Chapitre 11 - Séries entieres

Dans tout ce chapitre, K désigne R ou C.

I — Définition - Rayvon de convergence

1) Définition - Notation

DéfinitionI.1.1. (1) On appelle série entiere (de la variable complexe) toute série de fonctions ) f;, otl,

pour tout n € N, f, est une fonction de C dans C de la forme f;, : z— a,z" ol a, € C.

On notera abusivement Y a, z" cette série de fonctions (au lieu de Z (z— anz")).

(2) On appelle série entiere de la variable réelle toute série de fonctions }_ f;, ou, pour tout n € N,

fn est une fonction de R dans C de la forme f;, : x — a, x" ou a, € C.
On notera abusivement Y. a,x” cette série de fonctions (aulieude )_ (x — anx")).
(3) Les termes de la suite (a;) ,en sont appelés coefficients de la série entiére. On appelle terme constant le terme ay.

N
On observe que les sommes partielles de cette série de fonctions sont des fonctions polynomiales | z— Z anz =ap+arz+---+a NZN .

n=0
Remarque. A

(1) Lanotation ) a,z" peut donc aussi bien désigner la série de fonctions }_(z — a,z") que la série numérique )" a, z"
ol z est fixé.

”

Pour lever toute ambiguité, on dira "La série entiére Y. a,z" ...” OU "Soit z € C. La série numérique Y. a,z" ...

(2) On étend la définition de convergence simple aux séries entiéres de la variable complexe :

la série entiére ) a, z" converge simplement sur D si, pour tout z € D, la série numérique }_ a,z" converge.
+00

En z =0, il y a toujours convergence de la série numérique }_ a,z" et Z a,0" = ay.
n=0

(3) On pourra toujours considérer que la suite des coefficients est définie sur N et se note (a,)nen, quitte a dire que
certains coefficients sont nuls.
Deux exemples :
— une fonction polynomiale est une série entiére (les coefficients sont nuls a partir d'un certain rang);

— la série entiere Y nx®" est associée a la suite de coefficients (a,,) en OU dops1 =0 €t dop = 1 pour tout n € N.

Zl’l
Exemplel.1.2. (1) Lafonction z— exp(z), définie sur C, est la somme de la série entiere Z —-
n!

1
(2) Lafonction z+— -2 définie sur D = {z € C | |z| < 1}, est la somme de la série entiéere ) z".
-z
1
(3) Lafonction x — 1% définie sur ] — 1;1[, est la somme de la série entiére (de la variable réelle) Y x".
- X

Dans la suite du cours, nous allons étudier la convergence des séries entiéres puis les propriétés de régularité de leur
somme. Dans le cas des fonctions de la variable complexe, nous nous arréterons a la continuité (définie dans le cadre des
Espaces vectoriels normés). Pour les fonctions de la variable réelle, nous compléterons avec la dérivation (éventuellement

multiple) et la primitivation.




2) Lemme d’Abel - Définition du rayon de convergence

Théoréme I.3 (Lemme d’Abel). Soit (a,),en Une suite complexe. Soit zg € C.

Si la suite (anzg)neN est bornée, alors pour tout z € C tel que|z| < |zy|, la série numériquey_ a, z" est absolument convergente.

Définition - Théoréme 1.2.4. Soit Y a,z" une série entiere.
« Sil'ensemble E = {r € [0; +0o[ | (@, ") nen est bornée} est majoré,

on appelle rayon de convergence de la série entiére ) a,, 2" la borne supérieure de E.

« Si E n'est pas majoré, on dit que le rayon de convergence de la série entiéere est +oo.
On note habituellement R(}_ a,z") le rayon de convergence de la série entiere ) a, z".
On remarque que Y. a,z" et Y. |ay|z" ont le méme rayon de convergence.

La définition est la méme pour les séries entiéres de la variable complexe ou de la variable réelle.

Théoreéme 1.5 (Role primordial du rayon de convergence).

(1) Soit. a,z" une série entiere de la variable complexe. Notons R le rayon de convergence de cette série entiére.

(a) Supposons que R = 0.
Soit z € C. La série numérique ) a,z" converge si et seulement si z = 0. Sinon, la série diverge grossierement.
(b) Supposons que R €]0; +ool. Soit z€ C.

e Si|z| <R, alors la série numérique ). a,z"* converge absolument.

On appelle disque ouvert de convergence l'ensemble D(0,R) ={z€ C | |z| < R}.

En particulier, la série de fonctions Y. a, z" converge simplement au moins sur D(0, R)
+00

et la fonction z — Z a,z" est bien définie sur D(0, R) (et peut-étre sur un domaine plus grand).
n=0
e Si|z| > R, alors la série numérique Y. anz" diverge grossierement.

e Si|z| = R, on ne peut rien dire en général de la convergence de la série numérique Y. anz".

On dit qu'ily a incertitude sur le cercle de convergence.

(¢c) Supposons que R = +oo. Pour tout z € C, la série numérique Y. a,z" converge absolument.
pp q q i

En particulier, la série de fonctions Y. a,z" converge simplement sur C et
+00

la fonction z — Z anz" est définie sur C tout entier.
n=0

(2) Soity a,x™ une série entiere de la variable réelle. Notons R le rayon de convergence de cette série entiere.

On a exactement le méme énoncé que dans le cas de la variable complexe avec D(0, R) =] — R; R|, intervalle alors

appelé intervalle ouvert de convergence.

+00

Remarque. A Si on demande le domaine de définition d'une fonction de la forme x — Z a,x" (variable réelle), il ne
n=0

suffit pas de trouver le rayon de convergence R de la série entiere Z anx". Dans le cas ol R # +oo, il faut aussi étudier la

convergence de la série numérique Z anx" pour x = —R et x = R (au bord de I'intervalle ouvert de convergence).

Zl’l
Exemplel.2.6. (1) Lasérie entiere Z — apour rayon de convergence +o0o |.
n!

(2) | Le rayon de convergence de la série entiére Y z" est 1. | Le disque ouvert de convergence est le disque de centre 0

de rayon 1.Y a-t-il convergence sur le cercle de convergence?




(3) Lerayon de convergence de la série entiere )" x" est 1. Lintervalle ouvert de convergence est ] —1; 1[.

Y a-t-il convergenceen 1 et —1?
x}’l
(4) Le rayon de convergence de la série entiere ) — estégala 1. Y a-t-il convergence en 12 et en —1?
n

n
(5) Le rayon de convergence de la série entiére ) _ — estégala 1. La série converge-t-elle sur le cercle de convergence?
n

3) Méthodes de calcul du rayon de convergence

Les méthodes et théoremes détaillés dans cette section sont aussi bien valables pour les séries entiéres de la variable

complexe que pour celles de la variable réelle.

Meéthode. :@D Pour déterminer le rayon de convergence R d'une série entiére ) a,z", on peut simplement utiliser le

théoréme précédent :

(1) sion trouve zg (souvent dans ]0; +ool) tel que Y- a, z; converge (ou que la suite (a;z{) nen est bornée), alors |zg| < R;

(zg est dans le disque ouvert de convergence ou sur son bord)

(2) sion trouve z; (souvent dans ]0; +ool) tel que }_ a,,z{' diverge (ou que (a,z]") nen ne tend pas vers 0), alors R <|z1].
(21 n'est pas dans le disque ouvert de convergence)
C’est ainsi que les exemples précédents ont été traités.
xn

Exercice1.3.7. Déterminer le rayon de convergence de la série entiere Z Tﬂ)
cos (=52
3

Théoréme 1.8 (Théoréeme de comparaison). On considere deux séries entieres Y. a,z" ety b, z".

On note respectivement R, et Ry, leur rayon de convergence.
(1) Silap| < |by| a partir d’'un certain rang, alors Ry < R,,.
(2) On suppose que b, # 0 a partir d’'un certain rang.
(@) Silay|= O(byl) (en particulier si|ay,| = o(|byl)), alors R, < R,.

(b) Silay| ~ |byl, alors Ry = Ryp.

Remarque (hors-programme). Sil’hypothése "b, # 0”n’est pas satisfaite (séries lacunaires), ces résultats s’appliquent également.

Proposition 1.3.9 (Regle du n%). Soit (a,)nen une suite de complexes. Soit a € R.

Les séries entieres Y. anz" et) n*a,z" ont le méme rayon de convergence.

Méthode. ﬁn Pour déterminer le rayon de convergence d'une série entiére, on peut utiliser le critére de d’Alembert pour
une série numérique. Détaillons la rédaction.
4" ZZn

Enoncé : On considere la série entiere Z . Déterminer le rayon de convergence de cette série entiére.

Rédaction d’'une solution : Utilisons le critere de d’Alembert pour les séries numériques.

Soit x > 0. Pour tout 7 € N, notons 1, = 4" x*" (non nul) :

lun+1l
n—+1=4|x2 — 4x2.
17 n—+oo

Sio<x< %, la série . ap x™ converge absolument donc R = %

Si % < x, la série diverge grossierement donc R < % Finalement| R

D=




Proposition I.3.10 (Regle de d’Alembert pour les séries entiéres).

Soit Y a,z" une série entiere de rayon de convergence R. On suppose que la suite (an) nen ne sSannule plus a partir d'un
An+1

certain rang ny et que la suite ( ) posséde une limite ¢ € Ry U {+o0}.
an ) nzng

e Si¢=0,alorsR = +oco.

e Sif¢=+o0, alorsR=0.

1
e Si¢€]0;+o00[, alorsR = 7°

Remarque. A Pour utiliser la regle de d’Alembert pour les séries entieres, les coefficients a,, doivent étre non nuls a

partir d’'un certain rang.  Cen'estpaslecasde Y n?z2"*1 ou }’ %znz par exemple, on parle alors de séries lacunaires.

La méthode de d’Alembert ne s’applique pas aux séries lacunaires!

On évitera aussi la regle du n% ou I'utilisation d’équivalent qui ne sont pas au programme dans le cas des séries lacunaires (méme si le rayon obtenu est le bon).
On peut plutot considérer des valeurs particuliéres de z (définition du rayon de convergence), utiliser une minoration/majoration

de |a,| oule critere de d’Alembert pour les séries numériques ...

Exercice1.3.11. Déterminer le rayon de convergence des séries entiéres suivantes :

n? (3n+2
1 —x"; 4 ;
M 2 @ L 5
(2) Z ch(n)z" (dans ce cas, on exprimera la somme de la -n
(5) Z e_z( 2)
série entiere dans D(0, R)); n+3 )
2
3 ) ln(l + —3)x";
n=0 n

Théoréme .12 (Opérations entre séries entieres).
On considere deux séries entieres Y. a,z" ety b,z". On note respectivement R, et Ry, leur rayon de convergence.
(1) SoitA e C*. Lerayon de convergence de la série entiere Y. La, z" est R,.

+00 +00
De plus, pour tout z€ D(0,Ry) : Y Aanz" =1 a,z".

n=0 n=0

(2) Le rayon de convergence R de la série entiére Y (a, + b,)z" vérifie :

min{R,, Ry} < R, avec égalité si R, # R,.

+00o +00 +o00o
De plus, pour tout z € D(0,min{Rq, Rp}) : Y (an+bp)z" = ) anz"+ ) byz".
n=0 n=0 n=0

n
(3) On appelle produit de Cauchy des deux séries entiéres la série entiére Y. c,z" avec ¢, = agby,_i = a;b;.
ppelie p y j
k=0 i+j=n

Le rayon de convergence R, de la série entiére y c,z" vérifie :

min{Rg, Ry} < Rp.

+00 +00 +00
De plus, pour tout z € D(0,min{Ry, Rp}) : Y ¢,2" = (Z anz”) (Z bnz”).
n=0 n=0

n=0

+o00

Exemple1.3.13. En utilisant un produit de Cauchy, montrer que pour tout x €] —1;1[,ona: Z (n+1x" = W
n=0 —-X



II — Régularité de la somme d’une série entiere de la variable réelle

Dans cette section, les séries entiéres seront uniquement de la variable réelle.

Théoréeme IL.1. Soit) a,x" une série entiere de la variable réelle. Supposons que son rayon de convergence R est non nul.

Pour tout r €]0; R|, la série entiére ) a,x" converge normalement sur [—r1;71].

Théoréme II.2 (Continuité sur 'intervalle ouvert de convergence).

Soit)" an,x™ une série entiére de la variable réelle. Supposons que son rayon de convergence R est non nul.
+00
La fonction x — Z a,x" (somme de la série entiere) est continue sur] — R; R].
n=0

Théoréme II.3 (Primitivation).

Soit)" an,x" une série entiere de la variable réelle. Supposons que son rayon de convergence R est non nul.
+00

On note f : x — Z anx" la somme de cette série sur] — R; R[. On sait que [ est continue sur] — R; R|.
n=0

L . N an n+1 L. N .
e rayon de convergence de la série entiere Z ﬁx est R. Notons F la somme de cette série entiere sur] — R; R|.
n

X +00 +00
Alors F est la primitive de f sur]— R; R[ qui sannule en 0, c’est-a-dire F : x »—»f fdt. (Z xa,,t"dt:fx Y an t”dt).
0 n=070

n=0

Remarque. /@3 Sion souhaite le développement en série entiere d'une autre primitive de f, on pensera a ajouter a F la valeur en 0.

+00 +00
Rédaction : Soit xe] - R;R[. F' (x) = Z anx™ donc, par primitivation terme 4 terme d'une série entiére : F(x) = F(0) + Z na-fl L
n=0 n=0
Exemple11.0.4. &
00 41 +00 xn+1 +00 x
(1) | Pourtout x€]-L;1[In1-x)=-) — | et |In1+x)=) (-1" =Y -D"'=—| ®=D.
n=1 1 n=0 n+1 n=1 n

oo (] n-1
On a déja montré (avec Taylor-Lagrange mais aussi en étudiant une série de fonctions) que In(2) = ) )
n=1

x2n+1

2n+1

+00
(2) | Pour tout x €] — 1;1[, arctan(x) = Z =D" (R=1).
n=0

Théoréme I1.5 (Dérivation - Classe €°°).

Soit) an,x" une série entiere de la variable réelle. Supposons que son rayon de convergence R est non nul.

+00
Onnote f : x — Z a,x" la somme de cette série sur] — R; R|[.
n=0
(1) f estde classe €' sur|— R;RI, la série enti¢re (dite des dérivées) Z nanx"_1 a pour rayon de convergence R et sa
n=1
somme est la fonction f'.
(2) f estde classe €*° sur]— R;R|[ et pour tout p e N :
+00 |
n!
fPx— Y ——a,x"P
,,;p (n—p)! "

On peut dire qu'on obtient cette forme en dérivant p fois terme a terme, le rayon de convergence des séries entieres dérivées étant toujours égal a R.
o f(P) (0)
En particulier :NpeN, a, = —
p!




6

Remarque. ﬁn Pour ne pas confondre avec'utilisation abusive d'un théoréme sur les séries de fonctions, on soignera la rédaction :

+00

+00
Soitx €]-R;R[. f(x) = ) anx" donc, par dérivation terme a terme d’une série entiére surl'intervalle ouvert de convergence : f "(x) = Y nay XL
n=1

n=0

Exemplell.0.6. &

(1) Retrouver rapidement que le rayon de convergence de la série entiére Z(n +1)x" est égal a1 et que,

+00 1
pourtoutx€]-1;1[: ) (n+1x" = ——.
n=0 (1-x)?
2n+1 +00 x2n+1 1
(2) Montrer que le rayon de convergence de la série entiere Z 1 estégalaletque, pourtoutxe]-1;1[: Z el 2
n=0

d

Corollaire I1.0.7 (Unicité de la suite des coefficients). Soit) a,x" etY b, x" deux séries entiéres de la variable réelle.

Notons respectivement R, et Ry, leur rayon de convergence. On suppose que R, >0 et R, > 0.
+00 +00

S’il existe0 < r < min{R,, Ry} tel que :Vx €l —r;71], Z anpx" = Z b, x™, alors les suites (an) nen et (by) nen Sont égales.
n=0 n=0

I suffit en fait d'avoir l'égalité des sommes sur] —r;0[ ou]0; 7 pour un certainr > 0.

II1 - Développement en série entiere d’une fonction de la variable réelle

Dans cette section, les séries entiéres seront uniquement de la variable réelle.

Le but est de se donner des moyens de répondre aux deux questions suivantes :

+00
(1) Etantdonnée une fonction de classe € sur|—A; Al, existe-t-il une suite de coefficients (ay,) nen telle que f(x) = Z anx
n=0
. +00
(2) Etant donnée une série entiére ). a,x" de rayon de convergence R > 0, peut-on exprimer sa somme [ : x — Z anpx"
n=0

al’aide de fonctions usuelles?

1) Définition - Série de Taylor

Définition III.1.1.
Soit f une fonction définie au voisinage de 0 (c’est-a-dire au moins sur un intervalle de la forme ] — A; A[ avec A > 0).

On dit que f est développable en série entiére (au voisinage de 0) (DSE) s'il existe une suite (a;),en €t un réel r > 0 tels

que la série entiere ) a,x" ait un rayon de convergence au moins égal a r et :
+00
Vxel-r;rl, f(x) =) apx".
n=0

On dit alors que f est DSE sur | —r;7[.

Remarque. A

Dans la définition, la série entiére converge simplement sur un intervalle I (de la forme | — R;R[ou [-R;R[ou ...)
etla fonction f est définie sur un domaine D. Il n'y a aucune raison que I et D coincident.

On pourra observer avec attention ’exemple de la fonction arctan.

no

1+x

1-x

|



Définition - Théoréme I11.1.2 (Série de Taylor).

(O
Soit f une fonction de classe ¥ au voisinage de 0. On appelle série de Taylor de f la série entiére Z u
n!

Si f est développable en série entiere au voisinage de 0, alors la série entiére est la série de Taylor de f.

Remarque. A Ce résultat d'unicité n’assure pas que f soit DSE! Il est possible que la rayon de convergence de la série
de Taylor soit nul ou que la somme de la série de Taylor de f ne coincide avec f sur aucun intervalle de la forme | —r; r[.

Rappelons qu'il est inutile de chercher a développer en série entiére une fonction qui n’est pas de classe ¢°° au voisinage de 0!

Les formules de Taylor (Taylor-Lagrange ou Taylor avec reste intégral) vont permettre d’avoir un controle sur
la différence entre f etla somme de sa série de Taylor et donc de pouvoir justifier qu'une fonction est égale a la somme de

sa série de Taylor sur un intervalle centré en 0.

2) Formule de Taylor avec reste intégral - Inégalité de Taylor-Lagrange

Théoréme III.3 (Formule de Taylor avec reste intégral - Inégalité de Taylor-Lagrange).
Soit n € N. Soit I un intervalle deR. Soit a € I (on dit qu'on écrit la formule en a a l'ordre n).

Soit f : I — K une fonction définie et de classe €' sur I.

(1) Alors, pourtoutxel :

n (k)
f(x)=(zf (a) - ) f(x f("“)(t)dt

w0 K

Cette égalité est appelée formule de Taylor avec reste intégral.

(2) Soitxe I. La fonction | f"+V)| est continue sur le segment [a; x] donc il existe M € R, tel quesup |f"*V|=M
[a;x]
On a alors :
|x _ a|n+l

(n+1)! °

(k)
fx) - (Z I k( 9
k=0 :

Cette inégalité est appelée inégalité de Taylor-Lagrange.

(x—a) ) <M x

Remarque.
(1) Sif estpolynomiale de degré n, alors f"**V est nulle et on retrouve la formule de Taylor pour les fonctions polynomiales.
(2) Dansl'inégalité de Taylor-Lagrange, on peut remplacer M par n'importe quel majorant de | flrrD) | entre a et x.

(3) Sion utilise ces formules en a = 0 pour des fonctions usuelles (ce que I'on fera!), on connait la partie polynomiale
par coeur (partie réguliere du DL a I'ordre n). La connaissance des coefficients de cette partie polynomiale permet

de retenir la série de Taylor de ces fonctions : x — e¥, sin, cos, ch, sh, x — ﬁ, x—In(1+x), x— (1+x)%.

x —t 2 3
Sl cos(t)dt < %

Exercicelll.2.4. (1) Montrer que, pour tout x € Ry : f
0

3
X
(2) Grace ala formule de Taylor avec reste intégral, en déduire que, pour tout x € Ry : x — 3 < sin(x).

3
X
(3) Montrer que, pour tout x € Ry : x — E <sin(x) < x.

Méme si c’est un résultat déja connu, on pourra redémontrer la seconde inégalité en utilisant la formule de Taylor avec reste intégral a I'ordre 0.



+00 (_l)nx2n+1
Exemplelll.2.5. (1) sinestDSEsurRet,| pourtout xeR:sin(x) =) —————
Z T 2n+1)

+00 (_l)ann
(2) cosestDSE surRet,| pour tout x € R: cos(x) = Z T
= @2n)!

Remarque. & En général, si une fonction paire (respectivement impaire) est DSE, alors son développement ne contient

que des puissances paires (respectivement impaires).
+00

Supposons par exemple que f(x) = f(—x) = Z a,x" pour tout x €] — r; r[. On a alors, pour tout x €] — r; r|,
+00 n=0
Z anx" = f(x)=f(-x) = Z a,(-x)" = Z an(—1)"x" et par unicité de la suite des coefficients a,, = 0 pour tout n impair.
n=0

Remarque. En utilisant les développements en série entiére de sin, cos et exp : x — e” (exponentielle réelle), on peut retrouver
le développement de exp : z — e*(exponentielle complexe).

On rappelle la définition donnée en premiére année : edtib — e%(cos(b) + isin(b)).

Soitz=a+ibeC.
. +00 (_1\n}2n too (1) 2n+1 +00 2n +00 (7] 2n+1 +00 n
e!? = cos(b) + isin(b) = > (Sl +iy GV Z (b (i) (b
=0 (@2n)! =0 (@n+1)! =0 (2n)' =0 (2n+1)!

n=0 n! ,
la derniere égalité étant justifiée par la convergence absolue (sommation par paquets) ou simplement par la convergence
(repasser par la convergence des sommes partielles).

Enfin, grace ala convergence absolue, on peut utiliser le théoréme sur le produit de Cauchy de deux séries numériques :

. 400 oM\ (100 (j}\ 1)  +00
ez:euxezb:(za_)(z (ib) ):ch
n=0

n=0 n! n=0 n!

ak @ip)" " k 1 k _x (a+ib)* ZzZ"
\vA N' = b n ==,
el en= = K (n— k)' n'kzb( ) (i) n! n!

+o00 N
y . Z __ <
ce qu'on voulait :| e“ = —
n=0 n!

Contrairement aux deux premiere méthodes utilisées cette année pour obtenir ce résultat (avec Taylor-Lagrange ou grace a une équation différen-

tielle), cette troisieme méthode ne fait pas intervenir la fonction ¢ — elz



3) Développements usuels

Exemplelll.3.6. Soit @ € R\N. La fonction x— (1+ x)% est DSE sur ] — 1;1[ et, pour tout x €] — 1;1[ :

n-1 ) n termes
+00 H(a—l) ™ a(a-1) ?a—(n—l)) ala—1) al@-1)...(a—n+1)
+0%=Y 22y =1+Y | [=ltaxt —— X+ X"+
=0 N =1 n! 2! n!

Si @ € N, on connait déja la formule du binéme, qui est valable pour tout x € R et qui est en fait la méme que celle ci-dessus. Le développement ne

compte alors qu'un nombre fini de termes non nuls : dés que n = a + 1, le produit a(a —1)... (@ — (n—1)) est nul!

Exercice1l1.3.7. Déterminer le développement en série entiere de x —

1
Vitx
Remarque. & Chercher le développement en série entiére d'une solution d'une équation différentielle aurait pu
permettre de retrouver le développement de sin et cos (solutions de y” + y = 0).

Onrappelle que le développement de I’exponentielle réelle avait été obtenu en utilisant le fait que exp est la seule solution

de y' = y qui vérifie y(0) = 1. C’était déja cette méme méthode!

Théoreme I11.8 (Opérations entre fonctions DSE).

Soient f et g deux fonctions développables en série entiere au voisinage de 0 (DSE).
(1) Pour tout A € C, la fonction f + Ag est DSE.

(2) La fonction f g est DSE.

(3) Pour tout p €N, la fonction f'P) est DSE.

(4) Toute primitive de f est DSE.

+00 x2n+1
Exemplelll.3.9. (1) shest DSEsurRet,| pourtout xeR:sh(x) = Z m .
n !

n=0

+00 x2n
(2) chestDSEsurRet,| pourtoutxeR:ch(x)= ) '
n=0 (2”)'

Meéthode. /QD Pour montrer qu’'une fonction est DSE et obtenir son développement, on peut donc citer les méthodes suivantes :
(1) montrer que cette fonction est une somme ou un produit de fonctions DSE;
(2) montrer que sa dérivée ou une de ses primitives est DSE;

(3) dériver cette fonction pour chercher une équation différentielle dont cette fonction soit solution ...

Exercice111.3.10. Montrer que arcsin est DSE sur | — 1;1[ et écrire son développement en série entiére.
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On rappelle dans le tableau ci-dessous les développements en série entiére qui doivent étre connus par coeur :

Lafonction f:x—... | est DSEsur I =... avec:Vxel,... rayon de cvgce
oo 41 x2
e* R ef=3 — (:1+x+—+...) R=+o0
=0 1! 2
+o0 (] nx2n+1 x3
sin(x) R sin(x) = Z()—' (: ——+...) R=+00
= @Cn+1)! 6
too (1) 2n 2
cos(x) R cos(x) = Zu (: —x—+...) R =400
= 2n)! 2
+00 x2n+1 x3
sh(x) R sh(x)= ) —— (: —+.. ) R=+00
o 2n+1)! 6
+00 xZn x2
ch(x) R ch(x) = Z (— +—+... R=+0c0
= 2n)! 2
1 1 +00
— 1-11( — =) 1" (=l+x+xP+x+..) R=1
1-x 1-x ;5
1 1 +00
— -1;1 — =Y DX El-x+ - R=1
1+x : [ 1+x ,lz::o( ) ( )
00 41 x2 x3
In(1-x -1;1 Inl1-x)=- — [==x-—=-—- R=1
(1-x) ] [ (1-x) n; . ( >3 )
oo (1 n+l,.n 2 3
In(1 + x) 1-1;1( ln(1+x)=z()—x (:x—x—+x—— R=1
n=1 n 2
+00 (_1)nx2n+l x3 x5
arctan(x) 1-1;1] arctan(x) = ) ———— |=x—-—+—-— R=1
=0 2h+l1 3
n termes
1o -D...(a—-(n-1 -1
siaeR\N, (1+x)° -1 14y ezl @z izl (:1+ax+%x2+...) R=1
n=1 n. .




4) Exemples de calculs de somme de série entiere

Exercice1ll.4.11. Calculer le rayon de convergence R des séries entieres suivantes et exprimer leur somme sur | — R; R|[.

@ Y nPx";

(en déduire I'existence et la valeur de E(X) et V(X) dans le cas d’'une variable aléatoire X qui suit la loi géométrique ¥4 (p) ou p €]0;1[)

@ Y. (n*-2n+5x";

Meéthode. z@D Pour exprimer la somme d’'une série entiére, on peut citer les méthodes suivantes :

(1) décomposer la somme de la série en sommes usuelles (décomposition en éléments simples de a,, décomposition

de polynomes dans une base bien choisie, ...);
(2) exprimer cette somme comme la dérivée ou une primitive d'une somme connue;

. 1
(3) mettre en facteur une puissance de x (ou de — pour x # 0) pour reconnaitre une somme connue ...
X

IV — Séries entieres de la variable complexe : série géométrique et exponentielle

Théoreme IV.1 (Continuité sur le disque ouvert de convergence - ADMIS).

SoitY" a,z" une série entiere de la variable complexe. Supposons que son rayon de convergence R est non nul.
+00

La fonction (de la variable complexe) z— ) anz" est continue sur D(0, R).
n=0

Exemple1V.0.2. On rappelle que la série entiere ) z”" a un rayon de convergence égal a 1 et que

1
1-z |

+00
YzeD(0,1), ) z"=

n=0

On retrouve que la fonction z — 12 est continue sur D(0, 1), résultat que I'on peut obtenir par les théorémes généraux

z
sur les fonctions continues a valeurs dans C (somme et quotient ici).

Zn
ExempleIV.0.3. Onrappelle que la série entiere Z — aunrayon de convergence égal a +oo et que
n!

+00 ZI’L
YzeC, )

n=0

—=e"|
n!

On retrouve que la fonction z— e® est continue sur C, résultat que 1’'on peut obtenir par les théorémes généraux sur les

fonctions continues (z — Re(z) et z— Im(z) sont continues sur C; exp, cos et sin sont continues sur R).
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V - Fonction génératrice d’'une variable aléatoire discrete

Dans cette section, on compléte le cours sur les variables aléatoires discrétes avec la notion de fonction génératrice

(parfois appelée série génératrice).

Dans cette section, on considére un espace probabilisé (2, </, P).

Définition - Théoréme V.0.1. Soit X une variable aléatoire définie sur (Q, /) et a valeurs dans N.
(1) La série entiere Z P(X = n)t" aun rayon de convergence R au moins égal a 1 et converge normalement sur [—1;1].

(2) On définit la fonction génératrice de X notée Gx par :

+00
Vie[-1;1], Gx(D=E(t%)= ) P(X=mn)t".

n=0
Si X est a valeurs dans une partie de N, on convient que P(X = n) = 0 pour les valeurs de n non atteintes par X. Par exemple, si X est a valeurs dans une

partie finie de N, alors Gx est simplement une fonction polynomiale.

Remarque. Souvent, le rayon de convergence de la série entiere ) P(X = n)t" est strictement supérieur a 1 et le domaine
de définition de Gy est plus grand que [—1;1].
ExempleV.0.2. (1) Soit n e N*. Supposons que X ~ % ([1; n]) (loi uniforme). Calculer Gx (¢) pour tout 7 € [-1;1].

(2) Soit p € [0;1]. Supposons que X ~ %(p) (loi de Bernoulli). Montrer que Gx : t — pt+ (1 —p).

(3) Soit n e€N. Soit p € [0;1]. Supposons que X ~ %B(n, p) (loi binomiale). Montrer que Gx : t — (pt+ (1 - p))".

(4) Soit A €]0; +o0l. Supposons que X ~ Z?(A) (loi de Poisson). Montrer que Gy : t — eV (R = +00).

t
Pt (p= 1,

(5) Soit p €]0;1[. Supposons que X ~ %4 (A1) (loi géométrique). Montrer que Gx : t — -1+l e
pt—

Théoreme V.3. (1) Soient X et Y deux variables aléatoires définies sur (Q, <f) et a valeurs dansN.
Si Gx et Gy coincident sur [-1;1] (ou méme sur un intervalle de la forme] —r;r[ oitr > 0), alors X et Y suivent la
méme loi.
On dit quelaloi d’'une variable aléatoire est caractérisée par sa fonction génératrice.

GY
n!

(2) Plus précisément, pour toutneN : P(X =n) =

Théoreme V.4. Soit X une variable aléatoire définie sur (Q, <) et a valeurs dansN.

(1) Gx est continue sur [—1;1] et de classe €*° sur]—1;1[. De plus| Gx(1) =1 |

(2) [ADMIS] Lespérance de X est finie si et seulement si Gx est dérivable en 1. Dans ce cas,| E(X) = Gg((l) |

(3) [ADMIS] Lespérance de X? est finie si et seulement si Gx est dérivable deux fois en 1 (c'est-a-dire G (1) existe).

Dans ce cas,| V(X) = Gy (1) + Gy (1) - Gy (1)? |

(4) Cas particulier. Si le rayon de convergence R de la série entiere ZP(X =n)t" vérifie R > 1, alors les espérances de X

et X? sont finies et on peut utiliser les formules obtenues aux points précédents.

Exemple V.0.5. Retrouver l'existence et la valeur de E(X) et V(X) dans le cas d'une variable aléatoire X qui suit la loi de
Poisson Z2(A) ou A €]0; +ool.
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Théoreme V.6. (1) Soient X etY deux variables aléatoires définies sur (Q2, <f) et a valeurs dansN.
Si X et Y sontindépendantes, alors Gx.y (f) = Gx(t)Gy (t) pour tout t € [-1;1].
2) SoitneN\{0,1}. Soient X1, Xy, ..., X, des variables aléatoires indépendantes définies sur (Q, <f) et a valeurs dansN.

Alors Gx, 4.+ x, (1) = Gx, (7) ... Gx,, () pour tout t € [-1;1].

ExempleV.0.7. (1) Soit n e N*. Soient Xj, ..., X;, des variables aléatoires indépendantes qui suivent toutes la méme loi

n
de Bernoulli de parametre p € [0;1]. Onnote S= ) Xj. Déterminer laloi de S en utilisant les fonctions génératrices.
k=1
(2) Soient X et Y deux variables aléatoires indépendantes qui suivent respectivement deux lois

de Poisson de parametres A >0 et > 0. Quelle estlaloide X + Y2
(3) Soient X et Y deux variables aléatoires indépendantes qui suivent respectivement deux lois binomiales de méme

deuxiéme parametre: X ~ B(n,p) et Y ~ B(m, p). Quelle estlaloide X + Y ?

ExerciceV.0.8. On lance deux dés a 6 faces numérotées de 1 a 6. On note S la somme des résultats obtenus.
On note X et Y les résultats respectifs des dés et on ne suppose pas que X ou Y suive une loi uniforme.
Est-il possible de trouver des lois de X et Y (truquer les dés!) pour que S suive une loi uniforme?

On supposera que c’est possible et on raisonnera sur les racines réelles du polynome Gg.

Tableau récapitulatif des lois usuelles

X ~... 2 ([1;n]) B(p) B(n, p) 4(p) P(N)
parametre(s) neN* pel0;1] neN, pel0;1] p€lo; 1] AeR
X(Q) [1; n] 0,1} [0; n] N* N
1 Ak
P(X=k) — psik=1;1-psik=0 Z pka-p)" % | pa-pk? e_AF
n !
B n+1 " 1 1
5 p p P
V(X) i (1-p) (1-p) I-p A
— n —
= p-p p(l-p 2
Gx()=... pt+(1-p) (pt+(1—p)" _rt eMi=1)
pt—t+1




