
Chapitre 10 - Suites et séries de fonctions

Dans tout ce chapitre, K désigne R ou C et I est un intervalle de R non vide et non réduit à un point.

Sauf mention du contraire, a et b désignent deux réels tels que a < b.

Toutes les fonctions considérées seront définies sur I et à valeurs dans K.

I – Suites de fonctions

1 ) Modes de convergence d’une suite de fonctions

Définition I.1.1. Soit ( fn)n∈N une suite de fonctions définies sur I . Soit f une fonction définie sur I .

On dit que la suite ( fn)n∈N converge simplement vers f sur I si :

∀x ∈ I , lim
n→+∞ fn(x) = f (x).

Autrement dit, ( fn)n∈N converge simplement vers f sur I si :

∀x ∈ I , ∀ε> 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0 =⇒
∣∣ fn(x)− f (x)

∣∣≤ ε.

On dit que ( fn )n∈N converge simplement sur I s’il existe une fonction f telle que ( fn )n∈N converge simplement vers f sur I .

Remarque. L’unicité de la fonction f est sous-entendue dans cette définition. Elle est la conséquence de l’unicité de la

limite d’une suite convergente.

Remarque. ✍
La convergence simple d’une suite de fonctions se traduit donc, pour tout x ∈ I , par la convergence de la suite numérique ( fn(x))n∈N.

Pour vérifier une convergence simple :

• on commence par fixer x dans I (Soit x ∈ I .) puis on montre la convergence de la suite numérique ( fn(x))n∈N.

Il est parfois nécessaire de distinguer plusieurs cas pour x.

• on définit alors sur I la fonction f : x 7−→ lim
n→+∞ fn(x), fonction appelée limite simple de la suite ( fn)n∈N.

• on conclut que la suite de fonctions ( fn)n∈N converge simplement vers f sur I .

Exemple I.1.2. (1) Pour tout n ∈N, on note fn : [0;1] −→ R

x 7−→ xn

. Étudier la convergence simple de la suite de fonctions ( fn)n∈N.

(2) Soit α ∈R. Pour tout n ∈N∗, on note gn : [0;+∞[ −→ R

x 7−→ nαx e−nx

.

Étudier la convergence simple de la suite de fonctions (gn)n∈N∗ .

(3) Pour tout n ∈N∗, on note hn : [0;+∞[ −→ R

x 7−→


1

n
si x ∈ [n;2n]

0 sinon

.

Étudier la convergence simple de la suite de fonctions (hn)n∈N∗ .
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Définition I.1.3. Soit ( fn)n∈N une suite de fonctions définies sur I . Soit f une fonction définie sur I .

On dit que la suite ( fn)n∈N converge uniformément vers f sur I si :

∀ε> 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0 =⇒∀x ∈ I ,
∣∣ fn(x)− f (x)

∣∣≤ ε.

On dit que ( fn )n∈N converge uniformément sur I s’il existe une fonction f telle que ( fn )n∈N converge uniformément vers f sur I .

Remarque. On observe que dans cette définition, le rang n0 est le même pour tous les x de I , contrairement à la définition

de la convergence simple. La position des quantificateurs est déterminante !

Proposition I.1.4 (Caractérisation de la CVU).

Soit ( fn)n∈N une suite de fonctions définies sur I . Soit f une fonction définie sur I .

La suite ( fn)n∈N converge uniformément vers f sur I si et seulement si :

• les fonctions fn − f sont bornées sur I à partir d’un certain rang n0 ;

• la suite
(∥ fn − f ∥∞

)
n≥n0

converge vers 0.

On rappelle que si f est une fonction bornée sur I , on note ∥ f ∥∞ = sup
t∈I

| f (t )|.

Corollaire I.1.5. Soit ( fn)n∈N une suite de fonctions définies sur I . Soit f une fonction définie sur I .

La suite ( fn)n∈N converge uniformément vers f sur I si et seulement s’il existe une suite numérique (αn)n∈N telle que :

• à partir d’un certain rang, | fn(x)− f (x)| ≤αn pour tout x ∈ I ;

• lim
n→+∞αn = 0.

Théorème I.6. Soit ( fn)n∈N une suite de fonctions définies sur I . Soit f une fonction définie sur I .

Si la suite ( fn)n∈N converge uniformément vers f sur I , alors ( fn)n∈N converge simplement vers f sur I .

En particulier, si une suite de fonctions converge uniformément, c’est forcément vers sa limite simple.

Méthode. ✍ Pour étudier la convergence uniforme d’une suite de fonctions ( fn)n∈N, on commence par étudier la

convergence simple et à nommer f la limite simple de ( fn)n∈N.

(1) Pour montrer que ( fn)n∈N converge uniformément vers f sur I :

MÉTHODE 1 on fixe n ∈N (Soit n ∈N.) puis, pour tout x ∈ I , on majore | fn(x)− f (x)|par une expressionαn qui ne dépend pas de x

et telle que lim
n→+∞αn = 0 ;

MÉTHODE 2 on fixe n ∈N (Soit n ∈N.) puis on calcule ∥ fn − f ∥∞ en étudiant la fonction fn − f sur I (tableau de variations ...)

et on montre que
(∥ fn − f ∥∞

)
n≥n0

converge vers 0.

(2) Pour montrer que ( fn)n∈N NE converge PAS uniformément vers f sur I (et donc ne converge pas uniformément !) :

MÉTHODE 1 on exhibe une suite (xn)n∈N d’éléments de I telle que la suite
(

fn(xn)− f (xn)
)

n∈N ne converge pas vers 0.

S’il y avait CVU, alors on aurait 0 ≤ | fn (xn )− f (xn )| ≤ ∥ fn − f ∥∞ à partir d’un certain rang et donc
(

fn (xn )− f (xn )
)

n∈N convergerait vers 0.

MÉTHODE 2 on fixe n ∈N (Soit n ∈N.) puis on étudie la fonction fn − f sur I (tableau de variations ...). Si fn − f n’est bornée

à partir d’aucun rang ou si
(∥ fn − f ∥∞

)
n≥n0

ne converge pas vers 0, on conclut qu’il n’y a pas CVU sur I .

Exemple I.1.7. (1) Pour tout n ∈N, on note fn : [0;1] −→ R

x 7−→ xn

.

Étudier la convergence uniforme de la suite de fonctions ( fn)n∈N.
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(2) Soit α ∈R. Pour tout n ∈N∗, on note gn : [0;+∞[ −→ R

x 7−→ nαx e−nx

.

Étudier la convergence uniforme de la suite de fonctions (gn)n∈N∗ . On pourra discuter suivant la valeur de α.

(3) Pour tout n ∈N∗, on note hn : [0;+∞[ −→ R

x 7−→


1

n
si x ∈ [n;2n]

0 sinon

.

Étudier la convergence uniforme de la suite de fonctions (hn)n∈N∗ .

Définition - Théorème I.1.8. Soit ( fn)n∈N une suite de fonctions définies sur I .

On dit que ( fn)n∈N converge uniformément sur tout segment de I si, pour tout [a;b] ⊂ I , ( fn)n∈N converge uniformément

sur [a;b]. Dans cette définition, on a noté abusivement fn au lieu de fn|[a;b].

Dans ce cas, f converge simplement sur I .

Il n’y a aucune raison que la convergence soit uniforme sur I tout entier !

Remarque. Si ( fn)n∈N converge uniformément sur I , alors ( fn)n∈N converge uniformément sur tout segment de I .

La réciproque est fausse comme vont l’illustrer les exemples suivants.

Méthode. ✍ Pour montrer que ( fn)n∈N converge uniformément sur tout segment de I , on commence par déterminer la

limite simple f de ( fn)n∈N sur I puis on procède comme dans le point de méthodologie précédent.

La plupart du temps, la fonction fn − f sera continue sur le segment [a;b] donc on aura

toujours l’existence de ∥ fn − f ∥[a;b]
∞ = sup

t∈[a;b]
| fn(t )− f (t )|. Notation bien pratique qui sera souvent utilisée.

Exemple I.1.9. (1) Pour tout n ∈N, on note fn : ]0;+∞[ −→ R

x 7−→ e−nx

.

Étudier la convergence uniforme (éventuellement sur tout segment) de la suite de fonctions ( fn)n∈N.

(2) Pour tout n ∈N, on note gn : [0;+∞[ −→ R

x 7−→ x2

1+nx

.

Étudier la convergence uniforme (éventuellement sur tout segment) de la suite de fonctions (gn)n∈N.
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2 ) Continuité de la limite d’une suite de fonctions

Théorème I.10 (Caractère borné). Soit ( fn)n∈N une suite de fonctions définies sur I . Soit f une fonction définie sur I .

On suppose que :

• pour tout n ∈N, la fonction fn est bornée sur I ;

• la suite ( fn)n∈N converge uniformément vers f sur I .

Alors la fonction f est bornée sur I .

Remarque. Dans ce cas, la suite ( fn)n∈N converge dans l’espace vectoriel normé B(I ,K) muni de ∥.∥∞.

En particulier on a lim
n→+∞∥ fn∥∞ = ∥ f ∥∞ (continuité de la norme).

Cette remarque explique que la norme ∥.∥∞ est parfois appelée norme de la convergence uniforme.

Exemple I.2.11. Pour tout n ∈N, on note

fn : [0;+∞[ −→ R

x 7−→
{

ex si x ≤ n

0 sinon

.

Étudier la convergence uniforme sur [0;+∞[ de la suite de fonctions ( fn)n∈N.

Théorème I.12 (Théorème de la double limite - ADMIS ET HORS-PROGRAMME OFFICIEL).

Soit ( fn)n∈N une suite de fonctions définies sur I . Soit a ∈R∪ {−∞;+∞} un élément ou une extrémité de I .

On suppose que :

• pour tout n ∈N, fn admet une limite finie en a et on note ℓn = lim
x→a

fn(x) ;

• la suite ( fn)n∈N converge uniformément vers une fonction f sur I .

Alors :

• la suite (ℓn)n∈N est convergente, notons ℓ sa limite ;

• lim
x→a

f (x) = ℓ.

On a alors lim
x→a

lim
n→+∞ fn (x) = lim

n→+∞ lim
x→a

fn (x).

Exemple I.2.13. Redémontrer le résultat obtenu dans l’exemple précédent en utilisant ce théorème.

Théorème I.14 (Continuité - Version globale).

Soit ( fn)n∈N une suite de fonctions définies sur I . Soit f une fonction définie sur I .

On suppose que :

• pour tout n ∈N, la fonction fn est continue sur I ;

• la suite ( fn)n∈N converge uniformément vers f sur I .

Alors la fonction f est continue sur I .

Théorème I.15 (Continuité - Version locale). Soit ( fn)n∈N une suite de fonctions définies sur I .

On suppose que :

• pour tout n ∈N, la fonction fn est continue sur I ;

• la suite ( fn)n∈N converge uniformément sur tout segment de I .

La suite ( fn)n∈N converge donc simplement sur I ; notons f sa limite simple.

Alors la fonction f est continue sur I .

Exemple I.2.16. ✌Ce théorème permet également de montrer qu’une suite de fonctions NE converge PAS uniformément.

Trouver un exemple parmi ceux étudiés précédemment.
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3 ) Intégration et dérivation

Théorème I.17 (Interversion limite/intégrale sur un segment).

Soit ( fn)n∈N une suite de fonctions définies et continues sur un segment [a;b].

On suppose que ( fn)n∈N converge uniformément sur [a;b] vers une fonction f .

Alors :

⋆ f est continue sur le segment [a;b] ;

⋆ la suite

(∫ b

a
fn(t )d t

)
n∈N

est convergente et lim
n→+∞

∫ b

a
fn(t )d t =

∫ b

a
f (t )d t.

On a alors lim
n→+∞

∫ b

a
fn (t )d t =

∫ b

a
lim

n→+∞ fn (t )d t.

Exercice I.3.18. ✌ On considère la suite de fonctions ( fn)n∈N définie par

fn : [0;1] −→ R

x 7−→ n2xn(1−x)

.

(1) Montrer que ( fn)n∈N converge simplement sur [0;1].

(2) Calculer
∫ 1

0
fn(x)d x pour tout n ∈N.

(3) En déduire que ( fn)n∈N ne converge par uniformément sur [0;1].

Exemple I.3.19. " Pour tout n ∈N∗, on note hn : [0;+∞[ −→ R

x 7−→


1

n
si x ∈ [n;2n]

0 sinon

.

Nous avons déjà démontré que la suite (hn)n∈N∗ convergeait uniformément sur R vers la fonction nulle.

Calculer
∫ +∞

0
hn(x)d x pour tout n ∈N∗. Pourquoi le théorème précédent ne s’applique-t-il pas ici ?

Théorème I.20 (Classe C 1 - Version globale).

Soit ( fn)n∈N une suite de fonctions définies sur I . Soit f une fonction définie sur I .

On suppose que :

• pour tout n ∈N, la fonction fn est de classe C 1 sur I ;

• la suite ( fn)n∈N converge simplement vers f sur I ;

• la suite ( f ′
n)n∈N converge uniformément sur I vers une fonction g .

Alors la fonction f est de classe C 1 sur I et f ′ = g .
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Théorème I.21 (Classe C 1 - Version locale). Soit ( fn)n∈N une suite de fonctions définies sur I .

On suppose que :

• pour tout n ∈N, la fonction fn est de classe C 1 sur I ;

• la suite ( fn)n∈N converge simplement vers f sur I ;

• la suite ( f ′
n)n∈N converge uniformément sur tout segment de I .

La suite ( f ′
n)n∈N converge donc simplement sur I ; notons g sa limite simple.

Alors la fonction f est de classe C 1 sur I et f ′ = g .

Théorème I.22 (Classe C p - Version globale).

Soit ( fn)n∈N une suite de fonctions définies sur I . Soit f une fonction définie sur I . Soit p ∈N∗.

On suppose que :

• pour tout n ∈N, la fonction fn est de classe C p sur I ;

• la suite ( fn)n∈N converge simplement vers f sur I ;

• pour tout 1 ≤ k ≤ p −1, la suite ( f (k)
n )n∈N converge simplement vers une fonction gk sur I ;

• la suite ( f (p)
n )n∈N converge uniformément sur I vers une fonction gp .

Alors la fonction f est de classe C p sur I et, pour tout 1 ≤ k ≤ p : f (k) = gk .

Théorème I.23 (Classe C p - Version locale). Soit ( fn)n∈N une suite de fonctions définies sur I . Soit p ∈N∗.

On suppose que :

• pour tout n ∈N, la fonction fn est de classe C p sur I ;

• la suite ( fn)n∈N converge simplement vers f sur I ;

• pour tout 1 ≤ k ≤ p −1, la suite ( f (k)
n )n∈N converge simplement vers une fonction gk sur I ;

• la suite ( f (p)
n )n∈N converge uniformément sur tout segment de I .

La suite ( f (p)
n )n∈N converge donc simplement sur I ; notons gp sa limite simple.

Alors la fonction f est de classe C p sur I et, pour tout 1 ≤ k ≤ p : f (k) = gk .

Remarque. Si les fonctions fn sont de classe C ∞ sur I et que les convergences des suites de fonctions dérivées sont toutes

uniformes (au moins sur tout segment de I ), on peut utiliser les théorèmes précédents pour conclure que la limite simple f

est de classe C ∞ sur I .

Corollaire I.3.24 (Classe C ∞ - Version locale). Soit ( fn)n∈N une suite de fonctions définies sur I .

On suppose que :

• pour tout n ∈N, la fonction fn est de classe C ∞ sur I ;

• la suite ( fn)n∈N converge simplement vers f sur I ;

• pour tout p ∈N∗, la suite ( f (p)
n )n∈N converge uniformément sur tout segment de I .

La suite ( f (p)
n )n∈N converge donc simplement sur I ; notons gp sa limite simple.

Alors la fonction f est de classe C ∞ sur I et, pour tout p ∈N∗ : f (p) = gp .
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4 ) Théorème de convergence dominée

Théorème I.25 (Théorème de convergence dominée - ADMIS). Soit ( fn)n∈N une suite de fonctions définies sur I .

On suppose que :

• pour tout n ∈N, la fonction fn est continue par morceaux sur I ;

• la suite ( fn)n∈N converge simplement vers f sur I ;

• la fonction f est continue par morceaux sur I ;

• il existe une fonction ϕ continue par morceaux et intégrable sur I telle que :

∀n ∈N, ∀t ∈ I , | fn(t )| ≤ϕ(t ).

Dans ce dernier point, appelé hypothèse de domination, la fonction ϕ est indépendante de n.

Alors :

• pour tout n ∈N, la fonction fn est intégrable sur I ;

• la fonction f est intégrable sur I ;

• la suite (numérique)

(∫
I

fn(t )d t

)
n∈N

converge et lim
n→+∞

∫
I

fn(t )d t =
∫

I
f (t )d t.

On a alors lim
n→+∞

∫
I

fn (t )d t =
∫

I
lim

n→+∞ fn (t )d t.

Remarque. ✍ Dans la pratique, les hypothèses de continuité par morceaux pourront être omises.

Remarque. ✍ Ce résultat permet d’intervertir les symboles de limite et d’intégrale, même si I n’est pas un segment.

On peut bien sûr utiliser ce résultat si I est un segment, par exemple s’il est préférable de vérifier l’hypothèse de

domination plutôt que de montrer la convergence uniforme.

Pour cela, deux rédactions sont possibles :

(1) on pourra dire qu’une fonction continue par morceaux sur un segment est intégrable sur ce segment et

utiliser directement le théorème sur I = [a;b] ;

(2) on pourra utiliser le théorème sur l’intervalle ouvert ]a;b[, ce qui ne change rien à la valeur des intégrales.

Exemple I.4.26. Pour tout n ∈N∗, notons

In =
∫ +∞

0

sin
( x

n

)
x(1+x2)

d x.

Montrer l’existence de In pour tout n ∈N∗ et trouver un équivalent simple de In lorsque n tend vers +∞.

Exercice I.4.27. Pour tout n ∈N∗, on note

un =
∫ n

0

(
1+ x

n

)n
e−2x d x.

Montrer l’existence de un pour tout n ∈N∗ puis montrer la convergence et calculer la limite de la suite (un)n∈N∗ .
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II – Séries de fonctions

1 ) Modes de convergence d’une série de fonctions

Définition II.1.1. Soit ( fn)n∈N une suite de fonctions définies sur I (tout se généralise à une suite définie sur Jn0;+∞J seulement).

Pour tout n ∈N, on définit la fonction

Sn = f0 + f1 +·· ·+ fn =
n∑

k=0
fk .

• On appelle série de fonctions (de terme général fn) la suite de fonctions (Sn)n∈N qu’on note usuellement
∑

fn .

• Pour tout n ∈N, Sn est appelée somme partielle d’ordre n de la série de fonctions
∑

fn .

Exemple II.1.2.
∑(

x 7→ xn

n!

)
et

∑
n≥1

(
x 7→ 1

nx

)
sont des séries de fonctions.

Définition II.1.3 (Convergence simple). Soit ( fn)n∈N une suite de fonctions définies sur I .

• On dit que la série de fonctions
∑

fn converge simplement sur I si, pour tout x ∈ I , la série numérique
∑

fn(x) est

convergente.

Cette définition est équivalente à la convergence simple sur I de la suite de fonctions (Sn )n∈N.

• Si
∑

fn est simplement convergente, on appelle somme de la série
∑

fn la fonction

S : I −→ K

x 7−→
+∞∑
n=0

fn(x)

.

• Si la série de fonctions
∑

fn converge simplement sur I , on définit pour tout n ∈ N la fonction S − Sn appelée

reste d’ordre n de la série
∑

fn et notée Rn : x 7→
+∞∑

k=n+1
fk (x).

La suite (Rn)n∈N converge simplement vers 0̃ (fonction nulle) sur I .

Remarque. ✍
(1) Pour montrer la convergence simple sur I d’une série de fonctions :

• on commence par fixer x dans I (Soit x ∈ I .) puis on montre la convergence de la série numérique
∑

fn(x)

(Étudions la série numérique
∑

fn(x).).

• on définit alors sur I la somme de la série S : x 7−→
+∞∑
n=0

fn(x). (La série de fonctions
∑

fn CVS sur I . Notons S sa somme.).

(2) Si on demande de déterminer le domaine de définition d’une fonction présentée comme une somme de série,

on demande de déterminer le plus grand intervalle I sur lequel la série de fonctions converge simplement.

Il peut parfois s’agir d’une réunion d’intervalles (R∗ par exemple).

(Soit x ∈R. Étudions la nature de la série numérique
∑

fn(x).).

Exemple II.1.4. (1) Déterminer le domaine de définition de la fonction ζ : x 7→
+∞∑
n=1

1

nx .

(2) Déterminer le domaine de définition de la fonction S : x 7→
+∞∑
n=0

xn

1+xn .
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Définition - Théorème II.1.5 (Convergence uniforme). Soit ( fn)n∈N une suite de fonctions définies sur I .

• On dit que la série de fonctions
∑

fn converge uniformément sur I si la suite des sommes partielles (Sn)n∈N
converge uniformément sur I .

Dans ce cas, la série converge simplement sur I et on peut définir sa somme

S : I −→ K

x 7−→
+∞∑
n=0

fn(x)

.

• On dit que la série de fonctions
∑

fn converge uniformément sur tout segment de I si la suite des sommes partielles

(Sn)n∈N converge uniformément sur tout segment de I .

Dans ce cas, la série converge simplement sur I et on peut également définir sa somme S.

Proposition II.1.6.

Soit ( fn)n∈N une suite de fonctions définies sur I . On suppose que la série de fonctions
∑

fn converge simplement sur I .

Notons S sa somme et pour tout n ∈N, notons (Rn)n∈N = (S −Sn)n∈N la suite des restes de la série
∑

fn .

La série
∑

fn converge uniformément sur I si et seulement si la suite de fonctions (Rn)n∈N converge uniformément sur I

vers 0̃ : x 7→ 0.

Exemple II.1.7. Pour tout n ∈N∗, on définit fn : ]−1;1] −→ R

x 7−→ (−1)n−1xn

n

.

Étudier la convergence simple sur ]−1;1] et la convergence uniforme sur [0;1] de la série de fonctions
∑

n∈N∗
fn .

On ne demande pas d’exprimer la somme de la série.

Définition II.1.8 (Convergence normale). Soit ( fn)n∈N une suite de fonctions définies sur I .

• On dit que la série de fonctions
∑

fn converge normalement sur I s’il existe un rang n0 à partir duquel fn est bornée

sur I et si la série (numérique)
∑

n≥n0

∥ fn∥∞ est convergente.

• On dit que la série de fonctions
∑

fn converge normalement sur tout segment de I si, pour tout segment [a;b] ⊂ I ,

il existe un rang n0 à partir duquel fn est bornée sur [a;b] et la série (numérique)
∑

n≥n0

∥ fn∥[a;b]
∞ est convergente.

Souvent, les fonctions fn sont continues (par morceaux) sur le segment [a;b] donc bornées.

Remarque. Si
∑

fn converge uniformément/normalement sur I , alors
∑

fn converge uniformément/normalement sur

tout segment de I . La réciproque est fausse ! L’étude de la fonction Zeta de Riemann fournira un contre-exemple.

Méthode. ✍ Pour montrer la convergence normale d’une série de fonctions :

MÉTHODE 1 on fixe n ∈N (Soit n ∈N.) puis on peut calculer explicitement ∥ fn∥∞ en étudiant la fonction fn sur I (variations,...)

(si
∑∥ fn∥∞ diverge, cette étude peut permettre de montrer qu’il N’y a PAS convergence normale sur I ) ;

MÉTHODE 2 on fixe n ∈N (Soit n ∈N.) puis, pour tout x ∈ I , on peut chercher à majorer | fn(x)| par un réel αn indépendant de x

et terme général d’une série convergente. Dans ce cas, on aura le caractère borné des fn et le fait que ∥ fn∥∞ ≤αn .

Il suffira alors d’utiliser un théorème de comparaison pour les séries à termes positifs pour conclure

à la convergence normale sur I

(si on trouve une suite (xn )n∈N d’éléments de I telle que | fn (xn )| est le terme général d’une série divergente, on montre par l’absurde

qu’il N’y a PAS convergence normale sur I ).
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Théorème II.9. Soit ( fn)n∈N une suite de fonctions définies sur I .

(1) Si la série de fonctions
∑

fn converge normalement sur I , alors
∑

fn converge simplement et uniformément sur I .

(2) Si la série de fonctions
∑

fn converge normalement sur tout segment de I , alors
∑

fn converge simplement sur I

et converge uniformément sur tout segment de I .

Méthode. ✍ Pour étudier la convergence uniforme sur I d’une série de fonctions
∑

fn :

(1) on essaie de montrer la convergence normale de
∑

fn sur I ;

(2) s’il n’y a pas convergence normale de
∑

fn sur I , on montre la convergence simple de
∑

fn sur I puis on essaie de

montrer que la suite des restes (Rn)n∈N converge uniformément sur I vers 0̃.

Pour cela, on fixe n ∈N puis, pour tout x ∈ I , on calcule explicitement ou on majore |Rn(x)| =
∣∣∣∣∣ +∞∑
k=n+1

fk (x)

∣∣∣∣∣ par une

expressionαn qui ne dépend pas de x et telle que lim
n→+∞αn = 0 (souvent Rn (x) est le reste d’une série géométrique ou d’une série alternée).

Dans l’exemple précédent, il n’y avait pas convergence normale !

Exemple II.1.10. (1) Pour tout n ≥ 2, on définit fn : [0;1] −→ R

x 7−→ 1

n −x
− 1

n +x

.

Étudier la convergence simple et uniforme sur [0;1] de la série de fonctions
∑

fn .

(2) Montrer que la série de fonctions
∑

n≥1

(
x 7→ 1

nx

)
converge uniformément sur tout segment de ]1;+∞[.

2 ) Théorèmes de régularité de la somme d’une série de fonctions

En appliquant les théorèmes précédents à la suite des sommes partielles (double limite, continuité, classe C 1, classe C p ),

on obtient les théorèmes relatifs aux séries de fonctions.

Théorème II.11 (Théorème de la double limite - ADMIS). Soit ( fn)n∈N une suite de fonctions définies sur I .

Soit a ∈R∪ {−∞;+∞} un élément ou une extrémité de I .

On suppose que :

• pour tout n ∈N, fn admet une limite finie en a et on note ℓn = lim
x→a

fn(x) ;

• la série de fonctions
∑

fn converge uniformément sur I .

Elle converge donc simplement sur I ; notons S sa somme.

Alors :

• la série (numérique)
∑
ℓn est convergente ;

• la fonction S admet une limite finie en a ;

• lim
x→a

S(x) =
+∞∑
n=0

ℓn . On a alors lim
x→a

+∞∑
n=0

fn (x) =
+∞∑
n=0

lim
x→a

fn (x).

Exercice II.2.12. Pour tout x > 1, on note ζ(x) =
+∞∑
n=1

1

nx .

Le domaine de définition de la fonction ζ (Zeta de Riemann) a déjà été déterminée plus haut.

Montrer l’existence et calculer lim
x→+∞ζ(x).
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Théorème II.13 (Continuité - Version globale).

Soit ( fn)n∈N une suite de fonctions définies sur I .

On suppose que :

• pour tout n ∈N, la fonction fn est continue sur I ;

• la série
∑

fn converge uniformément sur I .

Elle converge donc simplement sur I ; notons S sa somme.

Alors la fonction S est continue sur I .

Théorème II.14 (Continuité - Version locale). Soit ( fn)n∈N une suite de fonctions définies sur I .

On suppose que :

• pour tout n ∈N, la fonction fn est continue sur I ;

• la série
∑

fn converge uniformément sur tout segment de I .

La série
∑

fn converge donc simplement sur I ; notons S sa somme.

Alors la fonction S est continue sur I .

Théorème II.15 (Classe C 1 - Version globale). Soit ( fn)n∈N une suite de fonctions définies sur I .

On suppose que :

• pour tout n ∈N, la fonction fn est de classe C 1 sur I ;

• la série
∑

fn converge simplement sur I ; on note S sa somme ;

• la série
∑

f ′
n converge uniformément sur I . La série

∑
f ′

n converge donc simplement sur I .

Alors la fonction S est de classe C 1 sur I et S′ : x 7→
+∞∑
n=0

f ′
n(x). On dit alors qu’on peut dériver terme à terme.

Théorème II.16 (Classe C 1 - Version locale). Soit ( fn)n∈N une suite de fonctions définies sur I .

On suppose que :

• pour tout n ∈N, la fonction fn est de classe C 1 sur I ;

• la série
∑

fn converge simplement sur I ; on note S sa somme ;

• la série
∑

f ′
n converge uniformément sur tout segment de I . La série

∑
f ′

n converge donc simplement sur I .

Alors la fonction S est de classe C 1 sur I et S′ : x 7→
+∞∑
n=0

f ′
n(x). On dit alors qu’on peut dériver terme à terme.

Exemple II.2.17. On poursuit l’exemple II.1.7. Pour tout n ∈N∗, on définit fn : ]−1;1] → R

x 7→ (−1)n−1xn

n

.

(1) On a déjà montré la convergence simple de la série de fonctions
∑

n∈N∗
fn sur ]−1;1]. On note alors f sa limite simple.

(2) Démontrer que f est de classe C 1 sur ]−1;1[ et en déduire une expression de f (x) pour tout x ∈]−1;1[.

(3) En utilisant le résultat de II.1.7, justifier que cette expression est également valable pour x = 1.
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Théorème II.18 (Classe C p - Version globale). Soit ( fn)n∈N une suite de fonctions définies sur I . Soit p ∈N∗.

On suppose que :

• pour tout n ∈N, la fonction fn est de classe C p sur I ;

• la série
∑

fn converge simplement sur I ; on note S sa somme ;

• pour tout 1 ≤ k ≤ p −1, la série
∑

f (k)
n converge simplement sur I ;

• la série
∑

f (p)
n converge uniformément sur I . La série

∑
f (p)

n converge donc simplement sur I .

Alors la fonction S est de classe C p sur I et, pour tout 1 ≤ k ≤ p : S(k) : x 7→
+∞∑
n=0

f (k)
n (x).

Théorème II.19 (Classe C p - Version locale). Soit ( fn)n∈N une suite de fonctions définies sur I . Soit p ∈N∗.

On suppose que :

• pour tout n ∈N, la fonction fn est de classe C p sur I ;

• la série
∑

fn converge simplement sur I ; on note S sa somme ;

• pour tout 1 ≤ k ≤ p −1, la série
∑

f (k)
n converge simplement sur I ;

• la série
∑

f (p)
n converge uniformément sur tout segment de I . La série

∑
f (p)

n converge donc simplement sur I .

Alors la fonction S est de classe C p sur I et, pour tout 1 ≤ k ≤ p : S(k) : x 7→
+∞∑
n=0

f (k)
n (x).

Remarque. Si les fonctions fn sont de classe C ∞ sur I et que les convergences (au moins sur tout segment) des séries de

fonctions dérivées sont toutes uniformes (inutile donc de vérifier les convergences simples), on peut utiliser les théorèmes

précédents pour conclure que la somme S de la série de fonctions est de classe C ∞ sur I et pouvoir dériver terme à terme.

Corollaire II.2.20 (Classe C ∞ - Version locale). Soit ( fn)n∈N une suite de fonctions définies sur I . Soit p ∈N∗.

On suppose que :

• pour tout n ∈N, la fonction fn est de classe C ∞ sur I ;

• la série
∑

fn converge simplement sur I ; on note S sa somme ;

• pour tout p ∈N∗, la série
∑

f (p)
n converge uniformément sur tout segment de I .

La série
∑

f (p)
n converge donc simplement sur I .

Alors la fonction S est de classe C ∞ sur I et, pour tout p ∈N : S(p) : x 7→
+∞∑
n=0

f (p)
n (x).

3 ) La fonction exponentielle

(1) Pour tout x ∈R, on note S(x) =
+∞∑
n=0

xn

n!
.

(a) Justifier que la fonction S est bien définie sur R et calculer S(0).

(b) Montrer que S est de classe C 1 sur R et que S′ = S.

(c) Conclure que S = exp (exponentielle réelle). Ce résultat avait déjà été démontré en utilisant l’inégalité de Taylor-Lagrange.

(2) Soit z ∈C. Pour tout t ∈ [0;1], on note f (t ) =
+∞∑
n=0

(t z)n

n!
.

(a) Justifier que la fonction f est bien définie sur [0;1] et calculer f (0).

(b) Montrer que f est de classe C 1 sur [0;1] et en déduire que : ∀t ∈ [0;1], f (t ) = et z .

(c) Vérifier que : ∀z ∈C, ez =
+∞∑
n=0

zn

n!
.

Ce résultat avait déjà été démontré en utilisant l’inégalité de Taylor-Lagrange. Notez qu’on n’a utilisé ici que des fonctions de la variable réelle.
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4 ) Un exemple classique : la fonction ζ de Riemann

On souhaite définir la fonction Zeta de Riemann par : ζ : x 7→
+∞∑
n=1

1

nx .

(1) Déterminer le domaine de définition de ζ.

(2) Démontrer que ζ est continue sur I .

(3) Démontrer que ζ est décroissante. On ne cherchera pas à dériver ζ.

En déduire que ζ admet une limite (finie ou infinie) en chaque borne de I .

(4) Déterminer la limite de ζ en +∞.

(5) Démontrer que ζ est de classe C ∞ sur I et exprimer sa dérivée ζ′ comme somme d’une série de fonctions.

(6) Nous allons montrer que lim
x→1

ζ(x) =+∞. C’est une question plus délicate.

D’après le théorème de la limite monotone, la limite de ζ en 1 est finie si ζ est majorée, égale à +∞ sinon. Procédons par

l’absurde en supposant que ζ est majorée. Il existe alors M ∈R tel que ζ(x) ≤ M pour tout x > 1.

Soit N ∈N∗. Puisque ζ est la somme d’une série de fonctions positives, on a : ∀x > 1, SN (x) =
N∑

n=1

1

nx ≤
+∞∑
n=1

1

nx ≤ M .

Faisons tendre x vers 1 dans le premier terme (qui est une somme finie !) : lim
x→1

SN (x) =
N∑

n=1

1

n
≤ M .

La divergence de la série harmonique assure qu’il existe N ∈N∗ qui contredit cette inégalité ! On a donc montré que lim
x→1

ζ(x) =+∞ .

5 ) Intégration terme à terme

Théorème II.21 (Intégration terme à terme sur un segment).

Soit ( fn)n∈N une suite de fonctions définies et continues sur un segment [a;b].

On suppose que la série de fonctions
∑

fn converge uniformément sur [a;b]. Alors
∑

fn converge simplement sur [a;b] ;

notons S sa somme.

Alors :

⋆ S est continue sur le segment [a;b] ;

⋆ la série
∑∫ b

a
fn(t )d t converge et

∫ b

a
S(t )d t =

+∞∑
n=0

∫ b

a
fn(t )d t.

On a alors
+∞∑
n=0

∫ b

a
fn (t )d t =

∫ b

a

+∞∑
n=0

fn (t )d t.

Exemple II.5.22. Pour tout n ≥ 2, on définit fn : [0;1] −→ R

x 7−→ 1

n −x
− 1

n +x

.

Nous avons déjà montré que la série de fonctions
∑

fn converge uniformément sur [0;1].

On considère sa somme S : [0;1] −→ R

x 7−→
+∞∑
n=2

(
1

n −x
− 1

n +x

) .

Montrer l’existence et calculer
∫ 1

0
S(x)d x.
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Théorème II.23 (Intégration terme à terme sur un intervalle - ADMIS).

Soit ( fn)n∈N une suite de fonctions définies sur I .

On suppose que :

• pour tout n ∈N, la fonction fn est continue par morceaux et intégrable sur I ;

• la série de fonctions
∑

fn converge simplement sur I ; on note S sa somme ;

• la fonction S est continue par morceaux sur I ;

• la série
∑∫

I

∣∣ fn(t )
∣∣d t converge.

Alors :

• la série (numérique)
∑∫

I
fn(t )d t converge absolument donc converge ;

• la fonction S est intégrable sur I ;

•
∫

I
S(t )d t =

+∞∑
n=0

∫
I

fn(t )d t. On a alors
+∞∑
n=0

∫
I

fn (t )d t =
∫

I

+∞∑
n=0

fn (t )d t.

Remarque. ✍ Ce résultat permet d’intervertir les symboles de limite et d’intégrale, même si I n’est pas un segment.

On peut bien sûr utiliser ce résultat si I est un segment.

Pour cela, deux rédactions sont possibles :

(1) on pourra dire qu’une fonction continue par morceaux sur un segment est intégrable sur ce segment et utiliser

directement le théorème sur I = [a;b] ;

(2) on pourra utiliser le théorème sur l’intervalle ouvert ]a;b[, ce qui ne change rien à la valeur des intégrales.

Exemple II.5.24. (1) Montrer que
∫ 1

0

ln2(t )

1+ t 2 d t = 2
+∞∑
n=0

(−1)n

(2n +1)3 .

On pourra introduire les fonctions fn : ]0;1[ −→ R

t 7−→ (−1)n t 2n ln2(t )

.

(2) Montrer que
∫ +∞

0

t 2

et −1
d t =

+∞∑
n=0

2

(n +1)3 .

(3) Montrer que
∫ 1

0

1

1+ t 3 d t =
+∞∑
n=0

(−1)n

3n +1
.

Méthode. ✍ Dans le dernier exemple, on voit que la série obtenue n’est pas absolument convergente.

Il est donc impossible que ce résultat soit la conséquence du théorème d’intégration terme à terme sur un intervalle !

C’est un moyen d’éliminer une des méthodes suivantes.

Lorsqu’on veut justifier l’intégration terme à terme sur I de la somme d’une série de fonctions, on peut :

(1) utiliser le théorème d’intégration terme à terme sur un segment (convergence uniforme?) ;

(2) utiliser le théorème d’intégration terme à terme sur un intervalle (convergence de la série
∑∫

I
| fn |?) ;

(3) appliquer le théorème de convergence dominée à la suite des sommes partielles (SN )N∈N et observer que

∀N ∈N,
∫

I
SN (t )d t =

N∑
n=0

∫
I

fn(t )d t .

L’intégrabilité des fonctions fn = Sn −Sn−1 sur I est assurée par l’intégrabilité des fonctions Sn qui est une des conclusions du TCD.


