DS 3 : Position de centre d’inertie et matrice d’inertie

Exercice 1: Rotor de pompe. Le rotor de certaines pompes a eau peut étre modélisé

par un cylindre central homogéne (C), de rayon a, de longueur 6a, de masse volumique p

et de masse m, et quatre pales (P;), (P»), (Ps) et (P,), d'épaisseur négligeable, de largeur

2a et de longueur 4a, de masse surfacique o et de masse m.
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1. Expliquer pourquoi le centre d’inertie du rotor complet correspond aussi au centre
d’inertie du cylindre.
2. Donner la matrice d'inertie du cylindre centrale en G. Sans redémontrer le résultat.
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3. Donner la matrice d'inertie de la pale (P;) en son centre de gravité Gj;, notée
[IG] (Pl)]. Déplacer la en G.
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Le théoréme de huygens donne :
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4. Donner la matrice d'inertie de la pale (P.) en son centre de gravité G, notée

[IGZ(PZ)]. Déplacer la en G.
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Le théoréme de huygens donne :
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5. Par analogie, donner [I,(P)]et [I,(P)].
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6. En déduire la matrice d'inertie en G, notée [1,(S)], de I'ensemble (S) constitué des 4

pales et du cylindre.

On fait la somme des 5 matrices en G :
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