera pour ce faire de la manière suivante :

sera remplacé par

On veillera à paramétrer correctement l'échelon.

Lancer la simulation et optimiser le temps de simulation.

Désignation	Représentation	Localisation (bibliothèque)	Paramétrage Double click
Simulink Converter-PS- (changement de format de la constante vers la source)	S PS Simulink-PS	Simscape/Utilities	

^{cer}<u>Question n°7</u> : Expliquer la forme et les caractéristiques des courbes obtenues par simulation. Retrouver par le calcul ω, I et Cm en régime permanent.

æ<u>Réponse :</u>

Avant la perturbation même comportement que précédemment

Après la perturbation, baise de vitesse et hausse de l'intensité jusqu'à un nouveau régime permanant :

Cm-Cr-f Ω =0 Soit Ke*I-Cr-f Ω =0 U=E+RI= RI + Ke Ω

D'où Ω=(KeU-RCr)/(Rf+Ke²) → Ω=(0.01*12-0.05)/(0.01²*2) → Ω=350rad/s

Et I=(U- KeΩ)/R=(12-0.01*350) → I=8.5A

Cm=0.085Nm

MODELISATION DU PILOTAGE PAR HACHEUR

⇒ Principe du hacheur

Le hacheur est le préactionneur le plus courant pour l'asservissement des moteurs à courant continu. Il permet, en moyenne, de doser le niveau de tension aux bornes du moteur. Associé à une mesure de courant et une régulation, il peut aussi doser le niveau d'intensité dans le moteur.

Le pilotage d'un hacheur se fait par l'intermédiaire d'un PWM (Pulse Width Modulation, MLI comme Modulation de Largeur d'Impulsions en français).

Le principe est simple : un signal créneau de 0 (État logique bas) à **1 V** (État logique haut) dont le rapport cyclique est variable est généré. Comme la fréquence de ce signal est élevée (environ **500 Hz** fréquemment), si le système connecté à la sortie PWM est « lent », il ne voit à ses bornes que la tension moyenne du signal PWM (il fonctionne ainsi comme un filtre).

Le hacheur fonctionne selon le même principe que le signal PWM : il hache la tension issue d'une l'alimentation externe grâce à des transistors (modélisé ici par des interrupteurs commandés) ; la tension moyenne dépend alors du rapport cyclique. C'est le signal PWM qui est utilisé pour commander ces transistors.

⇒ <u>Signal PWM</u>

- ✓ Créer une nouvelle fenêtre
- ✓ Placer dans cette fenêtre les blocs indiqués pour réaliser le schéma-bloc ci-contre

On utilisera les composants suivants :

Désignation	Représentation	Localisation (bibliothèque)	Paramétrage
Voltmètre	Voltage Sensor	Simscape/Electrical	
PWM	ref FWM -ref REF Controlled PWM Voltage1	Simscape/Electronics	f = 500 Hz Input value Vmin for 0% duty cycle:0V Input value Vmax for 100% duty cycle:8V Output voltage amplitude:1V
DC voltage Source	C Voltage Source	Simscape/Electrical	U=4V

On effectuera la modélisation suivante :

Lancer une simulation avec un temps d'étude permettant de visualiser 10 périodes et observer le signal.

@Question n°8 : Quel est le rapport cyclique de ce signal?

 \approx <u>*Réponse*</u>: on a un rapport cyclique de 0.5. Le signal créneaux a une période de T=0.002s et Ton=0.001s donc α =Ton/T=0.5

Cuestion n°9 : Modifier la valeur de U pour obtenir un rapport cyclique de 1/8.

⇒ Le hacheur : modélisation 1 (bloc Matlab)

Le hacheur le plus simple est le hacheur série 1 quadrant.

Reprendre la modélisation du moteur:

- Modifier le couple résistant Cr=0.001N.m
- Copier et coller la structure du signal PWM avec un rapport cyclique de 1/2
- Rajouter les éléments suivant correspondant au hacheur :

Désignation	Représentation	Localisation (bibliothèque)	Paramétrage Double click
Pont en H	REF REV BRK H-Bridge	Electrique/Composant basique/Passif	Modifier selon les images suivantes

THEME6 : Modélisation multi physique

TD1

Présentation du composant :

Ce composant modélise un pont en H. Il possède 6 ports de type **PCP** du domaine électrique.

- PWM : signal d'entrée PWM en provenance du bloc « Controlled PWM Voltage Source »
- REF : référence de la tension du signal PWM (souvent relié à la masse)
- REV : commande de l'inversion du sens de rotation
- BRK : commande de l'arrêt du moteur
- + et : ces deux ports sont reliés aux bornes du moteur

Le pont en H reçoit, la tension PWM sur le port d'entrée **PWM** et alimente le moteur directement avec cette tension. Si la tension de l'entrée **REV** dépasse un seuil fixé dans les paramètres du composant, le sens de rotation s'inverse. Si la tension de l'entrée **BRK** dépasse un seuil fixé dans les paramètres du composant, l'alimentation du moteur est coupée.

Réglage du pont en H

H-Bridge This block represents an H-bridg PWM or Averaged mode. In PWM threshold voltage. In Averaged n defines the ratio of the on-time t applies an average voltage to the parameter value must be the sar If the REV port voltage is greater reversed. If the BRK port voltage short circuited via one bridge arr freewheeling diode.	e motor drive. The block can be driven by th 4 mode, the motor is powered if the PWM po node, the PWM port voltage divided by the P to the PWM period. Using this ratio and assu le load that achieves the correct average load me for the Controlled PWM Voltage and H-Br r than the Reverse threshold voltage, then th is greater than the Braking threshold voltag m in series with the parallel combination of a	he Controlled PWM Volta ort voltage is above the I WM signal amplitude pa mptions about the load, d current. The Simulatior ridge blocks. he output voltage polarit ge, then the output term a second bridge arm and	ge block in Enable rameter the block n mode y is inals are a
Voltages at ports PWM, REV and	BRK are defined relative to the REF port.		
Settings			
Simulation Mode & Load Assur	nptions Input Thresholds Bridge Para	imeters	
Simulation mode:	PWM		•
Freewheeling mode:	Via one semiconductor switch and on	e freewheeling diode	•
H-Bridge This block represents an H-bridge PVM or Averaged mode. In PWM threshold voltage. In Averaged m defines the ratio of the on-time to applies an average voltage to the arrameter value must be the san	e motor drive. The block can be driven by th mode, the motor is powered if the PWM pc ode, the PWM port voltage divided by the P o the PWM period. Using this ratio and assu load that achieves the correct average load he for the Controlled PWM Voltage and H-Br	ne Controlled PWM Volta ort voltage is above the l WM signal amplitude pa mptions about the load, d current. The Simulatior idge blocks.	ge block in Enable rrameter the block n mode
If the REV port voltage is greater reversed. If the RRK port voltage short circuited via one bridge arm freewheeling diode. Voltages at ports PWM, REV and Settings Simulation Mode & Load Assum Enable threshold voltage: PWM signal amplitude:	than the Reverse threshold voltage, then the is greater than the Braking threshold voltage in series with the parallel combination of a BRK are defined relative to the REF port.	he output voltage polarit je, then the output term second bridge arm and imeters	y is inals are a
If the REV port voltage is greater reversed. If the BRK port voltage short circuited via one bridge arm recewheeling diode. Voltages at ports PWM, REV and Settings Simulation Mode & Load Assum Enable threshold voltage: PWM signal amplitude: Beverse threshold voltage:	than the Reverse threshold voltage, then this greater than the Braking threshold voltage in series with the parallel combination of a BRK are defined relative to the REF port.	he output voltage polarit ge, then the output term second bridge arm and meters	y Is inals are a
If the REV port voltage is greater reversed. If the BRK port voltage short circuited via one bridge arm freewheeling diode. Voltages at ports PWM, REV and Settings Simulation Mode & Load Assum Enable threshold voltage: PWM signal amplitude: Reverse threshold voltage: Braking threshold voltage:	than the Reverse threshold voltage, then this greater than the Braking threshold voltage in series with the parallel combination of a BRK are defined relative to the REF port. apptions Input Thresholds Bridge Para 0.01 1 2.5 2.5	he output voltage polarit ge, then the output term second bridge arm and meters V V V V	y Is inals are a
If the REV port voltage is greater reversed. If the BRK port voltage short circuited via one bridge arm freewheeling diode. Voltages at ports PWM, REV and Settings Simulation Mode & Load Assum Enable threshold voltage: PWM signal amplitude: Reverse threshold voltage: Braking threshold voltage: H-Bridge This block represents an H-bridge PWM or Averaged mode. In PWM	than the Reverse threshold voltage, then the serverse threshold voltage, then the server than the Braking threshold voltage in in series with the parallel combination of a BRK are defined relative to the REF port. BRK are defined relative to the REF port. Bridge Para O.01 1 2.5 2.5 2.5 e motor drive. The block can be driven by the I mode, the motor is powered if the PWM no	e Controlled PWM Voltage try voltage is above the F	y is inals are a v v v v v v v v v v v v v v v v v v
If the REV port voltage is greater reversed. If the BRK port voltage short circuited via one bridge arm freewheeling diode. Voltages at ports PWM, REV and Settings Simulation Mode & Load Assum Enable threshold voltage: PWM signal amplitude: Reverse threshold voltage: Braking threshold voltage: Braking threshold voltage: H-Bridge This block represents an H-bridge PWM or Averaged mode. In PWM threshold voltage. In Averaged m defines the ratio of the on-time to applies an average voltage to the aprameter value must be the san If the REV port voltage is greater reversed. If the BRK port voltage short circuited via one bridge arm freewheeling diode. Voltages at ports PWM, REV and Settings	than the Reverse threshold voltage, then the serverse threshold voltage in in series with the parallel combination of a BRK are defined relative to the REF port. ptions Input Thresholds Bridge Para 0.01 1 2.5 2.5 2.5 emotor drive. The block can be driven by the motor is powered if the PWM point voltage divided by the PV point the the the PWM point voltage divided by the PV point the the Controlled PWM Voltage and H-Brit than the Reverse threshold voltage in series with the parallel combination of a BRK are defined relative to the REF port. BRK are defined relative to the REF port.	he output voltage polarit ge, then the output term second bridge arm and meters V V V V v v v v v v v v v v v v v	y is inals are a y y y y y b nals are a
If the REV port voltage is greater reversed. If the BRK port voltage short circuited via one bridge arm reverheeling diode. /voltages at ports PWM, REV and Settings Simulation Mode & Load Assum Enable threshold voltage: PWM signal amplitude: Reverse threshold voltage: Braking threshold voltage: Braking threshold voltage: H-Bridge This block represents an H-bridge PWM or Averaged mode. In PWM threshold voltage. In Averaged m defines the ratio of the on-time t applies an average voltage to the applies an average voltage to the sprameter value must be the san If the REV port voltage is greater reversed. If the BRK port voltage short circuited via one bridge arm freewheeling diode. Voltages at ports PWM, REV and Settings Simulation Mode & Load Assum	than the Reverse threshold voltage, then the signater than the Braking threshold voltage in in series with the parallel combination of a BRK are defined relative to the REF port. ptions Input Thresholds Bridge Para 0.01 1 2.5 2.5 2.5 and a series with the block can be driven by the rest of the PWM point voltage divided by the P of othe PWM port voltage divided by the P of othe PWM port. Using this ratio and assure load that achieves the correct average load her for the Controlled PWM Voltage and H-Bri than the Reverse threshold voltage in series with the parallel combination of a BRK are defined relative to the REF port.	he output voltage polarit ge, then the output term second bridge arm and meters V V V v v v v v v v v v v v v v	y is inals are a ye block in inable ye block in inable rameter the block mode y is nals are a
f the REV port voltage is greater eversed. If the BRK port voltage short circuited via one bridge arm reewheeling diode. /oltages at ports PWM, REV and Settings Simulation Mode & Load Assum Enable threshold voltage: PWM signal amplitude: Reverse threshold voltage: Braking threshold voltage: Braking threshold voltage: H-Bridge This block represents an H-bridge PWM or Averaged mode. In PWM threshold voltage. In PWM threshold voltage to the parameter value must be the san If the REV port voltage is greater reversed. If the RRK port voltage arm freewheeling diode. Voltages at ports PWM, REV and Settings Simulation Mode & Load Assum Output voltage amplitude:	than the Reverse threshold voltage, then the server than the Braking threshold voltage in in series with the parallel combination of a BRK are defined relative to the REF port. ptions Input Thresholds Bridge Para 0.01 2.5 2.5 2.5 e motor drive. The block can be driven by the I mode, the motor is powered if the PWM point of the PWM voltage and H-Brit is greater than the Braking threshold voltage in series with the parallel combination of a BRK are defined relative to the REF port. BRK are defined relative to the REF port. Input Threebolds Bridge Para 12	he output voltage polariti ge, then the output term is second bridge arm and imeters V V V V V v v v e Controlled PWM Voltage is above the E WM signal amplitude pa mptions about the load, I current. The Simulation idge blocks. he output voltage polarity je, then the output term is second bridge arm and meters V	y is inals are a a ye block in inable y is nals are a
If the REV port voltage is greater reversed. If the BRK port voltage short circuited via one bridge arm reewheeling diode. Voltages at ports PWM, REV and Settings Simulation Mode & Load Assum Enable threshold voltage: PWM signal amplitude: Reverse threshold voltage: Braking threshold voltage: Braking threshold voltage: Braking threshold voltage: H-Bridge This block represents an H-bridge PWM or Averaged mode. In PWM threshold voltage. In Averaged m defines the ratio of the on-time th papiles an average voltage to the parameter value must be the sam If the REV port voltage is greater reversed. If the BRK port voltage short circuited via one bridge arm freewheeling diode. Voltages at ports PWM, REV and Settings Simulation Mode & Load Assum Output voltage amplitude: Total bridge on resistance:	than the Reverse threshold voltage, then the server than the Braking threshold voltage in in series with the parallel combination of a BRK are defined relative to the REF port. aptions Input Thresholds Bridge Para 0.01 1 1 2.5 2.5 1 2.5 2.5 1 2.6 2.5 1 2.7 2.5 1 2.5 2.5 1 2.5 2.5 1 2.5 2.5 1 2.5 2.5 1 2.5 2.5 1 2.6 1 1 2.5 2.5 1 2.5 2.5 1 2.5 2.5 1 2.5 1 1 2.5 1 1 2.5 1 1 2.5 1 1 2.5 2.5 1 2.5 2.5 1 2.6 1 1 2.7 1 1 2.5 2.5 1 1 3.6 1	he output voltage polarit ge, then the output term is second bridge arm and imeters V V V V v v v v v v v v v v v v v	y is inals are a ye block in inable rameter the block mode y is nals are a

Mode de simulation sans approximation

C'est ici que sont entrés les différents seuils qui caractérisent le fonctionnement du pont en H.

Enable thresholds voltage : niveau de tension que doit atteindre l'amplitude du signal PWM pour déclencher l'alimentation du moteur (uniquement valable si le Simulation mode est sur PWM)

PWM signal amplitude : amplitude du signal PWM qui doit correspondre avec l'amplitude du signal PWM généré par le bloc « Controlled PWM voltage source »

Reverse thresholds voltage : niveau de tension relevée sur le port REV qui provoque l'inversion du sens de rotation du moteur

Braking thresholds voltage : niveau de tension relevée sur le port BRK qui provoque l'arrêt du moteur. On aboutit à ce schéma :

Lancer une simulation sur une durée de 0,5s.

Vérifier que les courbes obtenues sont les suivantes :

Intensité (A)

Couple (en N.m)

Vitesse de rotation (rad/s)

Cuestion n°10 : Quelle est la valeur finale de la vitesse de rotation? Retrouver ce résultat par le calcul

 \mathbf{x} <u>*Réponse*</u>: En régime établi on a Ω=Ke^{*}αU /(Rf+Ke²)=0.01^{*}0.5^{*}12/(2^{*}0.01²)=300rad/s

[©] <u>Question n°11</u> : Commenter la courbe de l'intensité

▷ <u>*Réponse*</u> On obtient par simulation ce qu'on observe à l'aide d'un oscilloscope et d'une pince ampérométrique, une intensité hachée dont la valeur moyenne correspond à l'intensité obtenue pour une tension continue de 128/256*12V.

Valeur en régime établi moyenne I = 3A.

Question n°12 : Pourquoi la courbe de la vitesse est-elle aussi lisse?

A Réponse : La vitesse est par contre naturellement « filtrée » grâce à l'inertie mécanique

On veut lisser la courbe de l'intensité afin de la visualiser sur l'oscilloscope, pour cela insérer un bloc parmi les propositions suivantes, le paramétrer correctement et relancer la simulation.

Cuestion n°13 : Justifier le paramétrage du filtre. Comparer la dernière modélisation avec hacheur et avec grandeur intensité filtrée et une modélisation sans hacheur pour laquelle vous choisirez une valeur de la tension d'alimentation cohérente.

ARÉponse :

Résultat de la simulation pour une tension de 6V réalisé avec la modélisation sans le hacheur.

Résultat avec un filtre 2nd ordre sur le signal de sortie de l'ampèremètre

⇒ Le hacheur : modélisation 2 (sans utiliser les blocs prédéfinis)

Le hacheur le plus simple est le hacheur série 1 quadrant. Il est constitué d'un transistor commandé (**modélisé par un interrupteur commandé**) et d'une diode. Si l'on souhaite rentrer davantage dans la modélisation du hacheur, on peut remplacer le bloc hacheur prédéfini par une modélisation plus détaillée.

Reprendre le schéma-bloc du moteur :

- Cr=0.001N.m
- Rajouter les éléments suivant correspondant au hacheur (cf. liste ci dessous) :
- Conserver le PWM précédent avec le même paramétrage.
- Mettre en place dans le détail le circuit électrique du hacheur (diode , interrupteur commandé...)

Désignation	Représentation	Localisation (bibliothèque)	Paramétrage Double click
Interrupteur commandé : ideal semiconductor switch	Ideal Semiconductor Switch	A chercher manuellement	On state resistance :0.001 Ω Off state conductance 1 ^e -6 Ω^{-1} Threshold voltage Vth : 0.5V
Diode	Diode	A chercher manuellement	Forward voltage :0.1V On resistance : 0.01 Ω Off conductance : 1 ^e -8 Ω^{-1}

On obtient le schéma suivant :

<u>Question n°14</u> : vérifier que les deux modélisations de la commande du moteur incluant le hacheur (modèle avec bloc prédéfini et ce dernier modèle) sont cohérentes. En analysant la cohérence et la compatibilité des types de signaux, justifier l'utilisation du voltmètre afin de commander en tension le thyristor du circuit de découpage.