PROGRAMME DE COLLE PSI - SEMAINE DU 01/12/2025 AU 05/12/2025

Intégration sur un intervalle

- (1) (a) Fonctions continues par morceaux sur un segment. Définition de l'intégrale. Linéarité, positivité, Chasles, inégalité triangulaire.
 - (b) Théorème fondamental du calcul intégral : version pour une fonction continue par morceaux; version pour une fonction continue.
- (2) Intégrales généralisées.
 - (a) Définition(s), exemples, fonctions de référence.
 - (b) Théorèmes de comparaison pour des fonctions positives.
 - (c) Linéarité, positivité, Chasles.
 - (d) Intégration par parties Changement de variable.
- (3) Intégrabilité (= absolue convergence)
 - (a) Définition. Lien avec la convergence de l'intégrale généralisée + inégalité triangulaire.
 - (b) Critère de nullité.
 - (c) $L^1(I,\mathbb{K})$ est un \mathbb{K} -espace vectoriel.
 - (d) Fonctions de référence et théorèmes de comparaison.
- (4) Théorème de convergence dominée (donné à ce stade sans le vocabulaire relatif aux suites de fonctions).

Intégrales à paramètre

△Le TD sera fait en début de semaine mais plusieurs exemples ont été vus en cours.

- (1) Domaine de définition. Fonction bien définie sur un intervalle.
- (2) TCD à paramètre continu. Théorème de continuité (versions globale et locale).
- (3) Théorème de classe \mathscr{C}^1 , de classe \mathscr{C}^p (versions globale et locale). Le cas de la classe \mathscr{C}^{∞} a été utilisé sur l'exemple de Γ .

Questions de cours (${\it deux\ questions}$ cette semaine) :

- (1) **OBLIGATOIRE:** N'importe quel théorème sur les intégrales à paramètre (TCD à paramètre continu. Théorème de continuité (versions globale et locale), théorème de classe \mathscr{C}^1 , de classe \mathscr{C}^p ou de classe \mathscr{C}^∞ (versions globale et locale)).
- (2) Soit $\alpha \in \mathbb{R}$. Nature des intégrales généralisées $\int_0^1 \frac{1}{t^\alpha} dt$ et $\int_1^{+\infty} \frac{1}{t^\alpha} dt$.
- (3) On définit la fonction Gamma par

$$\Gamma \colon x \longmapsto \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

Déterminer le domaine de définition de Γ et calculer $\Gamma(n+1)$ pour tout $n \in \mathbb{N}$.

- (4) Montrer que l'intégrale suivante existe et calculer sa valeur : $\int_0^1 \frac{1}{\sqrt{t(1-t)}} dt$ (on pourra utiliser le chgt de variable $t = \cos^2(x)$).
- (5) On considère la fonction

$$F: x \longmapsto \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt.$$

Montrer que F est définie et de classe \mathcal{C}^1 sur \mathbb{R} et exprimer F' puis F.