Programme de colle de physique semaine 8 (du 24 / 11 au 28 / 11)

Questions de cours :

Retrouver l'équation de D'Alembert pour la corde.

Définir les ondes progressives et stationnaires et faire le lien entre elles.

Modes propres : définition , utilité

Retrouver l'équation de D'Alembert pour la ligne LC.

Exercice:

Tout exercice sur l'aspect mécanique des systèmes ouverts et les ondes.

Modèle de l'écoulement parfait : adiabatique, réversible, non visqueux.	Utiliser le modèle de l'écculement parfait pour un écoulement à haut Reynolds en dehors de la couche limite.
Relation de Bernoulli.	Citer et appliquer la relation de Bernoulli à un écoulement parfait, stationnaire, incompressible et homogène.
Effet Venturi.	Décrire l'effet Venturi.
Bilan macroscopique d'énergie mécanique.	Effectuer un bilan d'énergie sur une installation industrielle. Utiliser le fait admis que la puissance des actions intérieures est nulle pour un écoulement parfait et incompressible.
3.3. Bilans de quantité de mouvement et de mo	ment cinétique
Loi de la quantité de mouvement pour un système fermé.	Effectuer l'inventaire des forces extérieures. Effectuer un bilan de quantité de mouvement.
Loi du moment cinétique pour un système termé.	Effectuer un bilan de moment cinétique.

6.1. Phénomènes de propagation non dispersifs : équation de d'Alembert

Ondes transversales sur une corde vibrante.	Établir l'équation d'onde dans le cas d'une corde infiniment souple dans l'approximation des petits mouvements transverses.
Équation de d'Alembert. Onde progressive. Onde stationnaire.	Identifier une équation de d'Alembert. Exprimer la célérité en fonction des paramètres du milieu. Citer des exemples de solutions de l'équation de d'Alembert unidimensionnelle

Ondes progressives harmoniques.	Etablir la relation de dispersion à partir de l'équation de d'Alembert. Utiliser la notation complexe. Définir le vecteur d'onde, la vitesse de phase.	
Ondes stationnaires harmoniques.	Décomposer une onde stationnaire en ondes progressives, une onde progressive en ondes stationnaires	
Conditions aux limites.	Justifier et exploiter des conditions aux limites.	

Régime libre : modes propres d'une corde vibrante fixée à ses deux extrémités.	Définir et décrire les modes propres. Construire une solution quelconque par superposition de modes propres.
Régime forcè : corde de Melde.	Associer mode propre et résonance en régime forcé.
Ondes de tension et de courant dans un câble coaxial	Décrire un câble coaxial par un modèle à constantes réparties sans perte Établir les équations de propagation dans un câble coaxial sans pertes modélisé comme un milieu continu caractérisé par une inductance linéique et une capacité linéique.
Impédance caractéristique.	Établir l'expression de l'impédance caractéristique d'un câble coaxial.
Réflexion en amplitude sur une impédance terminale.	Étudier la réflexion en amplitude de tension pour une impédance terminale nulle, infinie ou résistive.