PROGRAMME DE COLLE PSI - SEMAINE DU 17/11/2025 AU 21/11/2025

Probabilités

Programme de la semaine dernière.

Espérance - Variance

1) Espérance

- (1) Définition. Espérance des lois usuelles. Cas particulier d'une variable à valeurs dans N.
- (2) Théorème de transfert. Propriétés : comparaison, linéarité, positivité/croissance, critère de nullité (presque sûre) dans le cas d'une v.a. positive, espérance d'un produit en cas d'indépendance.

2) Variance

- (1) Si X^2 est d'espérance finie, alors X est d'espérance finie. Cauchy-Schwarz. L'ensemble des variables aléatoires discrètes réelles X définies sur (Ω, \mathcal{A}) et telles que $E(X^2) < +\infty$ est un \mathbb{R} -espace vectoriel.
- (2) Définition de la variance et de l'écart-type. Formule $V(X) = E(X^2) E(X)^2$. Variance des lois usuelles.
- (3) Propriétés: $V(aX + b) = a^2V(X)$, covariance, variance d'une somme en cas d'indépendance deux à deux.

3) Inégalité de Bienaymé-Tchebychev

- (1) Inégalité de Markov Inégalité de Bienaymé-Tchebychev.
- (2) Loi faible des grands nombres.

Questions de cours :

- (1) On considère une pièce équilibrée lancée jusqu'à obtenir Pile. On modélise ce jeu en notant $\Omega = \{P, F\}^{\mathbb{N}}$, c'est-à-dire en considérant qu'on lance la pièce indéfiniment. Calculer de deux manières la probabilité que le jeu se termine :
 - (a) En utilisant les événements B_n : "obtenir Pile au moins une fois lors des n premiers lancers".
 - (b) En utilisant les événements X = n où X est le rang d'apparition du premier Pile si celui-ci apparaît et qui vaut $+\infty$ sinon.
- (2) On lance une pièce équilibrée jusqu'à obtenir Pile. Si on obtient Pile au n-ième tirage, on pioche un ticket dans une urne contenant n tickets dont un seul est gagnant.
 - On note X la variable aléatoire qui prend pour valeur le rang d'apparition du premier Pile et qui prend la valeur $+\infty$ si on n'obtient jamais Pile (on ne peut alors pas gagner!). On note G l'événement "piocher le ticket gagnant dans l'urne".
 - (a) Calculer P(X=n) pour tout $n \in \mathbb{N}^*$ et en déduire que $(X=n)_{n \in \mathbb{N}^*}$ est un système quasi-complet d'événements.
 - (b) Montrer que $P(G) = \sum_{n=1}^{+\infty} \frac{1}{n2^n}$. On admet que $P(G) = \ln(2)$.
 - (c) Sachant que le ticket gagnant a été pioché, calculer la probabilité que l'urne n'ait contenu qu'un seul ticket.
- (3) Définition d'un système quasi-complet d'événements. Énoncé et démonstration de la formule des probabilités totales dans le cas d'un tel système.
- (4) Définition (on vérifiera que la définition fait apparaître une distribution de probabilités), espérance et variance de la loi géométrique et/ou de la loi de Poisson (au choix de l'interrogateur).
- (5) Si X et Y sont deux var indépendantes telles que $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$, alors $X + Y \sim \mathcal{P}(\lambda + \mu)$.
- (6) Définition de la variance (sous l'hypothèse $E(X^2) < +\infty$, on justifiera que X est d'espérance finie puis que la variance est bien définie). Démonstration de la formule $V(X) = E(X^2) E(X)^2$.
- (7) Énoncé de l'inégalité de Bienaymé-Tchebychev et de la loi faible des grands nombres.