				DEVOIR EN CLASSE N°4


I Oxydation du carbure de zirconium ( mines ponts PSI 25)

Le carbure de zirconium peut être oxyde en présence d’oxygène, selon la réaction suivante :
ZrC (s) + 2 O2 (g) =  ZrO2 (s) + CO2 (g)

Q1- Indiquer, en le justifiant, le caractère endothermique ou exothermique de la réaction.
Q2- Calculer l’entropie standard de réaction et justifier qualitativement son signe.
Q3- Calculer l’enthalpie libre standard de réaction ΔrG0 à 300 K dans le cadre de l’approximation d’Ellingham.
Q4- Déterminer la valeur de la constante d’équilibre K0 de la réaction à 300 K. La réaction peut-elle être considérée comme totale ?
Q5- Préciser, en justifiant la réponse, le sens de variation de la constante d’équilibre  K0 avec la température.
Q6- Quelle est l’influence de la pression sur l’équilibre d’oxydation du carbure de zirconium ? Justifier votre réponse.
Q7- Conclure quant aux conditions opératoires optimales pour cette réaction.
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II Synthèse de l’ammoniac ( e3A MP 22)

 S’il est un constituant essentiel des diapasons, le fer intervient également comme catalyseur dans certaines réactions chimiques, telles que la synthèse de l’ammoniac NH3(g) dans le procédé Haber-Bosch selon la réaction: 
3 H2(g) + N2 (g) = 2 NH3(g)   (1)
La réaction est réalisée à 450°C. On donne M (Fe) = 56g/mol. Na = 6 1023 mol-1

Q1. Donner un schéma de Lewis de l’ammoniac. 
À 450°C, le fer cristallise dans un système cubique centré pour lequel le paramètre de maille de la maille conventionnelle vaut 3·102pm. Cette maille compte un atome de fer à chaque sommet et au centre de la maille.
Q2.Exprimer, puis estimer la masse volumique du fer dans cette structure. 
À 450°C, l’enthalpie standard ∆rH1° de la réaction (1) vaut −114,7 kJ·mol−1; son entropie standard de réaction ∆rS1° vaut   −245,9 J·K−1·mol−1.
Q3. Commenter ces deux valeurs numériques.
Q4. Exprimer la constante d’équilibre K1 de la réaction (1) à la température T en fonction de  ∆rH1°  et  ∆rS1° à la même température. 
À 450°C, l’application numérique conduit à K1 = 3·10−5.
 
Le diazote et le dihydrogène sont introduits en proportions stoechiométriques dans le réacteur qui est maintenu, tout au long de la synthèse, à une pression totale P de 300 bars et à une température de 450°C. Le mélange initial contient exclusivement du diazote et du dihydrogène. On définit le rendement r de la synthèse comme le rapport entre la quantité de matière d’ammoniac obtenue à l’équilibre et la quantité de matière d’ammoniac que l’on obtiendrait si la réaction était totale.

Q5. Exprimer K1 en fonction de r, P et p°.
 Q6. Quel est l’effet d’une augmentation de la pression totale à température constante sur le rendement de la synthèse ? Commenter le choix de la valeur 300 bars pour la pression totale de la synthèse industrielle. 
Q7.Quel est l’effet d’une augmentation modérée de la température à pression constante sur le rendement de la synthèse? 
Q8. En quoi aurait-il été préférable de se placer à 25°C ? Quelle peut être la raison du choix de 450°C ? Quel est le rôle d’un catalyseur ?


III  Propagation des ondes acoustiques dans un tube souple ( CCINP PC 24)

On considère un tube en caoutchouc de section circulaire et d'axe 𝑂x  rempli d'air (figure 2). Au repos, l’air a une masse volumique 𝜇0 et une pression intérieure 𝑃0 égale à la pression extérieure. À l'équilibre, on suppose que le champ des vitesses est nul et que la section du tube est uniforme et notée 𝐴0. On s'intéresse à la propagation de perturbations de petites amplitudes suivant l'axe 𝑂x, ce qui permet de se placer dans l’approximation acoustique.
 Les champs de vitesse, de pression et de masse volumique s'expriment alors sous la forme : 𝑣⃗(𝑥,𝑡) = 𝑣(𝑥,𝑡)  où   est le vecteur unitaire selon la direction 𝑂x , 𝑃(𝑥,𝑡) = 𝑃0 +𝑝1(𝑥,𝑡) où |𝑝1(𝑥,𝑡)|≪ 𝑃0 et  𝜇(𝑥,𝑡) = 𝜇0 + 𝜇1(𝑥,𝑡) où |𝜇1(𝑥,𝑡)|≪𝜇0. 
𝑣⃗(𝑥,𝑡) est appelée la vitesse acoustique et 𝑝1(𝑥,𝑡) est la surpression par rapport à 𝑃0. On suppose que ces grandeurs sont uniformes sur une section du tube, les effets de la pesanteur étant négligés. 
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L’air est considéré comme un gaz parfait, on ne tient pas compte de la viscosité ni des échanges thermiques à l’intérieur du tube au sein de l’air. Les détentes et les compressions locales du fluide sont isentropiques. 
Le coefficient de  compressibilité isentropique, constant, s’écrit : 
 𝜒𝑠 = 1/ μ(𝑥, 𝑡)* (𝜕μ(𝑥, 𝑡)/ 𝜕P(𝑥, 𝑡))𝑆. 

Le tube se déforme sous l’effet de l’augmentation de la pression interne. La section A(𝑥,t) du tube varie légèrement, devenant dépendante de l’abscisse 𝑥 et du temps 𝑡. On pose alors : A(𝑥, 𝑡) = 𝐴0 + 𝑎1(𝑥, 𝑡) où |𝑎1(𝑥, 𝑡)| ≪ 𝐴0. 
On peut alors décrire ce phénomène par un paramètre 𝐷, appelé distensibilité ( constante)  du tube qui s'exprime comme :
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On étudie comme système une tranche d’air d’épaisseur 𝑑x située entre les abscisses 𝑥 et 𝑥 + 𝑑x , sur un intervalle de temps entre 𝑡 et 𝑡 + 𝑑t.

 Q1. Exprimer la masse 𝑑m(𝑡) de ce système à l’instant 𝑡 en fonction de 𝐴(𝑥, 𝑡), 𝜇(𝑥, 𝑡) et de 𝑑x. De la même manière, exprimer 𝑑m(𝑡 + 𝑑t) à l’instant 𝑡 + 𝑑t. Q2. Exprimer la masse 𝛿𝑚𝑒 de fluide entrant dans ce système pendant la durée 𝑑t en fonction de v(𝑥, 𝑡), μ(𝑥, 𝑡), 𝐴(𝑥, 𝑡) et 𝑑t. De la même manière, exprimer la masse 𝛿𝑚𝑠 sortant de ce système pendant la même durée.
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 Q3. En réalisant un bilan de masse sur le système considéré, établir avec soin que l’équation de la conservation de la masse s’écrit : 
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Q4. En se limitant aux termes d’ordre 1, montrer que l’on obtient l’équation linéarisée suivante :
[image: ]
Q5. Rappeler l’équation d’Euler ( PFD appliqué à la particule fluide) régissant la dynamique des fluides parfaits en tenant compte des hypothèses de l’étude. Préciser le nom des deux termes qui composent la dérivée particulaire. 
Q6. Linéariser l’équation d’Euler afin d’établir une relation entre 𝜇0, (𝑥, 𝑡) et 𝑝1(𝑥, 𝑡). La relation obtenue est notée (2). 

Q7. En linéarisant l’expression de la distensibilité, montrer que 𝑎1 est proportionnel à 𝑝1. La relation obtenue est notée (3). 
Q8. Linéariser l’expression du coefficient de compressibilité isentropique et montrer que 𝜇1 est proportionnel à 𝑝1. La relation obtenue est notée (4). 
Q9. À l’aide des relations (1), (3) et (4), démontrer la relation suivante : [image: ] 
Q10. Montrer que la surpression 𝑝1(𝑥,𝑡) obéit à une équation d’onde de type d’Alembert avec une célérité 𝑐 qui sera exprimée en fonction de 𝜒𝑠, 𝐷 et de 𝜇0. Vérifier l’unité de 𝑐. 
Q11. Calculer numériquement la valeur de 𝑐 avec 𝐷 = 5,1·10-6 Pa-1,
 𝜒𝑠 = 6,6·10-6 Pa-1 et 𝜇0= 1,3 kg·m-3. 

IV Echolocalisation du dauphin ( e3a PC 21)
Pour repérer les bancs de poisson ou les obstacles, les dauphins émettent des " clics " ultrasonores. L’appréciation du temps de retour de l’onde sonore réfléchie sur l’obstacle et de sa puissance permet au dauphin d’évaluer le caractère plus ou moins dense de l’obstacle, sa distance et sa vitesse relative. Le dauphin modifie la quantité de "clics" émis par seconde au fur et à mesure qu’il se rapproche ou s’éloigne de sa proie en émettant au maximum 600 "clics" par seconde. 

Cavité résonante émettrice
 En plongée, le dauphin emmagasine dans ses poumons de l’air qu’il ne relâche pas. Un ajustement de la taille des sacs d’air lui permet d’obtenir des fréquences de résonance variées comme dans une cavité, dite de Helmholtz, modélisée en figure 7. C’est la présence d’un liquide cristallin qui lui permet d’obtenir des fréquences beaucoup plus élevées que celles obtenues avec des tissus normaux comme le larynx humain. On se propose d’étudier le principe de la cavité de Helmholtz à l’aide d’un modèle linéaire simple. 

Un cylindre de volume V, appelé cavité, communique avec l’extérieur par un petit tube de volume 𝑠.l ≪𝑉. Sous l’effet d’une perturbation la section, initialement en  x, se déplace en 𝑥 + 𝜉 (𝑥,) , 𝜉(𝑥,𝑡) étant le déplacement de la section. On peut considérer que tout se passe comme si l’élément de fluide contenu entre x et x + 𝛿x dans le petit tube se déplace comme un piston soumis à la pression Pext d’un côté et Pext + p(𝜉) de l’autre côté (figure 7 ) avec 𝑝(𝜉=0) = 0. Le volume de fluide V + sx, de masse volumique 𝜌, évolue de manière adiabatique en obéissant à la loi de Laplace avec un coefficient 𝛾. 
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Q1. Justifier qu’on peut écrire au premier ordre p(𝜉)=- 𝛾𝑠𝜉𝑃𝑒xt /V  en considérant 𝑝(𝜉) infiniment petit du premier ordre au même titre que 𝑠𝜉/𝑉.
 En appliquant la deuxième loi de Newton à l’élément de fluide, établir l’équation différentielle à laquelle obéit 𝜉 (𝑡). Quelle est la fréquence caractéristique du mouvement ? On l’exprimera en fonction de V, s, 𝜌, 𝛾, 𝑃ext et 𝛿x.

 Propagation aller-retour Le faisceau s’atténue au fur et à mesure de sa propagation dans l’eau : le phénomène d’écholocalisation ne peut pas repérer des obstacles à plus de 100 m. On admet que l’intensité acoustique obéit à une loi exponentielle d’atténuation dans l’eau de la forme : I(𝑟) = 𝐼(𝑟=0).exp(-𝛼r). La réflexion du faisceau par l’obstacle entraîne une modification de l’intensité acoustique au niveau de l’obstacle. Cette modification, liée aux impédances acoustiques 𝑍𝑒au de l’eau et 𝑍obst du matériau de l’obstacle, est donnée par : 
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Le mouvement relatif dauphin-obstacle (figure 8) crée un effet Doppler qui modifie la fréquence du faisceau réfléchi par rapport à celle f du faisceau incident. On peut établir la formule 𝑈=(𝛿𝑓.c) / (2𝑓cosθ) avec 𝑈 la norme de la vitesse relative dauphin-obstacle , 𝛿f la modification de la fréquence et c la vitesse du son dans l’eau ( c = 1.4 103 m/s).

Q2. Évaluer le coefficient d’atténuation α sachant que l’intensité est divisée par 2 en 50 m. Quelle est l’unité de l’impédance acoustique ? Calculer le rapport R sachant que l’impédance de l’eau vaut 𝑍eau = 1480 SI et celle d’un poisson (obstacle) vaut 𝑍obst  =1540 SI. Évaluer l’ordre de grandeur du rapport Q des intensités de l’onde reçue par le dauphin et de l’onde émise par celui-ci pour un banc de poissons à 75 m du dauphin. 
En assimilant le "clic" à une onde harmonique de fréquence 𝑓 = 125 kHz, quelle est la vitesse relative U du banc de poissons détecté par le dauphin, qui se déplace sur la même droite que le banc de poisson, sachant que la modification de fréquence vaut 𝛿f =1 kHz ? 
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On donne ln2 = 0.7

V Ondes sonores ( mines PSI 22)
On considère de l’air initialement au repos (pression P0 et masse volumique μ0). Lors du passage d’une onde sonore, on note P(x,t) = P0 + p1(x,t) la pression de l’air et μ(x,t) = μ0 +μ1(x,t) sa masse volumique. On pose  (x,t) = v1(x,t)   la vitesse des particules de fluide.

Q – 1. Rappeler en quoi consiste l’approximation acoustique. Donner des ordres de grandeur vraisemblables pour |p1|, |μ1| et |v1| correspondant à un son audible par une oreille humaine. À quel domaine de fréquence appartiennent les ondes audibles?
Q – 2. On note χS le coefficient de compressibilité isentropique. Donner sa définition générale, puis son expression linéarisée dans l’approximation acoustique. Pourquoi est-il pertinent de l’introduire ici ? Que mesure-t-il ?
Q – 3. Établir, en les justifiant, deux autres équations régissant le passage de l’onde sonore, puis les simplifier dans l’approximation acoustique. En déduire que p1(x,t) est solution d’une équation de d’Alembert et exprimer la célérité cs de l’onde en fonction de χS et de μ0.

En représentation complexe, on note pi(x,t) = pim e j(ωt−kx) la surpression de l’air due à une onde plane progressive monochromatique et on pose 
vi(x,t) =   e j(ωt−kx) la vitesse associée des particules de fluide. Cette onde arrive en incidence normale sur une cloison située initialement en x = 0.

Q – 4. Déterminer l’expression de Za en fonction de μ0 et cs. Donner sa valeur numérique.  Comment appelle-t-on cette grandeur en acoustique ? L’interaction de l’onde incidente avec la cloison donne naissance à une onde réfléchie pr(x,t) = prm e j(ωt+kx) et une onde transmise pt(x,t) = ptm e j(ωt−kx).
Donner les expressions de vr(x,t) et vt(x,t) en fonction de Za, pr(x,t) et pt(x,t).

La cloison, de masse m, de surface S et d’épaisseur e, vibre en bloc sous l’effet de l’onde sonore de longueur d’onde λ >> e. On modélise les efforts exercés sur la cloison par le plafond, le sol et les autres murs par une force de rappel élastique de raideur K. On note X(t) = Xm e(jωt) la grandeur complexe associée au déplacement de la cloison par rapport à sa position d’équilibre en x = 0.
Q – 5. En traduisant la continuité de la vitesse en x ≈ 0 (au niveau de la cloison), déterminer une relation entre vim, vrm et vtm. Pourquoi peut-on écrire cette condition aux limites en x ≈ 0 malgré le déplacement de la cloison ?

Q – 6. En appliquant le théorème de la résultante cinétique ( RFD) à la cloison en x ≈ 0, montrer que celle-ci joue le rôle d’un filtre sonore de fonction de transfert  
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où on explicitera H0, Q et ω0 en fonction de m, S, K et Za. Tracer l’allure de la courbe |H|(ω) et discuter le comportement de la cloison sur la transmission des ondes sonores. Que se passe-t-il pour ω = ω0 ?

Q – 7. On néglige désormais l’élasticité de la cloison. Dans quel cas est-ce légitime ? Donner alors l’expression approchée de H(jω) et commenter le comportement de la cloison. Déterminer l’épaisseur e de la cloison (de masse volumique μc = 1200 kg · m−3) pour que l’intensité sonore soit affaiblie de 40 dB pour une fréquence de 200 Hz.

VI  Produire de la musique avec des fils d’araignée ( mines ponts PC 22)

Du fait de leurs propriétés mécaniques si particulières (valeur importante du module de Young, large domaine d’élasticité et faible masse linéique), des physiciens ont récemment eu l’idée d’assembler des milliers de fils de l’araignée Nephila pilipes, particulièrement résistants, pour fabriquer des cordes de violon.
Lorsque la corde fabriquée est utilisée pour produire du son, il convient de s’assurer que sa tension soit bien sûr inférieure à sa tension de rupture Tr, mais également que la corde fonctionne dans son régime élastique. Les premiers résultats obtenus se sont révélés très encourageants et prometteurs notamment en ce qui concerne la qualité du timbre puisque le spectre du son produit présente de nombreux pics d’amplitude importante à hautes fréquences.

On étudie les mouvements d’un fil d’araignée de longueur ℓ, de masse linéique μ, autour de sa position d’équilibre. Au repos, le fil est rectiligne et parallèle à l’axe horizontal (Ox). On note z(x,t) le déplacement du point du fil à l’abscisse x à l’instant t par rapport à sa position d’équilibre z = 0. On ne considère que les mouvements latéraux de faibles amplitudes s’effectuant dans le plan Oxz (Fig. 3). Le fil étant accroché en ses deux extrémités en deux points fixes. 
La tension du fil au point d’abscisse x à l’instant t est notée : 
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On effectue les deux hypothèses suivantes :
• La déflexion est de faible amplitude, de même que l’angle α(x,t) que fait le fil avec l’horizontale à la position x et à l’instant t (voir Fig. 3), ce qui entraîne : |
∂z/∂x <<1.
• On néglige les effets de la pesanteur.

1°) On considère la portion de fil comprise entre les plans d’abscisses x et x + dx. Exprimer la longueur de portion de fil ds, cos[α(x,t)] et sin[α(x,t)] en 
fonction de dx et ∂z/∂x .
En appliquant le théorème de la résultante cinétique ( RFD) à cette portion de fil, montrer que Tx(x,t) ne dépend pas de x. Que peut-on conclure pour la norme T de la tension dans le fil ?
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 2°) Montrer que le déplacement du fil z(x,t) vérifie alors l’équation aux dérivées partielles :
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On exprimera c en fonction de T et μ. Que représente cette grandeur physique?

3°) Montrer que des fonctions de la forme z(x,t) = f(x−ct)+g(x+ct) sont des solutions de cette équation. Interpréter le sens physique des fonctions f et g.
On cherche les solutions correspondant à un régime purement sinusoïdal. On utilise la représentation complexe de ces solutions sous la forme
z(x,t) = A expj(ωt−kx) + B expj(ωt+kx) où ω est la pulsation du signal, k l’amplitude du vecteur d’onde, A et B des amplitudes complexes.
4°) Traduire les conditions aux limites imposées au fil en des contraintes sur z(x,t). En déduire la relation entre A et B ainsi que les valeurs de ω permises.
Comment appelle-t-on ce type d’onde et pourquoi ?

5°) Sachant que la fréquence de vibration de la note jouée (correspondant à la fréquence de la note fondamentale) vaut 300 Hz, que la longueur du fil est ℓ = 0,33 m et que sa masse linéique est μ = 0,5mg · m−1, quelle doit être la tension T appliquée à la corde ?
Sachant que la tension Te au-delà de laquelle la corde n’est plus dans son régime élastique est de l’ordre de 10 newtons, que pouvez-vous conclure ?

Dans le cadre d’un modèle plus élaboré on prend en compte la raideur du fil à travers son module de Young E. L’équation de propagation des ondes de déformation de faible amplitude dans un fil de rayon a devient alors :
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6°) En supposant que la déformation z(x,t) de la corde est de la même forme que précédemment, établir la relation de dispersion donnant k en fonction de ω et des paramètres du problème.
Montrer que les fréquences propres de la corde s’écrivent alors sous la forme :
[image: ]
où B est une grandeur physique que l’on exprimera en fonction de E, T, ℓ et a.
Quel est l’effet sur le son produit ?
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