
SPÉCIALES PSI – LYCÉE BUFFON

EXERCICES ANALYSE 5 – SUITES ET SÉRIES DE FONCTIONS

SUITES DE FONCTIONS

ÉTUDE PRATIQUE DE CONVERGENCE

1. Étudier les convergences (CVS, CVU(-L)) des suites de fonctions
(

fn

)

n∈N définies sur I par :

a) fn (x) = 1
n sin nx ; I =R

b) fn (x) =
n e−x +x2

n+ x
; I = [0,1]

c) fn (x) = sin x
n

; I =R

d) fn (x) =
sin(nx)

n
p

x
; I =]0,+∞[

e) fn (x) =
nx

1+n2x2
; I =R

f ) fn (x) = e−nx sin(nx) ; I = [0,+∞[

g) fn (x) =
nx2 e−nx

(1−e−x )2
; I =]0,+∞[

h) fn (x) =
{

x2 sin 1
nx

si x 6= 0

0 si x = 0
; I =R

2. Idem, en étudiant les variations.

a) fn (x) = n2xn(1− x) ; I = [0,1]

b) fn (x) = nx2 e−nx ; I = [0,+∞[

c) fn (x) = sin x ·cosn x ; I =
[

0, π2
]

d) fn (x) =
2n x

1+n2n x2
; I =R

e) fn (x) =
x

n(1+ xn )
; I = [0,+∞[

3. Étudier la convergence simple puis uniforme des suites de fonctions
(

fn

)

n∈N sur I selon les
valeurs de α ∈R.

a) fn (x) = nαx(1− x)n ; I = [0,1] b) fn (x) = x(1+nα e−nx ) ; I = [0,+∞[

CONVERGENCE : EXERCICES THÉORIQUES

4. Soient ( fn ) et (gn) deux suites de fonctions convergeant uniformément vers des fonctions
f et g supposées bornées. Montrer que ( fn gn) converge uniformément vers f g .

5. Soient (a,b) ∈ R
2 avec a < b et ( fn )nÊ0 une suite d’éléments de C

0([a,b],R) qui converge
uniformément. Que dire des suites (max[a,b] fn )nÊ0 et (min[a,b] fn )nÊ0 ?

6. Soient fn : [0,1] →R décroissantes et continues telles que la suite ( fn ) converge simplement
vers la fonction nulle. Montrer que la convergence est uniforme.

7. Soit f une fonction continue de I =R+ dans R. On pose fn(x) = f
(

x
n

)

.
Montrer que

(

fn

)

n∈N converge simplement et déterminer sa limite simple f .
Y a-t-il convergence uniforme locale sur I ?
À quelle condition sur f y a-t-il convergence uniforme sur I ?

8. Soit (Pn)n∈N une suite de polynômes à coefficients réels. On suppose que (Pn)n∈N converge
uniformément sur R tout entier. Montrer que sa limite f est un polynôme.

9. Soit ( fn ) une suite de fonctions dérivables de R dans R. On suppose que ( fn) converge sim-
plement vers une fonction f : R→R et que ∀n ∈N, ∀x ∈R, | f ′

n (x)| É 1.
Montrer que f est continue.

10. Soit f0 : x ∈R 7→ sin(x) et, pour n ∈N, fn+1 : x ∈R 7→ sin( fn(x)).
Étudier la convergence simple et uniforme de ( fn).

11. Soit f ∈C
0(R+,R+) telle que, pour tout x > 0, 0 < f (x) < x.

On définit la suite ( fn)nÊ1 par f1 = f et, pour n ∈N
∗, fn+1 : x ∈R+ 7→ f ◦ fn (x).

Montrer la convergence simple de ( fn). A-t-on convergence uniforme sur [0, a] ? Sur [a,+∞[ ?

INTERVERSIONS

12. Calculer les limites d’intégrales :

a) lim
n→+∞

∫1

0
ln

(

ex + x
n

)

dx b) lim
n→+∞

∫1

0

n ex

n+ x
dx

13. Soient α ∈R, n ∈N
∗ et fn : x ∈R 7→ x(1+nαe−nx ).

a) Étudier la convergence de la suite ( fn ). Préciser la limite.

b) Pour quelles valeurs de α a-t-on convergence uniforme sur R+ ?

c) Calculer lim
n→+∞

∫1

0
x(1+

p
n e−nx )dx.

14. On considère la suite de fonctions
(

fn

)

n∈N définies sur
[

0, π2
]

par fn (x) = n sin x ·cosn x.

a) Déterminer la limite simple de la suite
(

fn

)

n∈N.

b) Calculer In =
∫ π

2

0
fn (x) dx. La suite

(

fn

)

n∈N converge-t-elle uniformément sur
[

0, π2
]

?

c) Montrer qu’elle converge uniformément sur tout segment de
]

0, π2
]

.

15. Soit
(

fn

)

n∈N définies sur [0,1] par fn (x) = 2n x
1+n2n x2

Déterminer la limite simple f de
(

fn

)

n∈N. Converge-t-elle uniformément sur [0,1] ?

Calculer In =
∫1

0
fn (x) dx et I =

∫1

0
f (x) dx. A-t-on lim

n→+∞
In = I ?

16. Soit
(

fn

)

n∈N définies sur [0,+∞[ par fn (x) =
{

1
n

si x ∈ [n,2n]

0 sinon

Déterminer la limite simple f de
(

fn

)

n∈N. Converge-t-elle uniformément sur [0,+∞[ ?

Calculer In =
∫+∞

0
fn (x) dx et I =

∫+∞

0
f (x) dx. A-t-on lim

n→+∞
In = I ?

17. Soit
(

fn

)

n∈N définies sur I =]0,1] par fn (x) = xn ln x.
Déterminer la limite simple f de

(

fn

)

n∈N. Converge-t-elle uniformément sur I ?
(

f ′
n

)

n∈N converge-elle simplement, uniformément sur I ? A-t-on lim
n→+∞

f ′
n (x) = f ′(x) ?

18. Soit
(

fn

)

n∈N définies sur R par fn (x) = 1
n

sin(nx).
Déterminer la limite simple f de

(

fn

)

n∈N. Converge-t-elle uniformément sur R ?
Les fonctions fn et f sont-elles ce classe C

1 sur R ? La suite ( f ′
n) converge-t-elle ?
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ANALYSE 5 – SUITES ET SÉRIES DE FONCTIONS SPÉCIALES PSI – LYCÉE BUFFON

SÉRIES DE FONCTIONS

ÉTUDE PRATIQUE DE CONVERGENCE

19. Étudier les convergences (CVS, CVN(-L), CVU(-L)) des séries de fonctions
∑

un définies
sur I par :

a) un (x) =
1

x2 +n2
; I =R

b) un (x) =
e−nx

1+n2
; I =R+

c) un (x) = x2 e−n|x| ; I =R

puis vn(x) =
sin(x2)

ch(nx)

d) un (x) =
x

(1+n2x)2
; I = [0,+∞[

e) un (x) = sin x ·cosn x ; I =
[

0, π2
]

f ) un (x) =
x e−nx

p
ln n

; I =R+

g) un (x) =
xn (1− x)

ln(n)
; I = [0,1]

h) un (x) =
nx

(n2 + x)2
; I =R+

i) un (x) =
(−1)n

n+ x +1
; I =R+

j) un (x) =
(−1)n

p
n+ x2

; I =R

k) un (x) =
(−1)n

nx
; I =]0,+∞[

20. Étudier les convergences (CVS, CVN(-L)) des séries de fonctions
∑

un définies par :

a) un (x) = x
p

n
b) un (x) =

xn

1+ x2n
c) un (x) =

an x

1+bn x2

CONVERGENCE : EXERCICES THÉORIQUES

21. Soit (an) une suite réelle positive et décroissante.
Soit la série de fonctions

∑

un où un (x) = an xn (1− x).

a) Montrer que
∑

un CVS sur [0,1].

b) Montrer que
∑

un CVN sur [0,1] ⇐⇒
∑

nÊ0

an

n converge.

c) Montrer que
∑

un CVU sur [0,1] ⇐⇒ la suite (an) converge vers 0.

22. a) Montrer que si une série de fonctions
∑

fn converge uniformément, alors fn est bor-
née à partir d’un certain rang, et converge uniformément vers 0.

b) Montrer que
∑

(−1)n x2+n
n2 converge simplement sur R mais pas uniformément.

23. Soient f : [0,1] →R continue et fn : [0,1] →R définie par fn (x) = xn f (x).

a) Former une condition nécessaire et suffisante sur f pour que la suite ( fn) converge uni-
formément sur [0,1].

b) Montrer que la série
∑

fn converge uniformément sur [0,1] ⇐⇒ f (1) = 0 et f dérivable
en 1 avec f ′(1) = 0.

24. Soit ( fn ) une suite de fonctions de [a,b] dans R définie par f0 ∈C
0([a,b],R) et :

∀n ∈N,∀x ∈ [a,b], fn+1(x) =
∫x

a
fn (t)dt .

a) Montrer qu’il existe M ∈R tel que ∀n ∈N,∀x ∈ [a,b], | fn (x)| É M (x−a)n

n! .

b) En déduire que la série de fonctions de terme général fn converge et préciser le type de

convergence. On note S =
+∞
∑

n=1
fn .

c) Montrer que S est de classe C
1 et établir une équation différentielle vérifiée par S.

En déduire une expression de S sans symbole
∑

.

SOMMES D’INTÉGRALES

25. Montrer que
∫1

0

+∞
∑

n=1

1

n2 + x2
dx =

+∞
∑

n=1

1

n
arctan

1

n
.

26. Soit un définie par un (x) = (−1)n+1x2n+2 ln x pour x ∈]0,1] et un (0) = 0.

a) Calculer
+∞
∑

n=0
un (x).

b) Montrer que
∑

nÊ0
un converge uniformément sur [0,1].

c) En déduire que
∫1

0

ln x

1+ x2
dx =

+∞
∑

n=0

(−1)n+1

(2n+1)2
.

CONTINUITÉ, LIMITES, DÉRIVABILITÉ DE LA SOMME

27. On pose S(x) =
+∞
∑

n=1

1
1+n2x2 .

a) Montrer que S est définie sur R∗
+ et qu’elle y est ce classe C

1.

b) Déterminer lim
x→+∞

S(x).

c) Donner un équivalent simple de S(x) au voisinage de +∞. (On admet que
+∞
∑

n=1

1
n2 = π2

6 )

28. Montrer que f : x 7→
+∞
∑

n=0

e−nx

1+n2 est de classe C
∞ sur R∗

+. Étudier sa dérivabilité en 0.

29. On pose pour x ∈]1,+∞[, f (x) =
+∞
∑

n=1

(−1)n

ln(nx) .

Montrer que f est continue sur ]1,+∞[ et étudier ses limites aux bornes de son ensemble de
définition.

30. On pose S(x) =
+∞
∑

n=1

( 1
n − 1

n+x

)

pour x ∈]−1,+∞[.

a) Montrer que S est définie et continue sur ]−1,+∞[.

b) Étudier la monotonie de S.

c) Calculer S(x +1)−S(x).

d) Déterminer un équivalent de S(x) en −1.

e) Établir que ∀n ∈N
∗, S(n) =

n
∑

k=1

1
k

.

f ) En déduire un équivalent de S(x) en +∞.
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31. Soit f : x 7→
+∞
∑

n=1

(−1)n

x+n .

a) Déterminer le domaine de définition de f .

b) Montrer que f est de classe C
1.

c) Déterminer la limite de f quand x tend vers +∞, puis trouver un équivalent de f en
+∞.

32. Pour n ∈N avec n Ê 2, soit un : x 7→ xe−nx

lnn .

a) Déterminer le domaine de définition D de la série de fonctions de terme général un .

Pour x ∈D, on pose S(x) =
+∞
∑

n=2
un (x).

b) Montrer qu’il n’y a pas convergence normale de la série de fonctions sur D.

c) Si n Ê 2, soit Rn : x ∈D 7→
+∞
∑

k=n+1
uk (x). Montrer que ∀x ∈D, |Rn(x)| É 1

lnn .

d) La fonction S est-elle continue sur D ?

33. Pour n Ê 1 et x 6= 0, on pose un (x) = (−1)n e−(n+1)x

n
.

a) Étudier la convergence simple, uniforme, normale de
∑

un .

b) On pose S(x) =
+∞
∑

n=1
un(x) et F(x) = ex S(x). Montrer que F est dérivable sur R∗

+ et calculer

F′(x).

c) Déterminer lim
x→+∞

F(x). En déduire F(x), puis S(x) pour x > 0, puis S(0).

d) On note U la primitive de S s’annulant en 0. Déterminer U.

e) Montrer que S est intégrable sur R+.

34. Soit S(x) =
+∞
∑

n=1

e−nx

n

a) Déterminer l’ensemble de définition de S et étudier la convergence normale de la série.

b) Montrer que S est de classe C
1 sur son ensemble de définition et exprimer sa dérivée à

l’aide de fonctions usuelles.

c) Calculer lim
x→+∞

S(x) et exprimer S à l’aide de fonctions usuelles.

35. Calculer, après avoir étudié leur convergence simple et normale, la somme des séries

a)
∑

nÊ1
nxn b)

∑

nÊ0
nx e−nx2

LA FONCTION ζ DE RIEMANN

36. On pose pour x > 1, ζ(x) =
+∞
∑

n=1

1
nx .

a) Montrer que cette série de fonctions converge normalement localement sur I =]1,+∞[
mais pas uniformément sur I tout entier.

b) Montrer que ζ est de classe C
1 sur ]1,+∞[. Est-elle de classe C

∞ ?

c) Déterminer la limite de ζ en +∞.

d) En comparant la série avec une intégrale, montrer que ζ(x) ∼
x→1

1

x −1
.

CONCOURS

37. CCINP

Pour n ∈N
∗, on pose Gn : t ∈ [0,1] 7→ (1− t

n )ne t ∈R.

a) Montrer que : ∀n ∈N
∗, ∀ t ∈ [0,1], |G′

n(t)| É e t

n .

b) En déduire que : ∀n ∈N
∗, ∀t ∈ [0,1], |(1− t

n
)ne t −1| É te t

n
.

c) On définit, pour n ∈ N
∗ et x ∈ [0,1], In(x) =

∫x

0
(1− t

n
)ne t dt . Montrer que la suite de

fonctions (In) converge simplement sur [0,1].

d) Converge-t-elle uniformément sur [0,1] ?

38. CCINP

Pour n ∈N
∗, soit fn : x 7→ nxe−x2 ln(n). Étudier la convergence simple et uniforme de ( fn )n∈N∗ .

39. IMT

Soit, pour n ∈N, fn : R+ →R telle que fn (0) = 1 et, pour x > 0, fn(x) = (ln x)2n−2
(ln x)2n+2

.

a) Montrer que la suite de fonctions ( fn) converge simplement sur ]0,+∞[.

b) La suite ( fn ) converge-t-elle uniformément sur ]0,+∞[ ? Sur [1,2] ?

40. IMT

Soient h ∈C
0([0, π2 ],R) et, pour tout n ∈N, fn : x ∈ [0, π2 ] 7→h(x)(sin x)n .

Étudier la convergence simple et uniforme de ( fn)n∈N.

41. IMT

Soit, pour n ∈ N
∗, fn : x ∈ [0,1] 7→ 2n2x2−nx+1

2n2x+1
sin2(π

x
) si x ∈ ] 1

n
,1], et fn (x) = 0 si x ∈ [0, 1

n
].

Étudier la convergence simple et uniforme de ( fn).

42. Mines-Ponts

Étudier la convergence simple et uniforme de f : x 7→
+∞
∑

n=1
(−1)n n

x2+n2 .

43. Mines-Ponts

Soit f : x 7→
+∞
∑

n=1

xn

(1−xn )(1−xn+1)
. Préciser le domaine de définition de f . Donner une relation

entre f (x) et f ( 1
x

) ; exprimer f à l’aide de fonctions usuelles.

44. CCINP

Soit a ∈R et S(x) =
+∞
∑

n=0

an

n+x
.

a) Déterminer suivant les valeurs de a le domaine de définition de S.

b) Soit a tel que |a| < 1.

⊳ 3 ⊲



ANALYSE 5 – SUITES ET SÉRIES DE FONCTIONS SPÉCIALES PSI – LYCÉE BUFFON

(i) Montrer que S est continue sur R∗
+.

(ii) Déterminer une relation entre S(x +1) et S(x).

(iii) Déterminer un équivalent de S en 0+.

(iv) Déterminer la limite de S en +∞.

45. CCINP

Soit S : x 7→
+∞
∑

n=1

ln(1+nx2)
n2 .

a) Montrer que S est définie et continue sur R.

b) L’application S est-elle dérivable sur R ?

46. CCINP

Soit f (x) =
+∞
∑

n=0
e−x

p
n .

a) Déterminer le domaine de définition de f , puis la continuité de f sur ce domaine.

b) Montrer que f admet une limite en +∞ et déterminer cette limite.

c) Déterminer un équivalent de f (x) quand x tend vers 0.

47. CCINP

Soient a ∈ ]−1,1[ et f : x 7→
+∞
∑

n=0
sin(an x).

a) Montrer que f est de classe C
∞ sur R.

b) Montrer que, pour tout k ∈N
∗, | f (k)(x)| É 1

1−|a| .

c) Montrer que f est développable en série entière sur R.

48. CCINP

Soit, pour n ∈N
∗ et z ∈C, un (z)=

enz

n2
.

a) Si n ∈N
∗ et z ∈C, calculer |un (z)|. Montrer que la série de terme général |un (z)| converge

si et seulement si Re(z) É 0.

Si x ∈R−, on pose f (x) =
+∞
∑

n=1
un (x).

b) Montrer que f est définie et continue sur R−. Déterminer la limite de f en −∞.

c) Montrer que f est de classe C
∞ sur R∗

−.

d) Calculer f ′′. En déduire que ∀x ∈R−, f (x) = f (0)+
∫0

x
ln(1−e t )dt . La fonction f est-elle

dérivable en zéro ?

49. CCINP

Soient a > 0, I = [−a, a] et ϕ ∈ C
0(I,R). On suppose qu’il existe C > 0 tel que, pour tout

x ∈ I, |ϕ(x)| É C|x|. On s’intéresse alors à l’ensemble E des fonctions f ∈ C
0(I,R) telles que

f (0) = 0 et f (x)− f ( x
2 ) =ϕ(x) pour tout x ∈ I.

a) Montrer que l’application Φ : x 7→
+∞
∑

n=0
ϕ( x

2n ) est définie et continue sur I, puis que Φ ∈E.

b) Que dire de la différence de deux éléments de E ? En déduire E.

c) On suppose ϕ de classe C
1. Montrer que Φ est dérivable.

50. IMT

On pose : ∀n ∈N
∗, ∀x ∈ [0,1], un (x) = ln(1+ x

n
)− x

n
et S =

+∞
∑

n=1
un .

a) Montrer que S est de classe C
1 sur [0,1].

b) Calculer S′(1).

51. IMT

On s’intéresse à S(x) =
+∞
∑

n=1
(−1)n e−x

p
n

n
.

a) Donner le domaine de définition de S.

b) Montrer que S est dérivable sur son domaine de définition.

c) Montrer que S est monotone sur son domaine de définition.

d) Que dire de S au voisinage de +∞ ?

52. Centrale

Soit f : x 7→
+∞
∑

n=2

1
nx lnn

.

a) Déterminer le domaine de définition de f . Étudier la continuité de f .

b) Trouver les limites de f aux bornes de son intervalle de définition puis des équivalents.

53. Centrale

Soit D =R\Z. Pour tout x ∈D, on pose f (x) = 1
x2 +

+∞
∑

n=1

1
(n−x)2 +

+∞
∑

n=1

1
(n+x)2 .

a) Montrer que f est correctement définie sur D, continue et 1-périodique.

b) Montrer que la fonction g : x 7→ f (x)− π2

sin2(πx)
est prolongeable par continuité sur R.

c) Calculer la somme de la série de terme général 1
n2 .

54. Centrale

Soient f : R→R et, pour n ∈N, un : x 7→ (−1)n f (x)p
1+n2 f (x)2

.

a) Justifier l’existence de S(x) =
+∞
∑

n=0
un (x). La convergence est-elle uniforme ?

b) Montrer que si f est continue, S l’est aussi. Réciproque ?

55. Centrale

a) Déterminer les h ∈C
0(R,R) telles que ∀(x, y) ∈R

2, h(x + y) = h(x)+h(y).

b) Soit f ∈ C
0(R,R) telle que : ∃M > 0, ∀(x, y) ∈ R

2, | f (x + y)− f (x)− f (y)| É M. On pose
gn : x 7→ f (2n x)/2n .
Étudier la convergence de la série de terme général gn+1 − gn .
En déduire que (gn) converge uniformément sur R vers une application linéaire h.
Que peut-on en déduire pour f ?
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56. Centrale

On considère l’équation fonctionnelle (E) f
(

x
2

)

+ f
(

x+1
2

)

= f (x) d’inconnue f : [0,1] →R.

a) Montrer que les solutions de (E) de classe C
2 sont affines. Les déterminer.

On admet que le résultat est encore vrai pour les fonctions de classe C
1.

b) On pose, pour tout n ∈N
∗, un : x 7→ sin(2nπx)

2n .
Montrer que la série de fonctions de terme général un converge uniformément sur [0,1]
vers une fonction S continue.
La série de fonctions de terme général u′

n converge-t-elle uniformément ? Que peut-on
en déduire ?

c) Montrer que S est solution de (E). Que peut-on en déduire ?

57. Mines-Ponts

On note, pour tout n Ê 1, un : x 7→ (−1)n ln
(

1+ x2−1
n(2+x2)

)

.

Déterminer le domaine de définition, de continuité et les limites aux bornes de
+∞
∑

n=1
un .

58. Mines-Ponts

Soit f : x 7→
∑

nÊ1

xn

1−xn .

a) Déterminer le domaine de définition de f .

b) Étudier la continuité et le caractère C
1 de f .

59. Mines-Ponts

Soit f : x 7→
+∞
∑

n=1

arctan(nx)
n2 .

a) Montrer que f est définie et continue sur R.

b) Montrer que f est de classe C 1 sur R∗
+.

c) Déterminer un équivalent de f ′(x) lorsque x → 0+.

60. Mines-Ponts

Soit, pour n ∈N et x ∈ [0,1], fn(x) = 3n(x2n − x2n+1
).

a) Étudier la convergence de ( fn) sur [0,1].

b) Comparer lim
n→+∞

∫1

0
fn(x)dx et

∫1

0
( lim

n→+∞
fn (x))dx. Que peut-on en déduire ?

61. Mines-Ponts

a) On considère la fonction f définie par f (x) =
+∞
∑

n=0

2n x2n−1

1+x2n .

b) Donner le domaine de définition de f .

c) Soient x ∈ ]−1,1[ et N ∈N. Simplifier
N
∏

n=0
(1+ x2n

).

d) Expliciter f .

62. Mines-Ponts

Soient f : x 7→
+∞
∑

n=1

1
nx et g : x 7→

+∞
∑

n=1

(−1)n−1

nx .

a) Déterminer les ensembles de définitions D1 et D2 de f et g .

b) Étudier les limites de f aux bornes de D1.

c) Étudier la continuité et la dérivabilité de g .

d) Établir une relation entre f et g . En déduire un équivalent de f (x) quand x tend vers 1.

63. Mines-Ponts

Soient f0 : t ∈R+ 7→ 0 et, pour n ∈N, fn+1 : t ∈R+ 7→
√

t + fn (t).

a) Soit t ∈R+. Déterminer la limite ℓ(t) de ( fn(t))nÊ0.

b) Étudier la convergence uniforme de ( fn) sur R+.

c) Si n ∈N et t ∈ R
∗
+, montrer que | fn+1(t)− ℓ(t)| É | fn (t )−ℓ(t )|

2 fn+1(t ) . Que peut-on en déduire sur

( fn) ?

64. Mines-Ponts

Soient E l’espace vectoriel des fonctions continues de [0,1] vers R et ( f1, . . . , fn ) ∈En .

a) Montrer que ( f1, . . . , fn ) est liée si et seulement si, pour tout (x1, . . . , xn ) ∈ [0,1]n ,
det( fi (x j ))1Éi , jÉn = 0.

b) Soient F un sous-espace vectoriel de E de dimension finie et ( fn)nÊ0 une suite d’élé-
ments de F qui converge simplement vers une fonction f . Montrer que la convergence
est uniforme sur [0,1].

⊳ 5 ⊲


