Chapitre 10 - Suites et séries de fonctions

Dans tout ce chapitre, K désigne R ou C et I est un intervalle de R non vide et non réduit a un point.
Sauf mention du contraire, a et b désignent deux réels tels que a < b.

Toutes les fonctions considérées seront définies sur I et a valeurs dans K.

I — Suites de fonctions

1) Modes de convergence d’une suite de fonctions

Définition I.1.1. Soit (f;,),en une suite de fonctions définies sur I. Soit f une fonction définie sur I.

On dit que la suite (f;,) ,en converge simplement vers f sur I si:

Vxel, ngrfwfn(x) = f(x).
Autrement dit, (f};) ,en converge simplement vers f sur I si:
Vxel, Ve>0, IngeN, YneN, n=ng= | f(x) - fx)] <e.

On dit que (f) e converge simplement sur [ s’il existe une fonction f telle que (f%) ,en converge simplement vers f sur I.

Remarque. Lunicité de la fonction f est sous-entendue dans cette définition. Elle est la conséquence de 'unicité de la

limite d'une suite convergente.

Remarque. :@D
La convergence simple d'une suite de fonctions se traduit donc, pour tout x € I, par la convergence de la suite numérique (f;,(x)) yen-
Pour vérifier une convergence simple :
» on commence par fixer x dans I (Soit x € I.) puis on montre la convergence de la suite numérique (f;,(x)) sen-
1l est parfois nécessaire de distinguer plusieurs cas pour x.
 on définit alors sur I la fonction f: x— nl—l>r-+I—loo [fn(x), fonction appelée limite simple de la suite () ;en-

» on conclut que la suite de fonctions ( f;;) ,en converge simplement vers f sur 1.

Exemple1.1.2. (1) PourtoutneN,onnote f,: [0;1]] — R .Etudier la convergence simple de la suite de fonctions (f};) nen-

X — X"

(2) Soit @ € R. Pour tout n€N*,onnote g,: [0;+oco] — R
X — n%xe ™

Ftudier la convergence simple de la suite de fonctions (g;) en®-

(3) Pourtout neN*, onnote hn: [0;+00f — R

si X € [n;2n]

X —_—

[=EN

sinon
Ftudier la convergence simple de la suite de fonctions (k) sens -



Définition 1.1.3. Soit (f},) ,en une suite de fonctions définies sur I. Soit f une fonction définie sur I.

On dit que la suite (f;,) ,en converge uniformément vers f sur [ si:

Ye>0,3ngeN, VrneN, nzng=Vxel, |fu(x)- fx)| se.

On dit que (f3) en converge uniformément sur I s'il existe une fonction f telle que (f3) ,en converge uniformément vers f sur 1.

Remarque. On observe que dans cette définition, le rang ng est le méme pour tous les x de I, contrairement a la définition

de la convergence simple. La position des quantificateurs est déterminante!

Proposition I.1.4 (Caractérisation de la CVU).
Soit (fn) nen une suite de fonctions définies sur 1. Soit f une fonction définie sur I.
La suite (f,) nen converge uniformément vers f sur I si et seulement si :
o les fonctions f,, — f sont bornées sur I a partir d'un certain rang ngy ;
o lasuite (|| f, — f”oo)nzno converge vers 0.

On rappelle que si f est une fonction bornée sur I, on note || f lloo = sup | f (£)|.
tel

Corollaire I.1.5. Soit (f,) nen Une suite de fonctions définies sur I. Soit f une fonction définie sur I.
La suite (f,) nen converge uniformément vers f sur I si et seulement s'il existe une suite numérique (a,) nen telle que :
e apartir d'un certain rang, | f,(x) — f(x)| < a, pour toutxe€ I;

e lim a,=0.
n—+o0o

Théoreme 1.6. Soif (f;,) nen Une suite de fonctions définies sur I. Soit f une fonction définie sur I.
Si la suite (f,,) nen converge uniformément vers f sur I, alors (f;,) nen converge simplement vers f sur I.

En particulier, si une suite de fonctions converge uniformément, c’est forcément vers sa limite simple.

Méthode. /@D Pour étudier la convergence uniforme d’une suite de fonctions (f,;),en, On commence par étudier la

convergence simple et a nommer f la limite simple de (f;,) nen-
(1) Pour montrer que (f}) ,en converge uniformément vers f sur [ :

METHODE 1 on fixe n € N (Soit n € N.) puis, pour tout x € I, on majore | f, (x)— f (x)| par une expression a,, qui ne dépend pas de x

ettelleque lim a;,=0;
n—+oo
METHODE 2 on fixe n € N (Soit n € N.) puis on calcule | f;, — flloo €n étudiant la fonction f;, — f sur I (tableau de variations ...)
et on montre que (| f — f||oo),,2n0 converge vers 0.
(2) Pour montrer que (f),en NE converge PAS uniformément vers f sur I (et donc ne converge pas uniformément!) :
METHODE 1 on exhibe une suite (x,) ,en d’éléments de I telle que la suite (f;,(x,) = f (X)) ,cp D€ CONVerge pas vers 0.
S’ily avait CVU, alors on aurait 0 < | f;; (x) — £ (x1)| < | fu — flloo & partir d'un certain rang et donc (f (x) — f(xn))ne,\I convergerait vers 0.

METHODE 2 on fixe n € N (Soit n € N.) puis on étudie la fonction f;, — f sur I (tableau de variations ...). Si f, — f n’est bornée

a partir d’aucun rang ou si (|| f;; = flloo) n=n, € Cconverge pas vers 0, on conclut qu’'il n'y a pas CVU sur 1.

Exemple1.1.7. (1) PourtoutneN,onnote f,: [0;1]] — R
X — X"

Ftudier la convergence uniforme de la suite de fonctions (f;;) sen-



(2) Soit @ € R.Pour tout n€N*,onnote g,: [0;+c0] — R
x — n%xe ™

Ftudier la convergence uniforme de la suite de fonctions (gy) sen . On pourra discuter suivant la valeur de a.

(3) Pourtout neN*, onnote hn: [0;+00f — R

si X € [n;2n]

X —

O X |+~

sinon
Ftudier la convergence uniforme de la suite de fonctions (k) pen+ -

Définition - Théoreme I.1.8. Soit (f;;) ,en une suite de fonctions définies sur I.

On dit que (f;) nen converge uniformément sur tout segment de I si, pour tout [a; b] < I, (f;,) nen converge uniformément

sur [a; b). Dans cette définition, on a noté abusivement f au lieu de fy;)(4;p)-
Dans ce cas, f converge simplement sur /.

Il n'y a aucune raison que la convergence soit uniforme sur I tout entier!

Remarque. Si (f;,) nen converge uniformément sur I, alors (f;;) nen converge uniformément sur tout segment de 1.

La réciproque est fausse comme vont 'illustrer les exemples suivants.

Meéthode. @D Pour montrer que (f;) ,en converge uniformément sur tout segment de I, on commence par déterminer la
limite simple f de (f;,) nen sur I puis on procéde comme dans le point de méthodologie précédent.
La plupart du temps, la fonction f;, — f sera continue sur le segment [a; b] donc on aura

toujours I'existence de || f;, — f||([f);b] = sup |fn(0)—f(D)I. Notation bien pratique qui sera souvent utilisée.
tela;b)

Exemple1.1.9. (1) PourtoutneN, onnote f,: ]0;+c0f — R

X — e~ nx

Ftudier la convergence uniforme (éventuellement sur tout segment) de la suite de fonctions (f3,) nen.

(2) Pourtout neN,onnote 8n: [0;+o0l — R

x2

l1+nx
Etudier la convergence uniforme (éventuellement sur tout segment) de la suite de fonctions (g,) nen-

X —_—




2) Continuité de la limite d’'une suite de fonctions

Théoréme I.10 (Caractére borné). Soit (f;,) nen Une suite de fonctions définies sur I. Soit f une fonction définie sur I.
On suppose que :

o pour tout n €N, la fonction f,, est bornée surI;

e la suite (f,) nen converge uniformément vers f surI.

Alors la fonction f est bornée sur I.

Remarque. Dans ce cas, la suite (f;) ,en converge dans I’'espace vectoriel normé 98(7,K) muni de ||. || oo-
En particulier on a liIII Il frlloo = Il flleo (continuité de la norme).
n—+00

Cette remarque explique que la norme ||. |, est parfois appelée norme de la convergence uniforme.
fat [05+00] — R
Exemple1.2.11. Pour tout n € N, on note { e* si xX<n
X —

0 sinon
Etudier la convergence uniforme sur [0; +ool de la suite de fonctions (fy,) nen.

Théoreme 1.12 (Théoreme de la double limite - ADMIS ET HORS-PROGRAMME OFFICIEL).
Soit (f,) nen une suite de fonctions définies sur I. Soit a € R U {—oo; +0o} un élément ou une extrémité de I.

On suppose que :

e pour tout n €N, f,, admet une limite finie en a et on note ¢, = )l}_r)rgl fn(x);

e la suite (f,,) nen converge uniformément vers une fonction f surI.
Alors:

e la suite (¢},) nen et convergente, notons ¢ sa limite;

. chl_Ig fx)=¢.

On a alors }1_1’% nEToo fn) = nlirfm )%1_% fn(x).

Exemple1.2.13. Redémontrer le résultat obtenu dans I’exemple précédent en utilisant ce théoreme.

Théoréme I.14 (Continuité - Version globale).
Soit (i) nen une suite de fonctions définies sur I. Soit f une fonction définie sur 1.
On suppose que:

e pour tout n €N, la fonction f, est continue surI;

o la suite (f,,) nen converge uniformément vers f surI.

Alors la fonction f est continue sur I.

Théoreme I.15 (Continuité - Version locale). Soit (f;,) nen une suite de fonctions définies sur I.
On suppose que :
e pour tout n €N, la fonction f, est continue surI;
o la suite (f,,) nen converge uniformément sur tout segment de I.
La suite (f,) nen converge donc simplement sur I ; notons f sa limite simple.

Alors la fonction f est continue sur I.

Exemplel.2.16. & Ce théoréme permet également de montrer qu'une suite de fonctions NE converge PAS uniformément.

Trouver un exemple parmi ceux étudiés précédemment.




3) Intégration et dérivation

Théoréme I.17 (Interversion limite/intégrale sur un segment).
Soit () nen une suite de fonctions définies et continues sur un segment [a; b].

On suppose que (f,) nen converge uniformément sur [a; b] vers une fonction f.
Alors :

* f est continue sur le segment [a; b] ;

b b b
* la suite (/ fn(t)dt) est convergente et lim / fn(®dt =f fdze.
a n—+oo J, a

neN

b b
Onaalorsnkrllwf{l fn(t)dt=fa nll-rlloof"(t)dt'

Exercicel.3.18. & On considere la suite de fonctions (f};) nen définie par

fnr 061] — R
x — nx"1-x

(1) Montrer que (f;,)nen converge simplement sur [0; 1].
1
2) Calculerf frn(x)dx pour tout n € N.
0

(3) En déduire que (f;,),en ne converge par uniformément sur [0; 1].

Exemple1.3.19. APourtoutneN*,onnote hp: [0;+00f — R

si x € [n;2n]

X —

oI+

sinon
Nous avons déja démontré que la suite (/) ,en+ convergeait uniformément sur R vers la fonction nulle.

+00
Calculer f h,(x)dx pour tout n € N*. Pourquoi le théoreme précédent ne s’applique-t-il pas ici?
0

Théoréme 1.20 (Classe 6" - Version globale).
Soit (i) nen une suite de fonctions définies sur I. Soit f une fonction définie sur 1.
On suppose que :

o pour tout n €N, la fonction f, est de classe €' surI;

o la suite (f,,) nen converge simplement vers f surl;

o la suite (f}) nen converge uniformément sur I vers une fonction g.

Alors la fonction f est de classe €' surIet f' = g.




Théoréme I.21 (Classe €' - Version locale). Soit (f,,) neny une suite de fonctions définies sur I.
On suppose que :
e pour tout n €N, la fonction f, estde classe €' surI;
e la suite (f,,) nen converge simplement vers f surI;
o la suite (f}) nen converge uniformément sur tout segment de 1.
La suite (f;) nen converge donc simplement sur 1 ; notons g sa limite simple.
Alors la fonction f est de classe €' surIet f' =g.

Théoréme 1.22 (Classe 6P - Version globale).
Soit (fn) nen une suite de fonctions définies sur I. Soit f une fonction définie sur I. Soit p € N*.
On suppose que:
e pour tout n €N, la fonction f, est de classe €P surlI;
o la suite (f,,) nen converge simplement vers f surl;
e pourtoutl < k< p-1, lasuite (f,(,k))neN converge simplement vers une fonction gy surI;
e lasuite ( f,(lp ) neN converge uniformément sur I vers une fonction g.

Alors la fonction f est de classe 6P sur et, pour tout1<k<p: f® = g.

Théoréeme 1.23 (Classe 6P - Version locale). Soit (f;,) nen une suite de fonctions définies sur I. Soit p € N*.
On suppose que :
e pour tout n €N, la fonction f;, est de classe €P surI;
o la suite (f,,) nen converge simplement vers f surl;
e pourtoutl < k< p-1, lasuite( f,(lk))neN converge simplement vers une fonction gy surI;
e lasuite ( f,i” ) neN converge uniformément sur tout segment de 1.
La suite ( f,(lp ) JneN converge donc simplement sur I ; notons g, sa limite simple.

Alors la fonction f est de classe €P surl et, pour tout1<k<p: f® = g.

Remarque. Siles fonctions f}, sont de classe € sur I et que les convergences des suites de fonctions dérivées sont toutes
uniformes (au moins sur tout segment de I), on peut utiliser les théoremes précédents pour conclure que la limite simple f

est de classe € sur I.

Corollaire I.3.24 (Classe €*° - Version locale). Soit (f,,) nen une suite de fonctions définies sur I.
On suppose que :
o pour tout n €N, la fonction f,, est de classe €*° surI;
e la suite (f,) nen converge simplement vers f surI;
e pour tout p € N*, la suite (f,(,p))neN converge uniformément sur tout segment de I.
La suite (f,(lp))neN converge donc simplement sur I ; notons g, sa limite simple.

Alors la fonction f est de classe € sur I et, pour tout p e N* : fP) = 8p-




4) Théoreme de convergence dominée

Théoréme I.25 (Théoreme de convergence dominée - ADMIS). Soit (f;,) nen Une suite de fonctions définies sur I.
On suppose que :

e pour tout n €N, la fonction f,, est continue par morceaux sur I ;

e la suite (f,,) nen converge simplement vers f surI;

o la fonction f est continue par morceaux sur I ;

* il existe une fonction ¢ continue par morceaux et intégrable sur I telle que :
VneN, Vtel, |f,(D)] < (D).

Dans ce dernier point, appelé hypotheése de domination, la fonction ¢ est indépendante de n.
Alors:
e pour tout n €N, la fonction f, est intégrable sur I ;

* lafonction f estintégrable surI;

e la suite (numérique) (ffn(t)dt) converge etnhIP ffn(t)dtsz(t)dt.
I —tooJg I

neN

OnualursnETmfIfn(t)dt:ﬁnETmfn(t)dt.

Remarque. /’@D Dans la pratique, les hypothéses de continuité par morceaux pourront étre omises.

Remarque. 1@3 Ce résultat permet d’intervertir les symboles de limite et d’'intégrale, méme si I n’est pas un segment.
On peut bien stir utiliser ce résultat si I est un segment, par exemple s'il est préférable de vérifier 'hypothese de
domination plutdt que de montrer la convergence uniforme.

Pour cela, deux rédactions sont possibles :

(1) on pourra dire qu'une fonction continue par morceaux sur un segment est intégrable sur ce segment et

utiliser directement le théoreme sur I = [a; b];

(2) on pourra utiliser le théoreme sur I'intervalle ouvert ] a; b[, ce qui ne change rien a la valeur des intégrales.

Exemple1.4.26. Pour tout n € N*, notons

+00 i X
. f sin(z)
0

x(1+x2)
Montrer 'existence de I,, pour tout n € N* et trouver un équivalent simple de I,, lorsque 7 tend vers +oo.

Exercicel.4.27. Pour tout n € N*, on note

n x\n
uan (1+—) e 2 dx.
0 n

Montrer I'existence de u; pour tout n € N* puis montrer la convergence et calculer la limite de la suite (1) pen=-




II — Séries de fonctions

1) Modes de convergence d’'une série de fonctions

Définition II.1.1. Soit (f;) ,en une suite de fonctions définies sur I (tout se généralise 2 une suite définie sur [r9; +oo[| seulement).

Pour tout 7z € N, on définit la fonction
n
Sn=foth++fn= ka
k=0

o On appelle série de fonctions (de terme général f;,) la suite de fonctions (S;) ,en qu’on note usuellement ) f;,.

e Pourtout n €N, S, est appelée somme partielle d’ordre n de la série de fonctions Y f,.

x" 1
ExempleIl.1.2. ) (x — —') ety (x — —x) sont des séries de fonctions.
n. n=1 n

Définition I1.1.3 (Convergence simple). Soit (f;),en une suite de fonctions définies sur I.

¢ On dit que la série de fonctions ) f;, converge simplement sur [ si, pour tout x € I, la série numérique Y f;,(x) est

convergente.
Cette définition est équivalente a la convergence simple sur I de la suite de fonctions (Sy) ;en-

e Si) f, est simplement convergente, on appelle somme de la série ) f;, la fonction

S: I — K
+00 ’
X an(x)
n=0

« Si la série de fonctions ) f;; converge simplement sur I, on définit pour tout n € N la fonction S — S, appelée
+00
reste d’ordre n de la série }_ f;, et notée R, : x — Z S (x).
k=n+1
La suite (R;) ,en converge simplement vers 0 (fonction nulle) sur I.

Remarque. ﬁD

(1) Pour montrer la convergence simple sur I d’'une série de fonctions :
* on commence par fixer x dans I (Soit x € 1.) puis on montre la convergence de la série numérique ) f;,(x)

(Etudions la série numérique Y., fn(x).).
+00

¢ ondéfinit alors sur I lasomme delasérie S: x — Z fn(x). (La série de fonctions Y. f,, CVS sur I. Notons S sa somme.).

n=0
(2) Sion demande de déterminer le domaine de définition d’'une fonction présentée comme une somme de série,

on demande de déterminer le plus grand intervalle I sur lequel la série de fonctions converge simplement.
1l peut parfois s’agir d'une réunion d’'intervalles (R* par exemple).
(Soit x € R. Etudions la nature de la série numérique Y., f;,(x).).

+00 1

Exemplell.1.4. (1) Déterminer le domaine de définition de la fonction{:x— ) —.
n=1"1
+00 xﬂ

(2) Déterminer le domaine de définition de la fonction S: x — Z
n=0

1+x?°



Définition - Théoréme I1.1.5 (Convergence uniforme). Soit (f;;) ,en une suite de fonctions définies sur I.

e On dit que la série de fonctions ) f;, converge uniformément sur / si la suite des sommes partielles (S;) en

converge uniformément sur /.

Dans ce cas, la série converge simplement sur I et on peut définir sa somme

S: I — K
+00 .
x — Y fulx)
n=0

e Ondit que la série de fonctions )’ f,; converge uniformément sur tout segment de I sila suite des sommes partielles

(Sn) nen converge uniformément sur tout segment de 1.

Dans ce cas, la série converge simplement sur I et on peut également définir sa somme S.

Proposition I1.1.6.

Soit (fu)nen une suite de fonctions définies sur I. On suppose que la série de fonctions }_ f,, converge simplement sur I.
Notons S sa somme et pour tout n € N, notons (R,) nen = (S — Sp) nen la suite des restes de la série ). f,.

La série ). f, converge uniformément sur I si et seulement si la suite de fonctions (Ry) ,en converge uniformément sur I

vers0: x— 0.

Exemplel1.1.7. Pour tout n € N*, on définit fn: 1-1L1 — R .
(_ 1) n-1 xn
T T
Ftudier la convergence simple sur ] —1;1] et la convergence uniforme sur [0; 1] de la série de fonctions Z fn-

neN*
On ne demande pas d’exprimer la somme de la série.

Définition II.1.8 (Convergence normale). Soit (f};)zen une suite de fonctions définies sur I.

e Ondit que la série de fonctions )’ f;,, converge normalement sur I s'il existe un rang ng a partir duquel f;, est bornée

sur I et sila série (numérique) Z Il fllco €St cOnvergente.
n=ngn
e On dit que la série de fonctions ) f;, converge normalement sur tout segment de I si, pour tout segment [a; b] c I,

il existe un rang ny a partir duquel f;, est bornée sur [a; b] et la série (numérique) Z I fr IILZ;I’] est convergente.
n=ngp
Souvent, les fonctions f; sont continues (par morceaux) sur le segment [a; b] donc bornées.

Remarque. Si Y. f, converge uniformément/normalement sur I, alors }_ f;; converge uniformément/normalement sur

tout segment de I. La réciproque est fausse! L'étude de la fonction Zeta de Riemann fournira un contre-exemple.

Meéthode. ,@D Pour montrer la convergence normale d’une série de fonctions :

METHODE 1 on fixe n € N (Soit n € N.) puis on peut calculer explicitement | f, [loo €n étudiant la fonction f;, sur I (variations,...)

(si Z Il frlloo diverge, cette étude peut permettre de montrer qu'il N’y a PAS convergence normale sur ) ;

METHODE 2 on fixe n € N (Soit n € N.) puis, pour tout x € I, on peut chercher & majorer | f;,(x)| par un réel a,, indépendant de x

et terme général d'une série convergente. Dans ce cas, on aura le caractere borné des f;, et le fait que || f;;lloo < ap.

11 suffira alors d’utiliser un théoréme de comparaison pour les séries a termes positifs pour conclure
a la convergence normale sur /
(si on trouve une suite (x,) ey d’éléments de I telle que | f;; (x,,)| est le terme général d'une série divergente, on montre par ’absurde

qu'il N'y a PAS convergence normale sur I).
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Théoreme I1.9. Soit (f;,) nen Une suite de fonctions définies sur 1.
(1) Sila série de fonctions Y. f,, converge normalement sur I, alors Y. f,, converge simplement et uniformément sur I.

(2) Si la série de fonctions ). f,, converge normalement sur tout segment de I, alors Y f,, converge simplement sur I

et converge uniformément sur tout segment de I.

Méthode. ,@D Pour étudier la convergence uniforme sur I d’'une série de fonctions }_ f;, :
(1) on essaie de montrer la convergence normale de }_ f;, sur [;

(2) s'iln’'y a pas convergence normale de }_ f;, sur I, on montre la convergence simple de Y’ f, sur I puis on essaie de

montrer que la suite des restes (R;) ,en converge uniformément sur I vers 0.
+00
Y fio

k=n+1
expression &, qui ne dépend pas de x et telle que lirP ap, =0 (souvent Ry (x) est le reste d’une série géométrique ou d’une série alternée).
n—+oo

Pour cela, on fixe n € N puis, pour tout x € I, on calcule explicitement ou on majore |R, (x)| = par une

Dans 'exemple précédent, il n'y avait pas convergence normale!

Exemple1l.1.10. (1) Pourtout n =2, ondéfinit fn: [0;1] — R
1 1

n-x n+x

X —

Ftudier la convergence simple et uniforme sur [0; 1] de la série de fonctions }_ f;,.

1
(2) Montrer que la série de fonctions ) (x — —x) converge uniformément sur tout segment de ]1; +ool.
n=1 n

2) Théorémes de régularité de la somme d’une série de fonctions

En appliquant les théorémes précédents a la suite des sommes partielles (double limite, continuité, classe €1, classe €P),

on obtient les théoréemes relatifs aux séries de fonctions.

Théoreme I1.11 (Théoreme de la double limite - ADMIS). Soit (f,)nen Une suite de fonctions définies sur I.
Soit a € RU {—o0; +00} un élément ou une extrémité de I.
On suppose que :

e pour tout n €N, f,, admet une limite finie en a et on note ¢, = chllrzllfn (x);

e la série de fonctions Y. f,, converge uniformément sur I.

Elle converge donc simplement sur I ; notons S sa somme.

Alors:

o la série (numérique) Y. ¢, est convergente;

e la fonction S admet une limite finie en a;

. oo +00 +oo
e lim S(x) = Z 5. Onaalors lim Y fr(x)= ) lim fu(x).
x—a = x—a ‘= =yx—a

+00 1
Exercicell.2.12. Pour tout x > 1, on note {(x) = Z —-
n=11
Le domaine de définition de la fonction { (Zeta de Riemann) a déja été déterminée plus haut.

Montrer I'existence et calculer lirP {(x).
X—+00



Théoreme I1.13 (Continuité - Version globale).
Soit (f,) nen une suite de fonctions définies sur I.
On suppose que :
o pour tout n €N, la fonction f, est continue surI;
e lasérie}. f, converge uniformément sur I.
Elle converge donc simplement sur I ; notons S sa somme.

Alors la fonction S est continue sur I.

Théoréme II.14 (Continuité - Version locale). Soit (f;,) ,en Une suite de fonctions définies sur I.
On suppose que :
o pour tout n €N, la fonction f, est continue surI;
e lasérie. f, converge uniformément sur tout segment de I.
La série ). f,, converge donc simplement sur I ; notons S sa somme.

Alors la fonction S est continue sur I.

Théoréme I1.15 (Classe € - Version globale). Soit (f)nen Une suite de fonctions définies sur I.
On suppose que :

o pour tout n €N, la fonction f, est de classe €' surI;

e lasérie}. f, converge simplement sur I; on note S sa somme;

o lasérieY. f, converge uniformément sur I. La série Y. f, converge donc simplement sur I.

+00
Alors la fonction S est de classe €'surletS :x— Z f,’t (x). On dit alors qu'on peut dériver terme a terme.
n=0

Théoréme I1.16 (Classe %! - Version locale). Soit ( fn) nen une suite de fonctions définies sur 1.
On suppose que :

e pour tout n €N, la fonction f, est de classe €' surI;

o lasérie). f,, converge simplement sur I; on note S sa somme;

o lasériey. f) converge uniformément sur tout segment de I. La sérieY. f), converge donc simplement sur I.

+00
Alors la fonction S est de classe € LsurletS :x— Z f,; (x). On dit alors qu’on peut dériver terme a terme.
n=0
Exemple11.2.17. On poursuit I'exemple I1.1.7. Pour tout n € N*, on définit for 1-1L1 — R .
(-1 n-1 x"
X - —
n

(1) On adéja montré la convergence simple de la série de fonctions ) f; sur]—1;1]. On note alors f sa limite simple.
neN*

(2) Démontrer que f est de classe €' sur ] —1;1[ et en déduire une expression de f(x) pour tout x €] — 1;1[.

(3) En utilisant le résultat de I1.1.7, justifier que cette expression est également valable pour x = 1.
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Théoréeme I1.18 (Classe 67 - Version globale). Soit (f;,) nen Une suite de fonctions définies sur 1. Soit p € N*.
On suppose que :

o pour tout n €N, la fonction f, est de classe €P surI;

e lasérie). f, converge simplement sur I; on note S sa somme;

e pourtoutl<sk<p-1,la sérier,gk) converge simplement sur I ;

o lasérie}. f,(,” ) converge uniformément sur I. La série). f,§” 4 converge donc simplement sur I.

+00
Alors la fonction S est de classe €P sur I et, pour toutl<k<p: s x Z f,(lk) (x).
n=0

Théoréme I1.19 (Classe €7 - Version locale). Soit (f;)nen Une suite de fonctions définies sur 1. Soit p € N*.
On suppose que :

e pour tout n €N, la fonction f, est de classe €P surI;

e lasérie_ f, converge simplement sur I; on note S sa somme;

e pourtoutl<k<p-1,lasérie). f,gk) converge simplement sur I ;

o lasérie). f,i’” ) converge uniformément sur tout segment de 1. La série ). f,(,p ) converge donc simplement sur 1.

+00
Alors la fonction S est de classe 6P sur I et, pour toutl<k<p: S®:x— > f,(lk) (x).
n=0

Remarque. Siles fonctions f;, sont de classe € sur I et que les convergences (au moins sur tout segment) des séries de
fonctions dérivées sont toutes uniformes (inutile donc de vérifier les convergences simples), on peut utiliser les théorémes

précédents pour conclure que la somme S de la série de fonctions est de classe € sur I et pouvoir dériver terme a terme.

Corollaire I1.2.20 (Classe ¢ - Version locale). Soit (f;,) nen Une suite de fonctions définies sur I. Soit p € N*.
On suppose que :

o pour tout n €N, la fonction f,, est de classe €*° surI;

e lasérie}). f, converge simplement sur I; on note S sa somme;

e pour tout p e N*, la série ). f,ﬁ” ) converge uniformément sur tout segment de 1.

La série ). f,(,p 4 converge donc simplement sur I.

+00
Alors la fonction S est de classe €™ sur I et, pour toutpeN: SP: x— > f,(,p) (x).
n=0

3) Lafonction exponentielle

+00 xn
(1) Pour tout x € R, on note S(x) = Y_ L
n=0 %

(a) Justifier que la fonction S est bien définie sur R et calculer S(0).

(b) Montrer que S est de classe €' sur R et que S’ = S.

(c) Conclure que S = exp (exponentielle réelle). Ce résultat avait déja été démontré en utilisant I'inégalité de Taylor-Lagrange.
. +o0o ( t Z) n
(2) Soitz e C. Pour tout £ € [0;1], on note f() = ) —
n=0 M-

(a) Justifier que la fonction f est bien définie sur [0;1] et calculer f(0).

(b) Montrer que f est de classe ¢! sur [0;1] et en déduire que:Vre[0;1], f(1) = elz,

. +00 Zn
(c) Vérifier que:| VzeC, e’ =)

n=0 n! .

Ce résultat avait déja été démontré en utilisant I'inégalité de Taylor-Lagrange. Notez qu’on n’a utilisé ici que des fonctions de la variable réelle.




4) Unexemple classique :la fonction { de Riemann

On souhaite définir la fonction Zeta de Riemannpar:|{:x— ) — |

(1) Déterminer le domaine de définition de (.
(2) Démontrer que { est continue sur /.

(3) Démontrer que { est décroissante. On ne cherchera pas a dériver ¢.

En déduire que ¢ admet une limite (finie ou infinie) en chaque borne de I.
(4) Déterminer la limite de { en +oo.
(5) Démontrer que { est de classe € sur I et exprimer sa dérivée (' comme somme d’une série de fonctions.

(6) Nous allons montrer que lim1 {(x) = +00. C’est une question plus délicate.
x4>

D’apres le théoreme de la limite monotone, la limite de { en 1 est finie si { est majorée, égale a +oo sinon. Procédons par

I'absurde en supposant que { est majorée. Il existe alors M € R tel que {(x) < M pour tout x > 1.

N 1 +00 1
Soit N € N*. Puisque ¢ est la somme d’une série de fonctions positives, ona: Vx> 1, Sy(x) = Z — < Z — =M.
n=1" n=1"1
N1
Faisons tendre x vers 1 dans le premier terme (qui est une somme finie!) : lirn1 Syx) = Z — <M.
x— aon

La divergence de la série harmonique assure qu'il existe N € N* qui contredit cette inégalité! On a donc montré que lim1 {(x) =400 |
e

5) Intégration terme a terme

Théoreme I1.21 (Intégration terme a terme sur un segment).
Soit (f)nen une suite de fonctions définies et continues sur un segment [a; b].
On suppose que la série de fonctions ). f;, converge uniformément sur [a; b]. Alors Y. f;,, converge simplement sur [a; b] ;

notons S sa somme.

Alors :

* S est continue sur le segment [a; b] ;

b b +oo b
* lase’rier fa(t)ydt convergeetf S(dt=) | fa(ddt.
a a n=0va

aF b b +oo
On a alors Zf fn(t)dt:f Y fa(ddt.
n=0Ja a p=0

Exemple1l.5.22. Pourtout n =2, on définit fn: [0;1] — R
1 1

n-x n+x

X —_—

Nous avons déja montré que la série de fonctions }_ f;, converge uniformément sur [0; 1].

S: [0;61] — R

C = Bl

s \n—x n+x

On considére sa somme

1
Montrer I’existence et calculer f S(x)dx.
0
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Théoreme I1.23 (Intégration terme a terme sur un intervalle - ADMIS).
Soit (f,) nen une suite de fonctions définies sur I.
On suppose que :
e pour tout n €N, la fonction f, est continue par morceaux et intégrable sur I ;
o la série de fonctions ) f,, converge simplement sur I ; on note S sa somme;
e lafonction S est continue par morceaux sur I ;
o lasérie) fI | fn(0)| dt converge.
Alors:
e la série (numérique) Z fI fn(2)dt converge absolument donc converge;

e lafonction S est intégrable sur I ;

+00 +0o 500
. fS(t)dt: Z fr(0dt. Onaalorstfn(t)dtz Y faadr.
I n=0v1 1 I'n=0

n=0

Remarque. /@3 Ce résultat permet d’intervertir les symboles de limite et d’'intégrale, méme si I n’est pas un segment.
On peut bien str utiliser ce résultat si I est un segment.

Pour cela, deux rédactions sont possibles :

(1) on pourra dire qu'une fonction continue par morceaux sur un segment est intégrable sur ce segment et utiliser
directement le théoreme sur I = [a; b];

(2) on pourra utiliser le théoréme sur I'intervalle ouvert ] a; b, ce qui ne change rien a la valeur des intégrales.

Exemple1l.5.24. (1) Mont fl In*(2) +Zoo CD”
xempie 11.05.24. ontrer que = D ———
P 4 o 1+12 = @2n+1)3

On pourra introduire les fonctions  f;,:  10;1] — R

r — DA%

+00 t2 +00 2
2) Montrer que —dt= P
@ d fo el-1 ,,go (n+1)3
1 1 +00 (_l)n
3) Montrer que ——dt= .
®) q fo 1+ ,;0 3n+1

Meéthode. ,@D Dans le dernier exemple, on voit que la série obtenue n’est pas absolument convergente.
Il est donc impossible que ce résultat soit la conséquence du théoreme d’intégration terme a terme sur un intervalle!

C’est un moyen d’éliminer une des méthodes suivantes.

Lorsqu’on veut justifier I'intégration terme a terme sur I de la somme d'une série de fonctions, on peut :

(1) utiliser le théoréeme d’intégration terme a terme sur un segment (convergence uniforme?);

(2) utiliser le théoréme d’intégration terme a terme sur un intervalle (convergence de la série ) | f | fal®);
I

(3) appliquer le théoréme de convergence dominée a la suite des sommes partielles (Sy) yen €t Observer que

N
VNeN, fSN(t)dtz Y| faoadr.
I n=0v1

Lintégrabilité des fonctions f;, = S; — Sp—1 sur I est assurée par I'intégrabilité des fonctions S; qui est une des conclusions du TCD.



