Chapitre 5 - Variables aléatoires discrètes réelles : espérance et variance

Dans ce chapitre, les commentaires en italique ne font pas partie intégrante du cours mais aident à sa compréhension, en particulier en faisant le lien entre une approche intuitive des probabilités et le formalisme de la théorie des probabilités.

I – Espérance

Dans cette section, les variables aléatoires seront supposées à valeurs réelles ou complexes.

1) Définition

Définition I.1.1. Soit (Ω, \mathcal{A}, P) un espace probabilisé.

Soit *X* une variable aléatoire discrète **réelle ou complexe** définie sur (Ω, \mathscr{A}) .

• On dit que X est d'espérance finie si la famille $(xP(X=x))_{x\in X(\Omega)}$ est finie ou sommable. Dans ce cas, on appelle espérance de X et on note E(X) la somme de cette famille.

On dit aussi que *X* admet un moment d'ordre 1.

- Si $X(\Omega)$ est fini, X est toujours d'espérance finie (probabilité de première année) et $E(X) = \sum_{x \in X(\Omega)} x P(X = x)$.
- Si $X(\Omega)$ est dénombrable et s'écrit $X(\Omega) = \{x_n, n \in \mathbb{N}\}$, alors X est d'espérance finie si la série $\sum x_n P(X = x_n)$ est **absolument** convergente et dans ce cas $E(X) = \sum_{n=0}^{+\infty} x_n P(X = x_n)$.

Si X est à valeurs réelles <u>positives</u>, X est d'espérance finie si $\sum_{n=0}^{+\infty} x_n P(X=x_n) < +\infty$. On peut alors noter $E(X) < +\infty$.

• Si X est d'espérance finie et E(X) = 0, on dit que X est une variable aléatoire centrée.

(1) L'espérance de X peut être interprétée comme la moyenne des valeurs de X si on répète un grand nombre Remarque. de fois la même expérience aléatoire.

- (2) Si X est constante égale à $b \in \mathbb{C}$, alors E(X) = b.
- (3) La définition ci-dessus se généralise au cas d'une variable aléatoire à valeurs dans $\mathbb{R}_+ \cup \{+\infty\}$.

Si $P(X = +\infty) > 0$, on convient que X n'est pas d'espérance finie.

Si
$$P(X = +\infty) = 0$$
, on convient que $xP(X = x) = 0$ si $x = +\infty$.

On a rencontré une telle variable aléatoire dans un jeu de Pile ou Face étudié dans le chapitre précédent. La convention ci-dessus consiste à ne pas considérer un événement négligeable dans un calcul d'espérance.

Proposition I.1.2. *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé.*

Soit X une variable aléatoire discrète définie sur (Ω, \mathcal{A}) *telle que* $X(\Omega) \subset \mathbb{N} \cup \{+\infty\}$.

On rappelle que, par convention : pour tout $n \in \mathbb{N}$, $n \le +\infty$.

X est d'espérance finie si et seulement si la série $\sum_{n\geq 1} P(X\geq n)$ est convergente.

Dans ce cas : $E(X) = \sum_{n=1}^{+\infty} P(X \ge n)$. En cas de divergence, cette égalité reste vraie puisque $E(X) = \sum_{n=1}^{+\infty} P(X \ge n) = +\infty$.

Remarque.

Dans la démonstration précédente, le point-clé est la relation $P(X = n) = P(X \ge n) - P(X \ge n + 1)$ (on peut aussi écrire $P(X = n) = P(X \le n) - P(X \le n - 1)$). En utilisant cette relation, on peut parfois obtenir la loi de X à partir des probabilités $P(X \ge n)$ (ou $P(X \le n)$). On utilise en particulier cette astuce pour obtenir la loi d'un maximum ou d'un minimum. C'est le cas de l'exercice suivant.

Exercice I.1.3. Soient X et Y deux variables aléatoires indépendantes suivant respectivement des lois géométriques de paramètre $p \in]0;1[$ et $q \in]0;1[$. On note $Z = \min\{X,Y\}$. Déterminer la loi de Z.

2) Espérances des lois usuelles

On ne rappelle pas ici les résultats de première année sur les espérances des lois uniformes, de Bernoulli et binomiale.

Proposition I.2.4. Soit $p \in]0;1[$. Soit X une variable aléatoire qui suit la loi géométrique de paramètre p. Alors X est d'espérance finie et $E(X) = \frac{1}{p}$.

Exemple I.2.5. On reprend l'exercice du jeu de Pile ou Face où X est le rang de la première apparition d'un Pile. On a déjà dit que $X \sim \mathcal{G}\left(\frac{1}{2}\right)$ donc E(X) = 2. On peut dire qu'en moyenne, le premier Pile arrive au deuxième lancer.

Proposition I.2.6. Soit $\lambda \in]0; +\infty[$. Soit X une variable aléatoire qui suit la loi de Poisson de paramètre λ . Alors X est d'espérance finie et $E(X) = \lambda$.

3) Propriétés de l'espérance

Théorème I.7 (Théorème de transfert - ADMIS). *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé*.

Soit X une variable aléatoire discrète définie sur (Ω, \mathcal{A}) . Soit f une fonction définie sur $X(\Omega)$ et à valeurs réelles ou complexes. La variable aléatoire f(X) est d'espérance finie si et seulement si la famille $(f(x)P(X=x))_{x\in X(\Omega)}$ est finie ou sommable. On a alors :

$$E(f(X)) = \sum_{x \in X(\Omega)} f(x)P(X = x).$$

Cette somme est une somme finie ou la somme d'une famille sommable selon la nature de $X(\Omega)$.

Remarque. Il est donc inutile de connaître la loi de f(X) pour en calculer l'espérance, la loi de X suffit! Ce résultat s'applique au cas d'un couple (X,Y) de variables aléatoires discrètes et à une fonction f de ces variables à valeurs réelles :

$$E(f(X,Y)) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} f(x,y) P(X=x,Y=y).$$

Pour écrire cette égalité, on devra d'abord s'assurer que la famille est finie ou sommable.

Exercice I.3.8. Soit $p \in]0;1[$. On considère une variable aléatoire X qui suit la loi géométrique $\mathcal{G}(p)$. Montrer l'existence et calculer $E(X^2)$.

Corollaire I.3.9. *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé.*

Soit X une variable aléatoire discrète définie sur (Ω, \mathcal{A}) . Soit f une fonction définie sur $X(\Omega)$ et à valeurs réelles ou complexes. X est d'espérance finie si et seulement si |X| est d'espérance finie.

Proposition I.3.10 (ADMIS). *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé*.

Soient X et Y deux variables aléatoires discrètes définies sur (Ω, \mathcal{A}) .

On suppose que Y est à valeurs réelles **positives** et que X est à valeurs réelles ou complexes.

Si Y est d'espérance finie et $|X| \le Y$, alors X est d'espérance finie.

Proposition I.3.11 (Linéarité de l'espérance - ADMIS). $Soit(\Omega, \mathcal{A}, P)$ un espace probabilisé.

Soient X et Y deux variables aléatoires discrètes réelles ou complexes définies sur (Ω, \mathcal{A}) . Soit $\lambda \in \mathbb{C}$.

Si X et Y sont d'espérance finie, alors $X + \lambda Y$ est d'espérance finie et $E(X + \lambda Y) = E(X) + \lambda E(Y)$.

Exemple I.3.12. Soit $p \in]0;1[$.

Soient X_1 , ..., X_n des variables aléatoires indépendantes suivant toutes la même loi de Bernoulli $\mathcal{B}(p)$.

On note $X = \sum_{i=1}^{n} X_i$ et on rappelle que X suit la loi binomiale $\mathcal{B}(n, p)$. Retrouver l'espérance de X à partir de l'espérance des X_i .

Corollaire I.3.13. *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé.*

On note L^1 l'ensemble des variables aléatoires discrètes réelles définies sur (Ω, \mathcal{A}) et d'espérance finie.

 L^1 est un espace vectoriel et $X \mapsto E(X)$ est une forme linéaire sur L^1 .

Proposition I.3.14 (Positivité - Croissance). *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé*.

Soient X et Y deux variables aléatoires discrètes **réelles** définies sur (Ω, \mathcal{A}) .

- (1) Si $X \ge 0$ (c'est-à-dire $X(\Omega) \subset \mathbb{R}_+$) et si X est d'espérance finie, alors $E(X) \ge 0$.
- (2) Si $X \le Y$ et si X et Y sont d'espérance finie, alors $E(X) \le E(Y)$.

Remarque. On peut remarquer l'analogie entre les résultats précédents et les résultats sur les intégrales.

Proposition I.3.15. *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé.*

Soit X une variable aléatoire discrète **réelle et positive** définie sur (Ω, \mathcal{A}) .

Alors: E(X) = 0 si et seulement si $0 \in X(\Omega)$ et P(X = 0) = 1 (on dit que X est presque sûrement nulle).

Exercice I.3.16. Démontrer qu'une variable aléatoire presque sûrement constante a une espérance finie égale à cette constante.

Proposition I.3.17. *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé.*

Soient X et Y deux variables aléatoires discrètes réelles ou complexes définies sur (Ω, \mathcal{A}) .

Si X et Y sont **indépendantes** et d'espérance finie, alors XY est d'espérance finie et E(XY) = E(X)E(Y).

Corollaire I.3.18. *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé. Soit* $n \ge 2$.

Soient $X_1, ..., X_n$ des variables aléatoires discrètes réelles ou complexes définies sur (Ω, \mathcal{A}) .

 $Si\ X_1,...,X_n\ sont\ indépendantes\ et\ d'espérance\ finie,\ alors\ X_1...X_n\ est\ d'espérance\ finie\ et\ E(X_1...X_n)=E(X_1)...E(X_n).$

II - Variance - Écart-type

Dans cette section, les variables aléatoires seront supposées à valeurs réelles.

Proposition II.0.1. Soit (Ω, \mathcal{A}, P) un espace probabilisé. Soit X une variable aléatoire discrète réelle définie sur (Ω, \mathcal{A}) . Si X^2 est d'espérance finie, alors X est d'espérance finie.

4

Définition II.0.2. On note L^2 l'ensemble des variables aléatoires réelles telles que X^2 est d'espérance finie. Le résultat précédent assure que $L^2 \subset L^1$.

Proposition II.0.3 (Inégalité de Cauchy-Schwarz). *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé*.

Soient X et Y deux variables aléatoires discrètes réelles définies sur (Ω, \mathcal{A}) .

Si X et Y sont dans L^2 , alors XY est dans L^1 et

$$(E(XY))^2 \le E(X^2)E(Y^2).$$

Il y a égalité si et seulement s'il existe $\lambda \in \mathbb{R}$ tel que $P(X = \lambda Y) = 1$ ou $P(Y = \lambda X) = 1$ (on peut dire que X et Y sont presque sûrement colinéaires).

Corollaire II.0.4. *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé. L'ensemble* L^2 *est un espace vectoriel.*

Exemple II.0.5. Les variables aléatoires constantes (ou seulement constantes *presque sûrement*) appartiennent à L^2 .

1) Définition

Définition - Théorème II.1.6. Soit (Ω, \mathcal{A}, P) un espace probabilisé.

Soit X une variable aléatoire discrète réelle définie sur (Ω, \mathcal{A}) . On suppose que $X \in L^2$

On dit aussi que *X* admet un moment d'ordre 2.

Alors la variable aléatoire X - E(X) appartient à L^2 et on appelle <u>variance de X</u> le réel positif

$$V(X) = E((X - E(X))^2)$$

On appelle écart-type de X le réel

$$\sigma(X) = \sqrt{V(X)}$$

On a:

$$V(X) = \sum_{x \in X(\Omega)} (x - E(X))^2 P(X = x)$$

Cette somme est une somme finie ou la somme d'une famille sommable selon la nature de $X(\Omega)$.

On dit que X est <u>réduite</u> si $V(X) = \sigma(X) = 1$.

- Remarque. (1) La variance et l'écart-type sont appelés des paramètres de dispersion de la variable aléatoire X.

 Une "petite" valeur de la variance traduit que les valeurs de $(X E(X))^2$ sont "petites" (ou du moins "fréquemment petites"), c'est-à-dire que les valeurs de X sont peu éloignées ("dispersées") de leur moyenne (l'espérance).
 - (2) Si X est une variable aléatoire réelle *presque sûrement* constante, alors V(X) = 0.

2) Propriétés

Proposition II.2.7. *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé.*

Soit X une variable aléatoire discrète réelle définie sur (Ω, \mathcal{A}) . On suppose que $X \in L^2$

(1)
$$V(X) = E(X^2) - (E(X))^2$$

(2) Soient a et b deux réels.

$$V(aX+b) = a^2V(X).$$

En particulier: V(X + b) = V(X) et $V(aX) = a^2V(X)$.

(3) Supposons que $\sigma(X) \neq 0$. La variable aléatoire $Y = \frac{X - E(X)}{\sigma(X)}$ est centrée réduite : E(Y) = 0 et $\sigma(Y) = 1$.

Variances des lois usuelles

On ne rappelle pas ici les résultats de première année sur les variances des lois uniformes, de Bernoulli et binomiale.

Proposition II.3.8. *Soit* $p \in]0;1[$. *Soit* X *une variable aléatoire qui suit la loi géométrique de paramètre* p. Alors $X \in L^2$ et $V(X) = \frac{1-p}{p^2}$.

Proposition II.3.9. *Soit* $\lambda \in]0; +\infty[$. *Soit* X *une variable aléatoire qui suit la loi de Poisson de paramètre* λ . Alors $X \in L^2$ et $V(X) = \lambda$.

Covariance et variance d'une somme de variables aléatoires

Définition - Théorème II.4.10. Soit (Ω, \mathcal{A}, P) un espace probabilisé.

Soient X et Y deux variables aléatoires discrètes réelles définies sur (Ω, \mathcal{A}) . On suppose que $X \in L^2$ et $Y \in L^2$.

Alors la quantité E(XY) - E(X)E(Y) est bien définie et est appelée covariance de X et Y.

On note Cov(X, Y) = E(XY) - E(X)E(Y). En particulier : V(X) = Cov(X, X).

Remarque. Pour calculer E(XY) (et ensuite la covariance de X et Y), il est souvent inutile de déterminer la loi de XY. $\sum_{(i,j)\in X(\Omega)\times Y(\Omega)}ijP(X=i,Y=j).$ On peut utiliser le théorème de transfert : E(XY) =

Proposition II.4.11. *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé.*

Soient X et Y deux variables aléatoires discrètes réelles définies sur (Ω, \mathcal{A}) . On suppose que $X \in L^2$ et $Y \in L^2$.

Si X et Y sont indépendantes alors Cov(X, Y) = 0.

Remarque. Si deux variables aléatoires sont indépendantes, leur covariance est nulle.

En revanche, on peut avoir Cov(X, Y) = 0 (on dit que X et Y sont décorrélées) avec X et Y qui ne sont pas indépendantes.

On peut par exemple considérer la variable aléatoire X à valeurs dans $\{-1,0,1\}$ dont la loi est donnée par

$$P(X = 0) = \frac{1}{5}, \ P(X = -1) = P(X = 1) = \frac{2}{5},$$

ainsi que $Y = X^2$. Ces deux variables aléatoires ont une covariance nulle et ne sont pas indépendantes. Le prouver!

Proposition II.4.12. (1) Soit (Ω, \mathcal{A}, P) un espace probabilisé.

Soient X et Y deux variables aléatoires discrètes réelles définies sur (Ω, \mathcal{A}) .

On suppose que $X \in L^2$ et $Y \in L^2$.

Alors $X + Y \in L^2$ et on a

$$V(X + Y) = V(X) + V(Y) + 2Cov(X, Y).$$

En particulier, si X et Y sont **indépendantes** (ou simplement décorrélées), alors V(X+Y) = V(X) + V(Y).

(2) Soit (Ω, \mathcal{A}, P) un espace probabilisé. Soit $n \ge 2$.

Soient $X_1, ..., X_n$ des variables aléatoires discrètes réelles définies sur (Ω, \mathcal{A}) .

On suppose que pour tout $1 \le i \le n$, on a $X_i \in L^2$.

Alors $X_1 + \cdots + X_n \in L^2$ et on a:

$$V(X_1 + \dots + X_n) = V(X_1) + \dots + V(X_n) + 2 \sum_{1 \le k < \ell \le n} \text{Cov}(X_k, X_\ell).$$

En particulier, si les variables X_k sont deux à deux indépendantes (ou simplement décorrélées), on a

$$V\left(\sum_{k=1}^{n} X_k\right) = \sum_{k=1}^{n} V(X_k).$$

Exemple II.4.13. Soit $n \ge 2$. Soit $p \in]0;1[$.

Soient $X_1, ..., X_n$ des variables aléatoires indépendantes suivant toutes la même loi de Bernoulli $\mathcal{B}(p)$.

On note $X = \sum_{i=1}^{n} X_i$ et on rappelle que X suit la loi binomiale $\mathcal{B}(n, p)$. Retrouver la variance de X à partir de la variance des X_i .

Tableau récapitulatif des lois usuelles

<i>X</i> ~	b	$\mathscr{U}(\llbracket 1; n \rrbracket)$	$\mathscr{B}(p)$	$\mathcal{B}(n,p)$	$\mathscr{G}(p)$	$\mathscr{P}(\lambda)$
paramètre(s)	$b \in \mathbb{C}$	$n \in \mathbb{N}^*$	<i>p</i> ∈ [0;1]	$n \in \mathbb{N}, p \in [0;1]$	<i>p</i> ∈]0;1[$\lambda \in \mathbb{R}_+^*$
$X(\Omega)$	{ <i>b</i> }	$\llbracket 1; n rbracket$	{0,1}	$\llbracket 0;n rbracket$	N*	N
P(X=k)	1	$\frac{1}{n}$	p si k = 1; 1 - p si k = 0	$\binom{n}{k} p^k (1-p)^{n-k}$	$p(1-p)^{k-1}$	$e^{-\lambda} \frac{\lambda^k}{k!}$
E(X)	b	$\frac{n+1}{2}$	р	np	$\frac{1}{p}$	λ
V(X)	0	$\frac{n^2-1}{12}$	p(1-p)	np(1-p)	$\frac{1-p}{p^2}$	λ

7

III - Inégalité de Bienaymé-Tchebychev - Loi faible des grands nombres

Proposition III.0.1 (Inégalité de Markov). $Soit(\Omega, \mathcal{A}, P)$ un espace probabilisé.

Soit X une variable aléatoire discrète réelle définie sur (Ω, \mathcal{A}) . On suppose que $X \in L^1$.

(1) Supposons que X est à valeurs positives. On a alors, pour tout a > 0:

$$P(X \ge a) \le \frac{E(X)}{a}.$$

(2) Dans le cas général, pour tout a > 0:

$$P(|X| \ge a) \le \frac{E(|X|)}{a}.$$

Théorème III.2 (Inégalité de Bienaymé-Tchebychev).

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

Soit X une variable aléatoire discrète réelle définie sur (Ω, \mathcal{A}) . On suppose que $X \in L^2$.

On a, pour tout réel $\varepsilon > 0$:

$$P(|X - E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}.$$

Remarque. Cet énoncé signifie que la probabilité que la variable aléatoire *X* prenne des valeurs éloignées de son espérance est relativement faible, d'autant plus faible que sa variance est petite.

En utilisant l'événement contraire, on en déduit que $P(|X - E(X)| < \varepsilon) \ge 1 - \frac{V(X)}{\varepsilon^2}$.

Par exemple, la probabilité que X soit dans $]E(X) - 2\sigma(X); E(X) + 2\sigma(X)[$ est supérieure à $\frac{3}{4}$.

Exemple III.0.3. On reprend l'exercice du jeu de Pile ou Face où X est le rang de la première apparition d'un Pile. On a déjà dit que $X \sim \mathcal{G}\left(\frac{1}{2}\right)$ donc E(X) = 2 et V(X) = 2. Démontrer qu'avec une probabilité supérieure à $\frac{7}{8}$, le premier Pile apparaîtra strictement avant le sixième lancer. Que vaut exactement $P(X \le 5)$?

Exercice III.0.4. On lance un dé cubique équilibré à 6 faces n fois. On note X le nombre d'apparitions de la valeur 6 lors des n lancers. On appelle fréquence d'apparition du 6 la variable aléatoire $F = \frac{X}{n}$.

- (1) Reconnaître la loi de X? En déduire l'espérance et la variance de F.
- (2) Démontrer que :

$$\lim_{n \to +\infty} P\left(\left|F - \frac{1}{6}\right| \le 0.01\right) = 1.$$

(3) Quelle valeur suffit-il de donner à n pour que F appartienne à $\left[\frac{1}{6} - 0.01; \frac{1}{6} + 0.01\right]$ avec une probabilité supérieure ou égale à 0.95?

Théorème III.5 (Loi faible des grands nombres). *Soit* (Ω, \mathcal{A}, P) *un espace probabilisé*.

Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires réelles discrètes indépendantes identiquement distribuées (suite iid).

On suppose que $X_1 \in L^2$ (donc toutes les variables X_i également) et on note $\mu = E(X_1)$ et $\sigma = \sigma(X_1)$.

Pour tout $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=1}^n X_k$. On a alors, pour tout $\varepsilon > 0$:

$$\lim_{n \to +\infty} P\left(\left|\frac{S_n}{n} - \mu\right| \ge \varepsilon\right) = 0.$$

Plus précisément :

$$\forall \varepsilon > 0, \ P\left(\left|\frac{S_n}{n} - \mu\right| \geq \varepsilon\right) \leq \frac{\sigma^2}{n\varepsilon^2}.$$

Remarque. En utilisant l'événement contraire, on peut aussi écrire

$$\lim_{n\to+\infty} P\left(\left|\frac{S_n}{n}-\mu\right|<\varepsilon\right)=1.$$

On peut interpréter ce résultat dans le cadre de la répétition d'une même expérience aléatoire n fois. Pour un ε fixé (même très petit), si n est choisi suffisamment grand, la moyenne des X_i sera très probablement dans l'intervalle $[\mu - \varepsilon; \mu + \varepsilon]$.