
Chapitre 11 - Séries entières

Dans tout ce chapitre, K désigne R ou C.

I – Définition - Rayon de convergence

1 ) Définition - Notation

Définition I.1.1. (1) On appelle série entière (de la variable complexe) toute série de fonctions
∑

fn où,

pour tout n ∈N, fn est une fonction de C dans C de la forme fn : z 7→ an zn où an ∈C.

On notera abusivement
∑

an zn cette série de fonctions (au lieu de
∑(

z 7→ an zn)
).

(2) On appelle série entière de la variable réelle toute série de fonctions
∑

fn où, pour tout n ∈N,

fn est une fonction de R dans C de la forme fn : x 7→ an xn où an ∈C.

On notera abusivement
∑

an xn cette série de fonctions (au lieu de
∑(

x 7→ an xn)
).

(3) Les termes de la suite (an)n∈N sont appelés coefficients de la série entière. On appelle terme constant le terme a0.

On observe que les sommes partielles de cette série de fonctions sont des fonctions polynomiales

(
z 7→

N∑
n=0

an zn = a0 +a1z +·· ·+aN zN

)
.

Remarque. "
(1) La notation

∑
an zn peut donc aussi bien désigner la série de fonctions

∑
(z 7→ an zn) que la série numérique

∑
an zn

où z est fixé.

Pour lever toute ambiguïté, on dira ”La série entière
∑

an zn ...” OU ”Soit z ∈C. La série numérique
∑

an zn ...”

(2) On étend la définition de convergence simple aux séries entières de la variable complexe :

la série entière
∑

an zn converge simplement sur D si, pour tout z ∈ D , la série numérique
∑

an zn converge.

En z = 0, il y a toujours convergence de la série numérique
∑

an zn et
+∞∑
n=0

an0n = a0.

(3) On pourra toujours considérer que la suite des coefficients est définie sur N et se note (an)n∈N, quitte à dire que

certains coefficients sont nuls.

Deux exemples :

— une fonction polynomiale est une série entière (les coefficients sont nuls à partir d’un certain rang) ;

— la série entière
∑

nx2n est associée à la suite de coefficients (an)n∈N où a2n+1 = 0 et a2n = n pour tout n ∈N.

Exemple I.1.2. (1) La fonction z 7→ exp(z), définie sur C, est la somme de la série entière
∑ zn

n!
.

(2) La fonction z 7→ 1

1− z
, définie sur D = {z ∈C | |z| < 1}, est la somme de la série entière

∑
zn .

(3) La fonction x 7→ 1

1−x
, définie sur ]−1;1[, est la somme de la série entière (de la variable réelle)

∑
xn .

Dans la suite du cours, nous allons étudier la convergence des séries entières puis les propriétés de régularité de leur

somme. Dans le cas des fonctions de la variable complexe, nous nous arrêterons à la continuité (définie dans le cadre des

Espaces vectoriels normés). Pour les fonctions de la variable réelle, nous complèterons avec la dérivation (éventuellement

multiple) et la primitivation.
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2 ) Lemme d’Abel - Définition du rayon de convergence

Théorème I.3 (Lemme d’Abel). Soit (an)n∈N une suite complexe. Soit z0 ∈C.

Si la suite (an zn
0 )n∈N est bornée, alors pour tout z ∈C tel que |z| < |z0|, la série numérique

∑
an zn est absolument convergente.

Définition - Théorème I.2.4. Soit
∑

an zn une série entière.

• Si l’ensemble E = {
r ∈ [0;+∞[ | (anr n)n∈N est bornée

}
est majoré,

on appelle rayon de convergence de la série entière
∑

an zn la borne supérieure de E .

• Si E n’est pas majoré, on dit que le rayon de convergence de la série entière est +∞.

On note habituellement R(
∑

an zn) le rayon de convergence de la série entière
∑

an zn .

On remarque que
∑

an zn et
∑ |an |zn ont le même rayon de convergence.

La définition est la même pour les séries entières de la variable complexe ou de la variable réelle.

Théorème I.5 (Rôle primordial du rayon de convergence).

(1) Soit
∑

an zn une série entière de la variable complexe. Notons R le rayon de convergence de cette série entière.

(a) Supposons que R = 0.

Soit z ∈C. La série numérique
∑

an zn converge si et seulement si z = 0. Sinon, la série diverge grossièrement.

(b) Supposons que R ∈]0;+∞[. Soit z ∈C.

• Si |z| < R, alors la série numérique
∑

an zn converge absolument.

On appelle disque ouvert de convergence l’ensemble D(0,R) = {z ∈C | |z| < R}.

En particulier, la série de fonctions
∑

an zn converge simplement au moins sur D(0,R)

et la fonction z 7→
+∞∑
n=0

an zn est bien définie sur D(0,R) (et peut-être sur un domaine plus grand).

• Si |z| > R, alors la série numérique
∑

an zn diverge grossièrement.

• Si |z| = R, on ne peut rien dire en général de la convergence de la série numérique
∑

an zn .

On dit qu’il y a incertitude sur le cercle de convergence.

(c) Supposons que R =+∞. Pour tout z ∈C, la série numérique
∑

an zn converge absolument.

En particulier, la série de fonctions
∑

an zn converge simplement sur C et

la fonction z 7→
+∞∑
n=0

an zn est définie sur C tout entier.

(2) Soit
∑

an xn une série entière de la variable réelle. Notons R le rayon de convergence de cette série entière.

On a exactement le même énoncé que dans le cas de la variable complexe avec D(0,R) =]−R;R[, intervalle alors

appelé intervalle ouvert de convergence.

Remarque. " Si on demande le domaine de définition d’une fonction de la forme x 7→
+∞∑
n=0

an xn (variable réelle), il ne

suffit pas de trouver le rayon de convergence R de la série entière
∑

an xn . Dans le cas où R ̸= +∞, il faut aussi étudier la

convergence de la série numérique
∑

an xn pour x =−R et x = R (au bord de l’intervalle ouvert de convergence).

Exemple I.2.6. (1) La série entière
∑ zn

n!
a pour rayon de convergence +∞ .

(2) Le rayon de convergence de la série entière
∑

zn est 1. Le disque ouvert de convergence est le disque de centre 0

de rayon 1. Y a-t-il convergence sur le cercle de convergence ?
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(3) Le rayon de convergence de la série entière
∑

xn est 1. L’intervalle ouvert de convergence est ]−1;1[.

Y a-t-il convergence en 1 et −1 ?

(4) Le rayon de convergence de la série entière
∑ xn

n
est égal à 1. Y a-t-il convergence en 1 ? et en −1 ?

(5) Le rayon de convergence de la série entière
∑ zn

n2 est égal à 1. La série converge-t-elle sur le cercle de convergence?

3 ) Méthodes de calcul du rayon de convergence

Les méthodes et théorèmes détaillés dans cette section sont aussi bien valables pour les séries entières de la variable

complexe que pour celles de la variable réelle.

Méthode. ✍ Pour déterminer le rayon de convergence R d’une série entière
∑

an zn , on peut simplement utiliser le

théorème précédent :

(1) si on trouve z0 (souvent dans ]0;+∞[) tel que
∑

an zn
0 converge (ou que la suite (an zn

0 )n∈N est bornée), alors |z0| ≤ R ;

(z0 est dans le disque ouvert de convergence ou sur son bord)

(2) si on trouve z1 (souvent dans ]0;+∞[) tel que
∑

an zn
1 diverge (ou que (an zn

1 )n∈N ne tend pas vers 0), alors R ≤ |z1|.
(z1 n’est pas dans le disque ouvert de convergence)

C’est ainsi que les exemples précédents ont été traités.

Exercice I.3.7. Déterminer le rayon de convergence de la série entière
∑ xn

cos
( 2nπ

3

) .

Théorème I.8 (Théorème de comparaison). On considère deux séries entières
∑

an zn et
∑

bn zn .

On note respectivement Ra et Rb leur rayon de convergence.

(1) Si |an | ≤ |bn | à partir d’un certain rang, alors Rb ≤ Ra .

(2) On suppose que bn ̸= 0 à partir d’un certain rang.

(a) Si |an | =O(|bn |) (en particulier si |an | = o(|bn |)), alors Rb ≤ Ra .

(b) Si |an | ∼ |bn |, alors Ra = Rb .

Remarque (hors-programme). Si l’hypothèse ”bn ̸= 0” n’est pas satisfaite (séries lacunaires), ces résultats s’appliquent également.

Proposition I.3.9 (Règle du nα). Soit (an)n∈N une suite de complexes. Soit α ∈R.

Les séries entières
∑

an zn et
∑

nαan zn ont le même rayon de convergence.

Méthode. ✍ Pour déterminer le rayon de convergence d’une série entière, on peut utiliser le critère de d’Alembert pour

une série numérique. Détaillons la rédaction.

Énoncé : On considère la série entière
∑

4n z2n . Déterminer le rayon de convergence de cette série entière.

Rédaction d’une solution : Utilisons le critère de d’Alembert pour les séries numériques.

Soit x > 0. Pour tout n ∈N, notons un = 4n x2n (non nul) :

|un+1|
|un |

= 4|x|2 −→
n→+∞ 4x2.

Si 0 < x < 1
2 , la série

∑
an xn converge absolument donc R ≥ 1

2 .

Si 1
2 < x, la série diverge grossièrement donc R ≤ 1

2 . Finalement R = 1
2 .
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Proposition I.3.10 (Règle de d’Alembert pour les séries entières).

Soit
∑

an zn une série entière de rayon de convergence R. On suppose que la suite (an)n∈N ne s’annule plus à partir d’un

certain rang n0 et que la suite

(∣∣∣∣ an+1

an

∣∣∣∣)
n≥n0

possède une limite ℓ ∈R+∪ {+∞}.

• Si ℓ= 0, alors R =+∞.

• Si ℓ=+∞, alors R = 0.

• Si ℓ ∈]0;+∞[, alors R = 1

ℓ
.

Remarque. " Pour utiliser la règle de d’Alembert pour les séries entières, les coefficients an doivent être non nuls à

partir d’un certain rang. Ce n’est pas le cas de
∑

n2z2n+1 ou
∑ 1

n
zn2

par exemple, on parle alors de séries lacunaires.

La méthode de d’Alembert ne s’applique pas aux séries lacunaires!

On évitera aussi la règle du nα ou l’utilisation d’équivalent qui ne sont pas au programme dans le cas des séries lacunaires (même si le rayon obtenu est le bon).

On peut plutôt considérer des valeurs particulières de z (définition du rayon de convergence), utiliser une minoration/majoration

de |an | ou le critère de d’Alembert pour les séries numériques ...

Exercice I.3.11. Déterminer le rayon de convergence des séries entières suivantes :

(1)
∑ n2

n!
xn ;

(2)
∑

ch(n)zn (dans ce cas, on exprimera la somme de la

série entière dans D(0,R)) ;

(3)
∑

n≥0
ln

(
1+ 2

n3

)
xn ;

(4)
∑

n≥0

x3n+2

3n +2
;

(5)
∑ e−n

n +3
z(n2).

Théorème I.12 (Opérations entre séries entières).

On considère deux séries entières
∑

an zn et
∑

bn zn . On note respectivement Ra et Rb leur rayon de convergence.

(1) Soit λ ∈C∗. Le rayon de convergence de la série entière
∑
λan zn est Ra .

De plus, pour tout z ∈ D(0,Ra) :
+∞∑
n=0

λan zn =λ
+∞∑
n=0

an zn .

(2) Le rayon de convergence Rs de la série entière
∑

(an +bn)zn vérifie :

min{Ra ,Rb} ≤ Rs , avec égalité si Ra ̸= Rb .

De plus, pour tout z ∈ D(0,min{Ra ,Rb}) :
+∞∑
n=0

(an +bn)zn =
+∞∑
n=0

an zn +
+∞∑
n=0

bn zn .

(3) On appelle produit de Cauchy des deux séries entières la série entière
∑

cn zn avec cn =
n∑

k=0
ak bn−k = ∑

i+ j=n
ai b j .

Le rayon de convergence Rp de la série entière
∑

cn zn vérifie :

min{Ra ,Rb} ≤ Rp .

De plus, pour tout z ∈ D(0,min{Ra ,Rb}) :
+∞∑
n=0

cn zn =
(+∞∑

n=0
an zn

)(+∞∑
n=0

bn zn
)
.

Exemple I.3.13. En utilisant un produit de Cauchy, montrer que pour tout x ∈]−1;1[, on a :
+∞∑
n=0

(n +1)xn = 1

(1−x)2 .
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II – Régularité de la somme d’une série entière de la variable réelle

Dans cette section, les séries entières seront uniquement de la variable réelle.

Théorème II.1. Soit
∑

an xn une série entière de la variable réelle. Supposons que son rayon de convergence R est non nul.

Pour tout r ∈]0;R[, la série entière
∑

an xn converge normalement sur [−r ;r ].

Théorème II.2 (Continuité sur l’intervalle ouvert de convergence).

Soit
∑

an xn une série entière de la variable réelle. Supposons que son rayon de convergence R est non nul.

La fonction x 7−→
+∞∑
n=0

an xn (somme de la série entière) est continue sur ]−R;R[.

Théorème II.3 (Primitivation).

Soit
∑

an xn une série entière de la variable réelle. Supposons que son rayon de convergence R est non nul.

On note f : x 7→
+∞∑
n=0

an xn la somme de cette série sur ]−R;R[. On sait que f est continue sur ]−R;R[.

Le rayon de convergence de la série entière
∑ an

n +1
xn+1 est R. Notons F la somme de cette série entière sur ]−R;R[.

Alors F est la primitive de f sur ]−R;R[ qui s’annule en 0, c’est-à-dire F : x 7→
∫ x

0
f (t )d t.

(+∞∑
n=0

∫ x

0
an t n d t =

∫ x

0

+∞∑
n=0

an t n d t

)
.

Remarque. ✍ Si on souhaite le développement en série entière d’une autre primitive de f , on pensera à ajouter à F la valeur en 0.

Rédaction : Soit x ∈]−R;R[. F ′(x) =
+∞∑
n=0

an xn donc, par primitivation terme à terme d’une série entière : F (x) = F (0)+
+∞∑
n=0

an

n +1
xn+1.

Exemple II.0.4. ✌

(1) Pour tout x ∈]−1;1[, ln(1−x) =−
+∞∑
n=1

xn

n
et ln(1+x) =

+∞∑
n=0

(−1)n xn+1

n +1
=

+∞∑
n=1

(−1)n−1 xn

n
(R = 1).

On a déjà montré (avec Taylor-Lagrange mais aussi en étudiant une série de fonctions) que ln(2) =
+∞∑
n=1

(−1)n−1

n
.

(2) Pour tout x ∈]−1;1[, arctan(x) =
+∞∑
n=0

(−1)n x2n+1

2n +1
(R = 1).

Théorème II.5 (Dérivation - Classe C ∞).

Soit
∑

an xn une série entière de la variable réelle. Supposons que son rayon de convergence R est non nul.

On note f : x 7→
+∞∑
n=0

an xn la somme de cette série sur ]−R;R[.

(1) f est de classe C 1 sur ]−R;R[, la série entière (dite des dérivées)
∑

n≥1
nan xn−1 a pour rayon de convergence R et sa

somme est la fonction f ′.

(2) f est de classe C ∞ sur ]−R;R[ et pour tout p ∈N :

f (p) : x 7−→
+∞∑
n=p

n!

(n −p)!
an xn−p .

On peut dire qu’on obtient cette forme en dérivant p fois terme à terme, le rayon de convergence des séries entières dérivées étant toujours égal à R.

En particulier : ∀p ∈N, ap = f (p)(0)

p !
.
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Remarque. ✍Pour ne pas confondre avec l’utilisation abusive d’un théorème sur les séries de fonctions, on soignera la rédaction :

Soit x ∈]−R;R[. f (x) =
+∞∑
n=0

an xn donc, par dérivation terme à terme d’une série entière sur l’intervalle ouvert de convergence : f ′(x) =
+∞∑
n=1

nan xn−1.

Exemple II.0.6. ✌
(1) Retrouver rapidement que le rayon de convergence de la série entière

∑
(n +1)xn est égal à 1 et que,

pour tout x ∈]−1;1[ :
+∞∑
n=0

(n +1)xn = 1

(1−x)2 .

(2) Montrer que le rayon de convergence de la série entière
∑ x2n+1

2n +1
est égal à 1 et que, pour tout x ∈]−1;1[ :

+∞∑
n=0

x2n+1

2n +1
= 1

2
ln

(
1+x

1−x

)
.

Corollaire II.0.7 (Unicité de la suite des coefficients). Soit
∑

an xn et
∑

bn xn deux séries entières de la variable réelle.

Notons respectivement Ra et Rb leur rayon de convergence. On suppose que Ra > 0 et Rb > 0.

S’il existe 0 < r ≤ min{Ra ,Rb} tel que : ∀x ∈]− r ;r [,
+∞∑
n=0

an xn =
+∞∑
n=0

bn xn , alors les suites (an)n∈N et (bn)n∈N sont égales.

Il suffit en fait d’avoir l’égalité des sommes sur ]− r ;0[ ou ]0;r [ pour un certain r > 0.

III – Développement en série entière d’une fonction de la variable réelle

Dans cette section, les séries entières seront uniquement de la variable réelle.

Le but est de se donner des moyens de répondre aux deux questions suivantes :

(1) Étant donnée une fonction de classe C ∞ sur ]−A; A[, existe-t-il une suite de coefficients (an)n∈N telle que f (x) =
+∞∑
n=0

an xn ?

(2) Étant donnée une série entière
∑

an xn de rayon de convergence R > 0, peut-on exprimer sa somme f : x 7→
+∞∑
n=0

an xn

à l’aide de fonctions usuelles?

1 ) Définition - Série de Taylor

Définition III.1.1.

Soit f une fonction définie au voisinage de 0 (c’est-à-dire au moins sur un intervalle de la forme ]− A; A[ avec A > 0).

On dit que f est développable en série entière (au voisinage de 0) (DSE) s’il existe une suite (an)n∈N et un réel r > 0 tels

que la série entière
∑

an xn ait un rayon de convergence au moins égal à r et :

∀x ∈]− r ;r [, f (x) =
+∞∑
n=0

an xn .

On dit alors que f est DSE sur ]− r ;r [.

Remarque. "
Dans la définition, la série entière converge simplement sur un intervalle I (de la forme ]−R;R[ ou [−R;R[ ou ...)

et la fonction f est définie sur un domaine D . Il n’y a aucune raison que I et D coïncident.

On pourra observer avec attention l’exemple de la fonction arctan.
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Définition - Théorème III.1.2 (Série de Taylor).

Soit f une fonction de classe C ∞ au voisinage de 0. On appelle série de Taylor de f la série entière
∑ f (n)(0)

n!
xn .

Si f est développable en série entière au voisinage de 0, alors la série entière est la série de Taylor de f .

Remarque. " Ce résultat d’unicité n’assure pas que f soit DSE ! Il est possible que la rayon de convergence de la série

de Taylor soit nul ou que la somme de la série de Taylor de f ne coïncide avec f sur aucun intervalle de la forme ]− r ;r [.

Rappelons qu’il est inutile de chercher à développer en série entière une fonction qui n’est pas de classe C ∞ au voisinage de 0 !

Les formules de Taylor (Taylor-Lagrange ou Taylor avec reste intégral) vont permettre d’avoir un contrôle sur

la différence entre f et la somme de sa série de Taylor et donc de pouvoir justifier qu’une fonction est égale à la somme de

sa série de Taylor sur un intervalle centré en 0.

2 ) Formule de Taylor avec reste intégral - Inégalité de Taylor-Lagrange

Théorème III.3 (Formule de Taylor avec reste intégral - Inégalité de Taylor-Lagrange).

Soit n ∈N. Soit I un intervalle de R. Soit a ∈ I (on dit qu’on écrit la formule en a à l’ordre n).

Soit f : I −→K une fonction définie et de classe C n+1 sur I .

(1) Alors, pour tout x ∈ I :

f (x) =
(

n∑
k=0

f (k)(a)

k !
(x −a)k

)
+

∫ x

a

(x − t )n

n!
f (n+1)(t )d t .

Cette égalité est appelée formule de Taylor avec reste intégral.

(2) Soit x ∈ I . La fonction | f (n+1)| est continue sur le segment [a; x] donc il existe M ∈R+ tel que sup
[a;x]

∣∣ f (n+1)∣∣= M.

On a alors : ∣∣∣∣∣ f (x)−
(

n∑
k=0

f (k)(a)

k !
(x −a)k

)∣∣∣∣∣≤ M × |x −a|n+1

(n +1)!
.

Cette inégalité est appelée inégalité de Taylor-Lagrange.

Remarque.

(1) Si f est polynomiale de degré n, alors f (n+1) est nulle et on retrouve la formule de Taylor pour les fonctions polynomiales.

(2) Dans l’inégalité de Taylor-Lagrange, on peut remplacer M par n’importe quel majorant de
∣∣ f (n+1)∣∣ entre a et x.

(3) Si on utilise ces formules en a = 0 pour des fonctions usuelles (ce que l’on fera !), on connaît la partie polynomiale

par coeur (partie régulière du DL à l’ordre n). La connaissance des coefficients de cette partie polynomiale permet

de retenir la série de Taylor de ces fonctions : x 7→ ex , sin, cos, ch, sh, x 7→ 1
1±x , x 7→ ln(1±x), x 7→ (1+x)α.

Exercice III.2.4. (1) Montrer que, pour tout x ∈R+ :
∫ x

0

(x − t )2

2
cos(t )d t ≤ x3

6
.

(2) Grâce à la formule de Taylor avec reste intégral, en déduire que, pour tout x ∈R+ : x − x3

6
≤ sin(x).

(3) Montrer que, pour tout x ∈R+ : x − x3

6
≤ sin(x) ≤ x.

Même si c’est un résultat déjà connu, on pourra redémontrer la seconde inégalité en utilisant la formule de Taylor avec reste intégral à l’ordre 0.
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Exemple III.2.5. (1) sin est DSE sur R et, pour tout x ∈R : sin(x) =
+∞∑
n=0

(−1)n x2n+1

(2n +1)!
.

(2) cos est DSE sur R et, pour tout x ∈R : cos(x) =
+∞∑
n=0

(−1)n x2n

(2n)!
.

Remarque. ✌ En général, si une fonction paire (respectivement impaire) est DSE, alors son développement ne contient

que des puissances paires (respectivement impaires).

Supposons par exemple que f (x) = f (−x) =
+∞∑
n=0

an xn pour tout x ∈]− r ;r [. On a alors, pour tout x ∈]− r ;r [,

+∞∑
n=0

an xn = f (x) = f (−x) =
+∞∑
n=0

an(−x)n =
+∞∑
n=0

an(−1)n xn et par unicité de la suite des coefficients an = 0 pour tout n impair.

Remarque. En utilisant les développements en série entière de sin, cos et exp : x 7→ ex (exponentielle réelle), on peut retrouver

le développement de exp : z 7→ ez (exponentielle complexe).

On rappelle la définition donnée en première année : ea+i b = ea (cos(b)+ i sin(b)).

Soit z = a + i b ∈C.

ei b = cos(b)+ i sin(b) =
+∞∑
n=0

(−1)nb2n

(2n)!
+ i

+∞∑
n=0

(−1)nb2n+1

(2n +1)!
=

+∞∑
n=0

(i b)2n

(2n)!
+

+∞∑
n=0

(i b)2n+1

(2n +1)!
=

+∞∑
n=0

(i b)n

n!
,

la dernière égalité étant justifiée par la convergence absolue (sommation par paquets) ou simplement par la convergence

(repasser par la convergence des sommes partielles).

Enfin, grâce à la convergence absolue, on peut utiliser le théorème sur le produit de Cauchy de deux séries numériques :

ez = ea ×ei b =
(+∞∑

n=0

an

n!

)(+∞∑
n=0

(i b)n

n!

)
=

+∞∑
n=0

cn

où

∀n ∈N, cn =
n∑

k=0

ak

k !

(i b)n−k

(n −k)!
= 1

n!

n∑
k=0

(
n

k

)
ak (i b)n−k = (a + i b)n

n!
= zn

n!
,

ce qu’on voulait : ez =
+∞∑
n=0

zn

n!
.

Contrairement aux deux première méthodes utilisées cette année pour obtenir ce résultat (avec Taylor-Lagrange ou grâce à une équation différen-

tielle), cette troisième méthode ne fait pas intervenir la fonction t 7→ et z .
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3 ) Développements usuels

Exemple III.3.6. Soit α ∈R\N. La fonction x 7→ (1+x)α est DSE sur ]−1;1[ et, pour tout x ∈]−1;1[ :

(1+x)α =
+∞∑
n=0

n−1∏
i=0

(α− i )

n!
xn = 1+

+∞∑
n=1

n termes︷ ︸︸ ︷
α(α−1) . . . (α− (n −1))

n!
xn

(
= 1+αx + α(α−1)

2!
x2 +·· ·+ α(α−1) . . . (α−n +1)

n!
xn + . . .

)
Si α ∈ N, on connaît déjà la formule du binôme, qui est valable pour tout x ∈ R et qui est en fait la même que celle ci-dessus. Le développement ne

compte alors qu’un nombre fini de termes non nuls : dès que n ≥α+1, le produit α(α−1) . . . (α− (n −1)) est nul !

Exercice III.3.7. Déterminer le développement en série entière de x 7→ 1p
1+x

.

Remarque. ✌ Chercher le développement en série entière d’une solution d’une équation différentielle aurait pu

permettre de retrouver le développement de sin et cos (solutions de y ′′+ y = 0).

On rappelle que le développement de l’exponentielle réelle avait été obtenu en utilisant le fait que exp est la seule solution

de y ′ = y qui vérifie y(0) = 1. C’était déjà cette même méthode!

Théorème III.8 (Opérations entre fonctions DSE).

Soient f et g deux fonctions développables en série entière au voisinage de 0 (DSE).

(1) Pour tout λ ∈C, la fonction f +λg est DSE.

(2) La fonction f g est DSE.

(3) Pour tout p ∈N, la fonction f (p) est DSE.

(4) Toute primitive de f est DSE.

Exemple III.3.9. (1) sh est DSE sur R et, pour tout x ∈R : sh(x) =
+∞∑
n=0

x2n+1

(2n +1)!
.

(2) ch est DSE sur R et, pour tout x ∈R : ch(x) =
+∞∑
n=0

x2n

(2n)!
.

Méthode. ✍Pour montrer qu’une fonction est DSE et obtenir son développement, on peut donc citer les méthodes suivantes :

(1) montrer que cette fonction est une somme ou un produit de fonctions DSE ;

(2) montrer que sa dérivée ou une de ses primitives est DSE ;

(3) dériver cette fonction pour chercher une équation différentielle dont cette fonction soit solution ...

Exercice III.3.10. Montrer que arcsin est DSE sur ]−1;1[ et écrire son développement en série entière.
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On rappelle dans le tableau ci-dessous les développements en série entière qui doivent être connus par coeur :

La fonction f : x 7→ . . . est DSE sur I = . . . avec : ∀x ∈ I , . . . rayon de cvgce

ex R ex =
+∞∑
n=0

xn

n!

(
= 1+x + x2

2
+ . . .

)
R =+∞

sin(x) R sin(x) =
+∞∑
n=0

(−1)n x2n+1

(2n +1)!

(
= x − x3

6
+ . . .

)
R =+∞

cos(x) R cos(x) =
+∞∑
n=0

(−1)n x2n

(2n)!

(
= 1− x2

2
+ . . .

)
R =+∞

sh(x) R sh(x) =
+∞∑
n=0

x2n+1

(2n +1)!

(
= x + x3

6
+ . . .

)
R =+∞

ch(x) R ch(x) =
+∞∑
n=0

x2n

(2n)!

(
= 1+ x2

2
+ . . .

)
R =+∞

1

1−x
]−1;1[

1

1−x
=

+∞∑
n=0

xn (= 1+x +x2 +x3 + . . .
)

R = 1

1

1+x
]−1;1[

1

1+x
=

+∞∑
n=0

(−1)n xn (= 1−x +x2 −x3 + . . . ) R = 1

ln(1−x) ]−1;1[ ln(1−x) =−
+∞∑
n=1

xn

n

(
=−x − x2

2
− x3

3
− . . .

)
R = 1

ln(1+x) ]−1;1[ ln(1+x) =
+∞∑
n=1

(−1)n+1xn

n

(
= x − x2

2
+ x3

3
− . . .

)
R = 1

arctan(x) ]−1;1[ arctan(x) =
+∞∑
n=0

(−1)n x2n+1

2n +1

(
= x − x3

3
+ x5

5
− . . .

)
R = 1

si α ∈R\N, (1+x)α ]−1;1[ 1+
+∞∑
n=1

n termes︷ ︸︸ ︷
α(α−1) . . . (α− (n −1))

n!
xn

(
= 1+αx + α(α−1)

2!
x2 + . . .

)
R = 1
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4 ) Exemples de calculs de somme de série entière

Exercice III.4.11. Calculer le rayon de convergence R des séries entières suivantes et exprimer leur somme sur ]−R;R[.

(1)
∑

n2xn ;

(en déduire l’existence et la valeur de E(X ) et V (X ) dans le cas d’une variable aléatoire X qui suit la loi géométrique G (p) où p ∈]0;1[)

(2)
∑

(n2 −2n +5)xn ;

(3)
∑ n2 +1

n!
xn ;

(4)
∑ n

n +1
xn ;

(5)
∑

cos

(
2nπ

3

)
xn .

Méthode. ✍ Pour exprimer la somme d’une série entière, on peut citer les méthodes suivantes :

(1) décomposer la somme de la série en sommes usuelles (décomposition en éléments simples de an , décomposition

de polynômes dans une base bien choisie, ...) ;

(2) exprimer cette somme comme la dérivée ou une primitive d’une somme connue;

(3) mettre en facteur une puissance de x (ou de
1

x
pour x ̸= 0) pour reconnaître une somme connue ...

IV – Séries entières de la variable complexe : série géométrique et exponentielle

Théorème IV.1 (Continuité sur le disque ouvert de convergence - ADMIS).

Soit
∑

an zn une série entière de la variable complexe. Supposons que son rayon de convergence R est non nul.

La fonction (de la variable complexe) z 7−→
+∞∑
n=0

an zn est continue sur D(0,R).

Exemple IV.0.2. On rappelle que la série entière
∑

zn a un rayon de convergence égal à 1 et que

∀z ∈ D(0,1),
+∞∑
n=0

zn = 1

1− z
.

On retrouve que la fonction z 7→ 1

1− z
est continue sur D(0,1), résultat que l’on peut obtenir par les théorèmes généraux

sur les fonctions continues à valeurs dans C (somme et quotient ici).

Exemple IV.0.3. On rappelle que la série entière
∑ zn

n!
a un rayon de convergence égal à +∞ et que

∀z ∈C,
+∞∑
n=0

zn

n!
= ez .

On retrouve que la fonction z 7→ ez est continue sur C, résultat que l’on peut obtenir par les théorèmes généraux sur les

fonctions continues (z 7→ Re(z) et z 7→ Im(z) sont continues sur C ; exp, cos et sin sont continues sur R).
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V – Fonction génératrice d’une variable aléatoire discrète

Dans cette section, on complète le cours sur les variables aléatoires discrètes avec la notion de fonction génératrice

(parfois appelée série génératrice).

Dans cette section, on considère un espace probabilisé (Ω,A ,P ).

Définition - Théorème V.0.1. Soit X une variable aléatoire définie sur (Ω,A ) et à valeurs dans N.

(1) La série entière
∑

P (X = n)t n a un rayon de convergence R au moins égal à 1 et converge normalement sur [−1;1].

(2) On définit la fonction génératrice de X notée GX par :

∀t ∈ [−1;1], GX (t ) = E
(
t X )= +∞∑

n=0
P (X = n)t n .

Si X est à valeurs dans une partie de N, on convient que P (X = n) = 0 pour les valeurs de n non atteintes par X . Par exemple, si X est à valeurs dans une

partie finie de N, alors GX est simplement une fonction polynomiale.

Remarque. Souvent, le rayon de convergence de la série entière
∑

P (X = n)t n est strictement supérieur à 1 et le domaine

de définition de GX est plus grand que [−1;1].

Exemple V.0.2. (1) Soit n ∈N∗. Supposons que X ∼U (J1;nK) (loi uniforme). Calculer GX (t ) pour tout t ∈ [−1;1].

(2) Soit p ∈ [0;1]. Supposons que X ∼B(p) (loi de Bernoulli). Montrer que GX : t 7→ pt + (1−p).

(3) Soit n ∈N. Soit p ∈ [0;1]. Supposons que X ∼B(n, p) (loi binomiale). Montrer que GX : t 7→ (pt + (1−p))n .

(4) Soit λ ∈]0;+∞[. Supposons que X ∼P (λ) (loi de Poisson). Montrer que GX : t 7→ eλ(t−1) (R =+∞).

(5) Soit p ∈]0;1[. Supposons que X ∼G (λ) (loi géométrique). Montrer que GX : t 7→ pt

pt − t +1
(R = 1

1−p ).

Théorème V.3. (1) Soient X et Y deux variables aléatoires définies sur (Ω,A ) et à valeurs dans N.

Si GX et GY coïncident sur [−1;1] (ou même sur un intervalle de la forme ]− r ;r [ où r > 0), alors X et Y suivent la

même loi.

On dit que la loi d’une variable aléatoire est caractérisée par sa fonction génératrice.

(2) Plus précisément, pour tout n ∈N : P (X = n) = G (n)
X (0)

n!
.

Théorème V.4. Soit X une variable aléatoire définie sur (Ω,A ) et à valeurs dans N.

(1) GX est continue sur [−1;1] et de classe C ∞ sur ]−1;1[. De plus GX (1) = 1 .

(2) [ADMIS] L’espérance de X est finie si et seulement si GX est dérivable en 1. Dans ce cas, E(X ) =G ′
X (1) .

(3) [ADMIS] L’espérance de X 2 est finie si et seulement si GX est dérivable deux fois en 1 (c’est-à-dire G ′′
X (1) existe).

Dans ce cas, V (X ) =G ′′
X (1)+G ′

X (1)−G ′
X (1)2 .

(4) Cas particulier. Si le rayon de convergence R de la série entière
∑

P (X = n)t n vérifie R > 1, alors les espérances de X

et X 2 sont finies et on peut utiliser les formules obtenues aux points précédents.

Exemple V.0.5. Retrouver l’existence et la valeur de E(X ) et V (X ) dans le cas d’une variable aléatoire X qui suit la loi de

Poisson P (λ) où λ ∈]0;+∞[.
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Théorème V.6. (1) Soient X et Y deux variables aléatoires définies sur (Ω,A ) et à valeurs dans N.

Si X et Y sont indépendantes, alors GX+Y (t ) =GX (t )GY (t ) pour tout t ∈ [−1;1].

(2) Soit n ∈N\ {0,1}. Soient X1, X2, ..., Xn des variables aléatoires indépendantes définies sur (Ω,A ) et à valeurs dansN.

Alors GX1+···+Xn (t ) =GX1 (t ) . . .GXn (t ) pour tout t ∈ [−1;1].

Exemple V.0.7. (1) Soit n ∈N∗. Soient X1, ..., Xn des variables aléatoires indépendantes qui suivent toutes la même loi

de Bernoulli de paramètre p ∈ [0;1]. On note S =
n∑

k=1
Xk . Déterminer la loi de S en utilisant les fonctions génératrices.

(2) Soient X et Y deux variables aléatoires indépendantes qui suivent respectivement deux lois

de Poisson de paramètres λ> 0 et µ> 0. Quelle est la loi de X +Y ?

(3) Soient X et Y deux variables aléatoires indépendantes qui suivent respectivement deux lois binomiales de même

deuxième paramètre : X ∼B(n, p) et Y ∼B(m, p). Quelle est la loi de X +Y ?

Exercice V.0.8. On lance deux dés à 6 faces numérotées de 1 à 6. On note S la somme des résultats obtenus.

On note X et Y les résultats respectifs des dés et on ne suppose pas que X ou Y suive une loi uniforme.

Est-il possible de trouver des lois de X et Y (truquer les dés !) pour que S suive une loi uniforme ?

On supposera que c’est possible et on raisonnera sur les racines réelles du polynôme GS .

Tableau récapitulatif des lois usuelles

X ∼ . . . U (J1;nK) B(p) B(n, p) G (p) P (λ)

paramètre(s) n ∈N∗ p ∈ [0;1] n ∈N, p ∈ [0;1] p ∈]0;1[ λ ∈R∗+

X (Ω) J1;nK {0,1} J0;nK N∗ N

P (X = k)
1

n
p si k = 1 ; 1−p si k = 0

(
n

k

)
pk (1−p)n−k p(1−p)k−1 e−λ

λk

k !

E(X )
n +1

2
p np

1

p
λ

V (X )
n2 −1

12
p(1−p) np(1−p)

1−p

p2 λ

GX (t ) = . . . pt + (1−p) (pt + (1−p))n pt

pt − t +1
eλ(t−1)


