1) Intégration par parties - Changement de variable

Théorème .1 (Intégration par parties). *Soient* $a \in \mathbb{R} \cup \{-\infty\}$ *et* $b \in \mathbb{R} \cup \{+\infty\}$ *tels que* a < b. *Soient* f *et* g *deux fonctions de classe* \mathscr{C}^1 *sur*] a; b[.

Si $\lim_{t\to a^+} f(t)g(t)$ et $\lim_{t\to b^-} f(t)g(t)$ existent et sont finies,

alors les intégrales généralisées $\int_a^b f(t)g'(t)dt$ et $\int_a^b f'(t)g(t)dt$ sont de même nature.

En cas de convergence, on a l'égalité:

$$\int_a^b f(t)g'(t)dt = \left[f(t)g(t)\right]_a^b - \int_a^b f'(t)g(t)dt,$$

 $où\ on\ a\ not\'e\left[f(t)g(t)\right]_a^b=\lim_{t\to b^-}f(t)g(t)-\lim_{t\to a^+}f(t)g(t).$

Démonstration. Supposons que $\lim_{t \to a^+} f(t)g(t)$ et $\lim_{t \to b^-} f(t)g(t)$ existent et sont finies. Soit $c \in a; b$.

• f est dérivable donc continue sur]a;c]. Soit $x \in]a;c]$. f et g sont de classe \mathscr{C}^1 sur le segment [x;c], utilisons donc le théorème de première année :

$$\int_{x}^{c} f(t)g'(t)dt = \left[f(t)g(t) \right]_{x}^{c} - \int_{x}^{c} f'(t)g(t)dt = f(c)g(c) - f(x)g(x) - \int_{x}^{c} f'(t)g(t)dt.$$

Par opérations (sur les limites), l'intégrale généralisée $\int_{[a;c]} fg'$ est convergente si et seulement si l'intégrale généralisée $\int_{[a;c]} f'g$ et, en cas de convergence :

$$\int_{a}^{c} f(t)g'(t)dt = f(c)g(c) - \lim_{x \to a} f(x)g(x) - \int_{a}^{c} f'(t)g(t)dt.$$

• De manière complètement analogue, l'intégrale généralisée $\int_{[c;b[}fg'$ est convergente si et seulement si l'intégrale généralisée $\int_{[c;b[}f'g$ et, en cas de convergence :

$$\int_{c}^{b} f(t)g'(t)dt = \lim_{x \to b} f(x)g(x) - f(c)g(c) - \int_{c}^{b} f'(t)g(t)dt.$$

• En combinant les résultats des deux points précédents :

l'intégrale généralisée $\int_{]a;b[}fg'$ est convergente si et seulement si l'intégrale généralisée $\int_{]a;b[}f'g$ est convergente et, en cas de convergence :

$$\int_{a}^{b} f(t)g'(t)dt = \int_{a}^{c} f(t)g'(t)dt + \int_{c}^{b} f(t)g'(t)dt$$

$$= f(c)g(c) - \lim_{x \to a} f(x)g(x) - \int_{a}^{c} f'(t)g(t)dt + \lim_{x \to b} f(x)g(x) - f(c)g(c) - \int_{c}^{b} f'(t)g(t)dt$$

$$= \lim_{x \to b} f(x)g(x) - \lim_{x \to a} f(x)g(x) - \int_{a}^{b} f'(t)g(t)dt$$

$$= \left[f(x)g(x) \right]_{a}^{b} - \int_{a}^{b} f'(t)g(t)dt \right].$$

Théorème .2 (Changement de variable - Cas croissant).

Soient $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R} \cup \{+\infty\}$ tels que a < b. Soient $\alpha \in \mathbb{R} \cup \{-\infty\}$ et $\beta \in \mathbb{R} \cup \{+\infty\}$ tels que $\alpha < \beta$.

Soit φ :] α ; β [\longrightarrow]a; b[une fonction de classe \mathscr{C}^1 , bijective et strictement croissante.

Soit f une fonction définie et continue par morceaux sur] a; b[.

Alors les intégrales généralisées $\int_a^b f(t)dt$ et $\int_a^\beta f(\varphi(u))\varphi'(u)du$ sont de même nature.

En cas de convergence : $\int_a^b f(t)dt = \int_a^\beta f(\varphi(u))\varphi'(u)du.$

Démonstration. (1) Commençons par montrer que le résultat de première année peut être utilisé pour la restriction de *f* à un segment de] *a*; *b*[(qui n'est sur ce segment que **continue par morceaux**).

Notons [p;q] un segment inclus dans]a;b[. Il existe alors une subdivision $(y_k)_{0 \le k \le n}$ de [p;q] telle que, pour tout $1 \le k \le n$, $f_{||y_{k-1};y_k|}$ soit continue sur $]y_{k-1};y_k[$ et prolongeable par continuité à $[y_{k-1};y_k]$, prolongement noté f_k .

On note alors, pour tout $0 \le k \le n$, $x_k = \varphi^{-1}(y_k)$. La stricte croissance de φ (et donc de φ^{-1}) assure que $(x_k)_{0 \le i \le n}$ est une subdivision de $[\varphi^{-1}(p); \varphi^{-1}(q)]$ (qui est un segment par continuité de φ^{-1} !). Grâce à cette subdivision et aux opérations sur les limites $(\varphi$ et φ' sont continues sur $]\alpha; \beta[)$, on obtient que $g = (f \circ \varphi) \times \varphi'$ est continue par morceaux sur $[\varphi^{-1}(p); \varphi^{-1}(q)]$.

Pour tout $1 \le k \le n$, le prolongement de $g_{||x_{k-1};x_k|}$ à $[x_{k-1};x_k]$ par continuité est $g_k = (f_k \circ \varphi) \times \varphi'$. Utilisons maintenant le théorème vu en première année et la définition d'intégrale d'une fonction continue par morceaux :

$$\int_{\varphi^{-1}(p)}^{\varphi^{-1}(q)} f(\varphi(u)) \varphi'(u) du \stackrel{def}{=} \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f_k(\varphi(u)) \varphi'(u) du \stackrel{PCSI}{=} \sum_{k=1}^n \int_{y_{k-1}}^{y_k} f_k(t) dt \stackrel{def}{=} \int_p^q f(t) dt.$$

(2) Montrons maintenant le résultat pour les intégrales généralisées.

Soit $\gamma \in]\alpha; \beta[$. Notons $c = \varphi(\gamma) \in]a; b[$. Représentons les tableaux de variations de φ et φ^{-1} pour y repérer les limites utiles dans cette démonstration :

x	α	γ	β	x	а	С	b
φ	a —	c	b	$arphi^{-1}$	α	γ	β

• Soit $x \in [\gamma; \beta[$.

D'après l'extension du théorème de changement de variable vu dans la première partie ($[c; \varphi(x)]$ est un segment) :

$$\int_{c}^{\varphi(x)} f(t)dt = \int_{\gamma}^{x} f(\varphi(u))\varphi'(u)du.$$

3

On a $\lim_{x\to\beta}\varphi(x)=b$ donc, si l'intégrale généralisée $\int_c^b f(t)dt$ converge, alors l'intégrale généralisée $\int_\gamma^\beta f(\varphi(u))\varphi'(u)du$ converge et ces intégrales sont égales.

• Soit $y \in [c; b[$. Encore d'après la première partie ([c; y] est un segment) :

$$\int_{c}^{y} f(t)dt = \int_{\gamma}^{\varphi^{-1}(y)} f(\varphi(u))\varphi'(u)du.$$

On a $\lim_{y\to b} \varphi^{-1}(y) = \beta$ donc, si l'intégrale généralisée $\int_{\gamma}^{\beta} f(\varphi(u))\varphi'(u)du$ converge, alors l'intégrale généralisée $\int_{\gamma}^{b} f(t)dt$ converge et ces intégrales sont égales.

• Finalement, les intégrales $\int_{\gamma}^{\beta} f(\varphi(u)) \varphi'(u) du$ et $\int_{c}^{b} f(t) dt$ sont de même nature et sont égales en cas de convergence.

Il en est de même (démonstration identique à celle-ci) des intégrales $\int_{\alpha}^{\gamma} f(\varphi(u))\varphi'(u)du$ et $\int_{a}^{c} f(t)dt$.

Par définition : les intégrales $\int_a^b f(t)dt$ et $\int_\alpha^\beta f(\varphi(u))\varphi'(u)du$ sont de même nature et égales en cas de convergence

Dans le cas où φ est décroissante, il faut modifier les tableaux de variations et les bornes sont échangées : on obtient que les intégrales $\int_a^b f(t)dt \, \mathrm{et} \int_\beta^\alpha f(\varphi(u)) \varphi'(u) du \, \mathrm{sont} \, \mathrm{de} \, \mathrm{même} \, \mathrm{nature} \, \mathrm{et} \, \mathrm{égales} \, \mathrm{en} \, \mathrm{cas} \, \mathrm{de} \, \mathrm{convergence}, \mathrm{d'où} \, \mathrm{la} \, \mathrm{nécessit\acute{e}} \, \mathrm{du} \, \mathrm{signe} \, \mathrm{\textit{moins}} \, \mathrm{pour} \, \mathrm{avoir} \, \mathrm{l'\acute{e}galit\acute{e}} \, \mathrm{de} \, \mathrm{l'\acute{e}nonc\acute{e}}.$