Chapitre 12 - Endomorphismes d’un espace euclidien

Dans ce chapitre n est un entier naturel non nul et E est un espace euclidien de dimension n.

On note (.,.) son produit scalaire et ||.|| la norme euclidienne associée.

Théoreme .1 (RAPPEL). %%

Soit B = (ey,...,e;) unebase orthonormée de E.

(1) Pourtoutxe€E,| x=

n
(x,ej)e; |

i=1

(2) Soient x ety dans E. Notons x; = (X, e;) et y; = (¥, e;) les coordonnées respectives de x et y dans 9B (obtenues grdce au

n n
xyy =2 xiyi et lxll=q/) x.
i=1 i=1

(3) Soientx ety dans E. Notons X et Y les matrices-colonnes de coordonnées dans 98 de x et y. Alors :

point précédent!). Alors :

x,=X'y| et |lxl=VXTX|

Dans les expressions ci-dessus, on identifie une matrice 1 x 1 et un réel.

I — Matrices orthogonales

1) Définition - Caractérisations

Définition - Théoreme I.1.1. Soit M € .4, (R).

On dit que M est une matrice orthogonale si M vérifie 'une des propriétés équivalentes suivantes :

1) MMT =1,;

@ MTM=1I,;

(3) M estinversible et M~! = MT;

(4) les colonnes de M forment une base orthonormée de R” usuel;

(5) leslignes de M forment une base orthonormée de R” usuel.

1L 1 1 0 0
Exemplel.1.2. Les matri ivant torth les: I, [ €@ ~sn®@ YO 0) sin(
xemplel.1.2. Les matrices suivantes sont orthogonales : n’(sin(e) cos(@) ), \? 7 @ , |0 c?s( ) sin(0)

7 0 7 0 sin(@) —cos(@)

Proposition I.1.3. Soit 2 une base orthonormée de E. Soit B' une famille de n vecteurs de E.
La famille ' est une base orthonormée de E si et seulement si la matrice de 9B’ dans 98 est une matrice orthogonale.

Cette matrice est alors la matrice de passage Pg_. 5/ .




Proposition1.1.4. (1) Si M est une matrice orthogonale, alors det(M) € {—1;1} et Spr(M) c {—1;1}.

(2) Soient % et B' deux bases orthonormées de E. Alors detg(%B') € {—1;1}.

Définition - Théoréme I.1.5 (Groupe orthogonal).
(1) I, estune matrice orthogonale.
(2) Le produit de deux matrices orthogonales est une matrice orthogonale.
(3) Une matrice orthogonale est inversible et son inverse est une matrice orthogonale.

(4) On note O,(R) ou O(n) 'ensemble des matrices orthogonales de .4, (R), ensemble appelé groupe orthogonal.

Définition - Théoréme 1.1.6 (Groupe spécial orthogonal).

(I) On note SO,(R) ou SO(n) l'ensemble des matrices de O(n) de déterminant 1, ensemble appelé

groupe spécial orthogonal.

2) I, € SO(n).
(3) Le produit de deux matrices de SO(n) est dans SO(n).

(4) Une matrice de SO(n) est inversible et son inverse est dans SO(n).

Exemplel.1.7. Reprendre les exemples précédents et identifier les matrices qui sont dans SO(n).

II - Endomorphismes autoadjoints et matrices symétriques

1) Définition - Caractérisation matricielle

Définition - ThéorémeII.1.1. e Soit f € Z(E). On dit que f est (un endomorphisme) autoadjoint si :

V(x,y) € E%, (x, f(1)) = (f(x), ).

» L'ensemble des endomorphismes autoadjoints de E est un sous-espace vectoriel de £ (E) noté .#(E).

ExempleIl.1.2. (1) Une symétrie orthogonale de E est un endomorphisme autoadjoint.

1
(2) Soit n e N*. Notons E = R, [X] muni du produit scalaire (P, Q) :[ P(1)Q(rdt et
-1
¢:P—2XP +(X?-1)P".

Démontrer que ¢ est un endomorphisme autoadjoint de E.

Proposition II.1.3 (Caractérisation des projecteurs orthogonaux).
(1) Si fe.F(E), alorsIm(f) = Ker(f)* (et doncKer(f) = Im(f)*).

(2) Soit p un projecteur de E.

p est un projecteur orthogonal si et seulement si p est autoadjoint.

Théoreéme I1.4 (Caractérisation matricielle).
Soit f € L(E). Soit 2 une base orthonormée de E.
[ est autoadjoint si et seulement si Matgg (f) est symétrique.

Les endomorphismes autoadjoints sont aussi appelés endomorphismes symétriques. On n'utilisera pas cette terminologie.




nn+1)

Corollaire I1.1.5. On rappelle que dim(E) = n. Alors dim(# (E)) = dim(#,(R)) = >

Corollaire I1.1.6. La composée de deux endomorphismes f et g autoadjoints de E est un endomorphisme autoadjoint si et

seulement si ces deux endomorphismes commutent (c'est-a-dire fog = go f).

Proposition I1.1.7 (Caractérisations des symétries orthogonales). Soit s une symétrie de E.

s est une symétrie orthogonale si et seulement si s est un endomorphisme autoadjoint.

2) Propriétés et théoreme spectral

Proposition I1.2.8. Soit u € .%(E). Si F un sous-espace vectoriel de E stable par u, alors F* est stable par u.

Proposition I1.2.9.

(1) Soitue & (E). Soient A et u deux valeurs propres distinctes de u. Alors E) (u) et E,,(u) sont orthogonaux.

Autrement dit, les sous-espaces propres d'un endomorphisme auto-adjoint sont deux a deux orthogonaux.

(2) Soit M € #,(R). Soient A et u deux valeurs propres réelles distinctes de u. Alors Ej (M) et E, (M) sont orthogonaux.

Autrement dit, les sous-espaces propres d’'une matrice symétrique réelle sont deux a deux orthogonaux.

Théoreéme I1.10 (Théoréme spectral). &%

(1) [ADMIS] Soit f un endomorphisme autoadjoint de E.
1l existe une base orthonormée 2 de E telle que Matg(f) est diagonale.

Autrement dit, il existe une base orthonormée de E formée de vecteurs propres de f OU f est diagonalisable dans une base orthonormée.
(2) Soit M une matrice symétriqueréelle (autrement dit M € #,(R)). On donne deux versions du méme théoréme.
(a) Il existe une matrice P € O,(R) et une matrice diagonale D € 4, (R) telles que

M=prDP '=pDPT.

Autrement dit, M est diagonalisable (sur R) avec une matrice de passage orthogonale. On dit parfois que M et D sont orthosemblables.

(b) On munitR" de sa structure euclidienne usuelle. Il existe une base orthonormée de R" formée de vecteurs propres de

Exemplell.2.11. & Soit A € /,(R). Les matrices A+ AT, AAT et AT A sont symétriques réelles donc diagonalisables.
Ce sont des exemples que I'on rencontre fréquemment!

On rappelle qu'en général (A; x Ay x - x Ap)" = A x---x A} x A].

Remarque. (1) On peut déduire de ce théoreme que les valeurs propres complexes d'une matrice symétrique réelle
sont toutes réelles. Si M € ., (R), on pourra alors écrire Sp(M) sans ambiguité puisque Spp(M) = Spc(M).

En fait, ce résultat est la premiére étape de la démonstration du théoréme spectral.

(2) & La réciproque du théoréme spectral est clairement vraie (on ne la cite jamais) :
« si f estdiagonalisable dans une base orthonormeée, alors f est autoadjoint puisque dans cette base orthonormée,
la matrice de f est diagonale donc symétrique;
e si M = PDPT avec D diagonale, alors MT = PDTPT = PDPT = M et M est symétrique.

M.



(3) ﬁD Dans la pratique, on diagonalise f puis on considere une base orthonormée de chaque sous-espace propre.
En concaténant toutes ces bases, on obtient une base orthonormée 28 de E formée de vecteurs propres de f.
i

1
(4) La matrice (
i -1

) est une matrice symétrique non réelle. Elle n’est pas diagonalisable (exercice!).

Exercicell.2.12.
1 -1 1
OnnoteA=|-1 1 -1|.Déterminer une matrice P € O(3) et une matrice D € .#3(R) diagonale telles que A= PDPT.

Exercice1l.2.13. Soit A € .4, (R). On note m la plus petite valeur propre de A et M la plus grande valeur propre de A.
Soit (i, j) € [1; n]%. Trouver deux matrices colonnes X et Y telles que (A)i,j = xTay.
Démontrer que, pour tout i € [1; 1], m < (A); ; < M.

Le calcul de XT AX pour démontrer une propriété sur les valeurs propres et/ou les coefficients d’une matrice symétrique est une idée tres classique.

3) Endomorphisme autoadjoint (défini) positif - Matrice symétrique (définie) positive

DéfinitionI1.3.14. (1) Soit f un endomorphisme autoadjoint de E. On dit que f est autoadjoint positif (respective-

ment autoadjoint défini positif) si, pour tout x € E\ {0g} : (x, f(x)) =0 (respectivement (x, f(x)) > 0).

On note #* (E) (respectivement &#** (E)) 'ensemble des endomorphismes autoadjoints positifs

(respectivement définis positifs) de E.

(2) Soit A une matrice symétrique de 4,([R). On dit que A est symétrique positive (respectivement

symétrique définie positive) si, pour tout X € .4, (R)\ {0} : X TAX=>0 (respectivement X7 AX >0).

On note .%; (R) (respectivement %, * (R)) 'ensemble des matrices symétriques positives

(respectivement définies positives) de .4, (R).

ThéoremeI1.15. Soit f € L(E). Soit B une base orthonormée de E.
o feFH(E) siet seulement siMatg(f) € &, (R).
o feFPTH(E) siet seulement siMatg(f) € ;7T (R).

Théoréme II.16 (Caractérisation spectrale).

(1) Soit f € F(E). f est autoadjoint positif (respectivement défini positif) si et seulement si les valeurs propres de f sont

positives (respectivement strictement positives).

(2) Soit A e #,(R). A est symétrique positive (respectivement définie positive) si et seulement si les valeurs propres de A

sont positives (respectivement strictement positives).




Exemplel11.3.17. En utilisant uniquement la trace et le déterminant, dites si les matrices suivantes sont

symétriques positives, définies positives ou pas :
1 2 1 -2 -1 2 -1 -5

’ AZ = » A3 = y A4 = .
2 1 -2 6 2 -6 1 4

Exercicell.3.18. (1) Montrer qu'une matrice symétrique réelle définie positive est inversible.

A=

(2) Montrer que si A et B sont deux matrices symétriques positives, alors A + B I'est aussi.

Est-ce que ., (R) est un sous-espace vectoriel de ., (R)?

Exercicell.3.19. Soit A€ 4,(R).
(1) Montrer que A est symétrique positive si et seulement s'il existe B € .4, (R) telle que A= BB,

(2) Montrer que A est symétrique positive si et seulement s'il existe R € %, (R) telle que A = R?.

III - Isométries vectorielles

1) Définition - Caractérisations - Exemples

Définition III.1.1. On appelle isométrie vectorielle de E tout endomorphisme f de E qui conserve la norme, c’est-a-dire

qui vérifie :
Vx€eE, | fl =lxIl.

Définition - Théoréme III.1.2. Soit F un sous-espace vectoriel de E.

(1) F et F* sont supplémentaires dans E et on appelle symétrie orthogonale par rapport a F

la symétrie par rapport a F parallélement a F*.

(2) Une symétrie orthogonale de E est une isométrie vectorielle.




Définition - Théoreme III.1.3.

(1) On appelle réflexion toute symétrie orthogonale par rapport a un hyperplan H de E.

On parle alors de réflexion par rapport a H.

(2) Soit H un hyperplan de E. Notons u un vecteur normal a H et s la réflexion par rapport a H.

(x, u

VxeE, s(x) =x—2——
[l 2e)|?

Exemplelll.1.4. Onnote E = ./, (R) muni de sa structure euclidienne usuelle.

(1) Démontrer que H ={M € E | tr(M) = 0} est un hyperplan de E dont un vecteur normal est I.

(2) Onnote slaréflexion par rapport a H. Soit M € E. Déterminer une expression de s(M).

(3) Justifier que s est diagonalisable et trouver une base de E dans laquelle la matrice de s est diagonale.

Théoreme IIL.5 (Caractérisations des isométries vectorielles). Soit f € £(E).

(1) f est uneisométrie vectorielle si et seulement si f conserve le produit scalaire, c’est-a-dire :
V(x, ) € B, (f(0), () = (x, ).

(2) Soit B = (ey,...,en) une base orthonormeée de E. On note f(8B) = (f(e1),..., f(en)).

[ est une isométrie vectorielle si et seulement si f (98) est une base orthonormée de E.

Théoreme I11.6 (Caractérisation matricielle). Soit 2 une base orthonormeée de E. Soit f un endomorphisme de E.
f est une isométrie vectorielle si et seulement si Matg(f) est une matrice orthogonale.

Parfois, les isométries vectorielles sont appelées automorphismes orthogonaux mais nous n'utiliserons pas cette terminologie.

Exemple1Il.1.7. Soit @ € R. On note E = R? muni de sa structure euclidienne usuelle.

. . . cos(@) —sin(0)
Notons f I'endomorphisme de E dont la matrice dans la base canonique (e1, ;) est .

sin(@) cos(0)
Démontrer que f est une isométrie vectorielle de E et représenter ci-dessous I'image de e;, de e, puis d'un vecteur x de E par f.

€2

€1

On peut vérifier que si z est 'affixe du vecteur x dans le plan complexe, alors I'affixe de f(x) est elf z.



2) Propriétés - Groupe orthogonal

Définition - Théoréme II1.2.8 (Groupe orthogonal). (1) L'application Idg est une isométrie vectorielle de E.
(2) La composée de deux isométries vectorielles de E est une isométrie vectorielle de E.

(3) Une isométrie vectorielle f de E est un automorphisme de E.

De plus sa réciproque f~! est également une isométrie vectorielle.

(4) On note O(E) 'ensemble des isométries vectorielles de E, ensemble appelé groupe orthogonal de E.

Exemplelll.2.9. Les projecteurs (orthogonaux ou pas) ne sont pas des isométries vectorielles, a 'exception de Idg.

Proposition I11.2.10. Soit u une isométrie vectorielle de E. Soit F un sous-espace vectoriel de E stable par u. On a alors :
(1) F* eststable par u;

(2) dans une base de E adaptée a la somme directe F & F L = E, la matrice de u est diagonale par blocs (il y a2 blocs).

Proposition I11.2.11. Soit f une isométrie vectorielle de E.
(D) det(f) e{-1;1};
(2) Lespectrede f estinclus dans{—1;1}.
Ici E est un espace euclidien donc les valeurs propres considérées sont réelles.

(3) Les sous-espaces vectoriels Ker(f +1dg) etKer(f —Idg) sont orthogonaux.

1l est possible que ces sous-espaces soient réduits a {0}, ce qui ne change rien a cet énoncé qui est alors de peu d’'intérét ...

Corollaire I11.2.12. Soit s une symétrie de E.

s est une symétrie orthogonale si et seulement si s est une isométrie vectorielle.

Exercicelll.2.13. Soit f € Z(E).

f estun endomorphisme autoadjoint et une isométrie si et seulement si f est une symétrie orthogonale.

3) Rotations - Groupe spécial orthogonal - Orientation

Définition - Théoréme I11.3.14. Soit f € O(E).

(1) On dit que f est une rotation de E si det(f) = 1.

On parle aussi d’isométrie vectorielle directe.
(2) Soit 28 une base orthonormée de E. f est une rotation de E si et seulement si Matg(f) € SO(n).

(3) Lensemble des rotations de E se note SO(E) (groupe spécial orthogonal de E).
Idg € SO(E) et, pour tous f et g dans SO(E),ona foge SO(E) et f‘1 € SO(E).

ExerciceIll.3.15. Soit f une symétrie orthogonale de E. A quelle condition f est-elle une rotation de E?2

Les réflexions sont des isométries vectorielles indirectes (c’est-a-dire de déterminant —1).



4) Orientation - Bases orthonormées directes

Définition - Théoréme I11.4.16. (1) Orienter I'espace vectoriel E consiste a choisir une base %, de E considérée

comme directe. Soit 28 une base de E :
o sidetg, (%) >0, on dit que la base 28 est directe;
* sidetg, (%) <0, on dit que la base 28 est indirecte.

(2) Choisir une autre base directe a la place de 28) ne change pas les ensembles des bases directes et des bases

indirectes. Choisir une base indirecte a la place de %, échange les ensembles des bases directes et indirectes.

(3) Deux bases 28 et 2’ ont la méme orientation (les deux sont directes ou les deux sont indirectes)

si et seulement si detg (98') > 0 (ou detg () > 0).

Remarque. Orienter un espace vectoriel est une convention. Il n'y en a que deux possibles. On se souvient que I'orientation
du plan ou de l'espace utilisée en physique est aussi une convention qui permet de discriminer les bases (directes ou

indirectes) : sens trigonométrique, régle du tire-bouchon, ...

Exercicelll.4.17. (1) Onchangel'orientation d’'une base en échangeant deux vecteurs ou en remplacant un vecteur par

son opposé.

(2) Si n est impair (par exemple n=3) et 8 = (ey,...,ey,) est une base de E, alors ' = (ey, e1,...,€,-1) a la méme
orientation que 2.

On dit que %’ a été obtenue par permutation circulaire des vecteurs de %.

a
(3) Supposons que n = 2. Soit 28 une base orthonormée directe de E. Soit u un vecteur normé de E de coordonnées (b) dans %.

Le seul vecteur v de E tel que (u, v) soit une base orthonormée directe est le vecteur de coordonnées ( ) dans 2.

a
Autrement dit, il existe un et un seul vecteur v tel que (u, v) soit une base orthonormée directe de E.

Proposition 111.4.18 (Caractérisations des bases orthonormées directes).

On suppose E orienté. Soit 2 une base orthonormée directe de E.

(1) Soit %' une base orthonormée de E. On sait que detg(B') € {—1;1}.
B' est directe si et seulement si detg(%B') = 1.
A\ On peut avoir detg (B') = 1 sans que %' ne soit orthonormée!
2) Soit %' une famille de n vecteurs de E.
B' est une base orthonormeée directe de E si et seulement si Matg(%B') € SO(n) (on alors Pg_. g € SO(n)).
En particulier, une matrice appartient a SO(n) si et seulement si ses colonnes forment une base orthonormée directe de R™ usuel

(orienté par la base canonique).

(3) Soit f € Z(E). f est une rotation de E (f € SO(E)) si et seulement si f(98) est une base orthonormée directe de E.




IV — Cas particulier : n =2

1) Produit mixte

Définition - Théoréme IV.1.1. Supposons que | dim(E) =2 | On suppose E orienté. Soient u et v deux vecteurs de E.

(1) Soient 28 et 2’ deux bases orthonormées directes de E. Alors detg (1, v) = detg (1, v).

(2) On appelle produit mixte de u et v et on note [u, v] le déterminant de la famille (u, v) dans n'importe quelle base

orthonormeée directe de E.

Remarque. e SiE =R?, on adéjavu en premiére année que |[u, v]| peut étre interprété comme l'aire du parallélogramme
construit sur les vecteurs u et v, 'unité d’aire étant I’aire du carré construit sur les vecteurs d'une base orthonormée
(quelle que soit cette base orthonormée!).

e Dans le cas ou [u, v] # 0, la famille (u, v) est une base de E et le signe de [u, v] donne 'orientation de la base (u, v).

2) Classification des matrices orthogonales de ./, (R)

ThéoréemeIV.2. (1) Soit M € 4, (R).

M est une matrice orthogonale si et seulement s’il existe 0 € R tel que M est de I'une des deux formes suivantes :

M=R@) = (cos(@) - sm(@))

cos(@) sin(0)
M=S80)= .
sin(@) cos(0) ( )

sin(@) —cos(0)
1y a unicité de 6 si on impose 6 € [0;27[ ou 6 €] — m; ] par exemple.

(2) SO(2) ={R(0), 0 eR} et O(2)\ SO(2) = {S(0), O € R}.

Proposition IV.2.3. Les matrices de SO(2) commutent. Plus précisément, pour tous eR et0' eR :
RO)R®)=R©O)RO)=RO+0").

Sin =3, SO(n) n'est pas commutatif.

3) Classification des isométries vectorielles d'un plan euclidien

Théoreme IV.4. Supposons que| dim(E) =2 |. On suppose E orienté. Soitr € £ (E).

(1) e« Sire SO(E), alors il existe un réel 0, unique a 2 pres, tel que dans toute base orthonormée directe de E, la
matrice de r soit R(0).

On dit alors que r est la rotation d'angle 6 ou que 6 est une mesure de l'angle de la rotation r.

o On rappelle que, pour montrer que r € SO(E), il suffit de trouver une base orthonormée % de E et un réel 0 tels
queMatg(r) = R(0).

@) (@ Sif=0[2x], r =1dg.

(b) Sif #0[27], seul le vecteur nul est invariant par r. Autrement dit Ker(r — Idg) = {0g}.

En particulier, si0 = n[2n] alorsr = —1dg.

Remarque. Pour visualiser1effet d'une rotation sur un vecteur de E, il suffit de reprendre I'exemple II1.1.7.
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Meéthode. ,@D [Pour calculer I'image d’'un vecteur par une rotation plane donnéel

Soit € R. Notons r la rotation d’angle 6. Soit x € E.
(1) Ondétermine une base orthonormée directe 28 de E et on écritla matrice-colonne X des coordonnées de x dans 23.

(2) Lecalcul de R(6).X donne alors la matrice-colonne des coordonnées de r(x) dans 23.

1 5 12
ExempleIV.3.5. Notons f I'endomorphisme de R? canoniquement associé a la matrice A = 'F ( s )

([R2 est muni de sa structure euclidienne usuelle et est orienté par la base canonique.)

Décrire 'endomorphisme f.

Définition - Théoréme IV.3.6 (Mesure d'un angle orient€).

Supposons que| dim(E) =2 |. On suppose E orienté. Soient u et v deux vecteurs non nuls de E.
1

1
Notons ' = —uetv' = —v.
Izl vl

(1) 1 existe une unique rotation r de E telle que r(u') = v'. On appelle alors mesure de 'angle orienté (u, v)

une mesure 6 de ’angle de cette rotation. On note alors m = 0 [2n].

Si on choisit I'autre orientation du plan E, on obtient une mesure d’angle opposée.

(2) On a alors (u, v) = |lull.llvll.cos(@) et [u,v] = ||lul.llv].sin(8), formules qui permettent de retrouver 6 a partir des

coordonnées de u et v dans une base orthonormée directe.

-1
ExempleIV.3.7. Dans R? usuel (la base canonique est supposée directe), on note u = ( ) etv=

-V3 2

Déterminer une mesure de I'angle orienté (u, v).

Théoreme IV.8. Supposons que| dim(E) =2 |. Soit s € O(E) \ SO(E).

Alors s est une réflexion, c'est-a-dire une symétrie orthogonale par rapport a une droite ( = hyperplan).

ExempleIV.3.9. On note E = R;[X] muni de sa structure euclidienne usuelle. On note f I'application définie par :
1
VPEE, f(P)= ¢ (P0)4X +3)-P'(0)(3X —4)).

Montrer que f est une réflexion par rapport a une droite que 1'on déterminera. On montrera d’abord que f est un endomorphisme de E.

dim(E) =2 feSO(E) feO(E)\SO(E)
Sp(f) {1} -1 % {=1,1}
Ker(f —1dg) E {0g} {0} Vect(u)
f Idg —Idg rotation d’angle 0 # 0[] réflexion par rapport a Vect(u)

rotation d’angle &

sin(@) cos(0)
dans toute b.o.n. directe de E

RO) = (cos(@) —sin(@))

1 O
matrice de f || Io = R(0) —I, = R(m) ( ) dans une base orthogonale (u, v)

0 -1




V — Cas particulier : n=3

1) Produit mixte - Produit vectoriel

Définition - Théoréme V.1.1. Supposons que| dim(E) =3 |. On suppose E orienté. Soient u, v et w trois vecteurs de E.

(1) Soient 28 et B’ deux bases orthonormées directes de E. Alors detg (i, v, w) = detg (u, v, w).

(2) On appelle produit mixte de u, v et w et on note [u, v, w] le déterminant de la famille (u, v, w) dans n'importe quelle

base orthonormée directe de E.

Remarque. o Si E=MR3, ona déja vu en premiere année que |[u, v, w]| peut étre interprété comme le volume du paral-
lélépipede construit sur les vecteurs u, v et w, I'unité de volume étant le volume du cube construit sur les vecteurs
d’une base orthonormée (quelle que soit cette base orthonormée!) .

e Danslecasou [u, v, w] #0,la famille (1, v, w) est une base de E et le signe de [u, v, w] donne I'orientation de la base (u, v, w).

Définition - Théoréme V.1.2. Supposons que| dim(E) =3 |. On suppose E orienté. Soient u et v deux vecteurs de E.
Il existe un et un unique vecteur de E noté u A v et appelé produit vectoriel de u et v qui vérifie :

YweE, [uv,w] ={uluvw).

Proposition V.1.3. Supposons que| dim(E) = 3 |. On suppose E orienté.

Lapplication (u, v) — u A v est bilinéaire et antisymétrique : ¥V (u, v) € E2 vAu=—-(unv).

Proposition V.1.4. Supposons que| dim(E) =3 |. On suppose E orienté. Soient u et v deux vecteurs de E.

(1) u etv sont colinéaires si et seulement siu A v =0g.
(2) Siu etv ne sont pas colinéaires, alors la famille (u, v, u A v) est une base directe de E.
(3) Levecteur uA v estorthogonalauetav.

(4) Soient u et v deux vecteurs de E normés et orthogonaux.
La famille (u, v, w) est une base orthonormeée directe de E si et seulement siu A v = w.

La famille (u, v, w) est une base orthonormée indirecte de E si et seulement siunv=—w.

Proposition V.1.5. Supposons que| dim(E) = 3 |. On suppose E orienté. Soient u et v deux vecteurs de E.

X1 X2

Soit 9B une base orthonormée directe de E. On note | y; | et| y» | les matrices-colonnes des coordonnées de u et v dans 2.

<1 22

yi )2
zZ1 22

Y122 =)221
9 , 21 22

Alors la matrice colonne de coordonnées de u A v dans 28 est =|x221—x122 |-

X1 X2

X1Y2 —X2)1
X1 X2
yio)e
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1 1
V2 V6
ExerciceV.1.6. Dans R3 usuel (la base canonique étant supposée directe), vérifier que e; = \_/—15 etep, = \/ié sont normeés
0 =2
NG
et orthogonaux. Compléter la famille (e}, e2) en une base orthonormée directe de R3.
40 5 =20
. & A . 1
Meéthode. Sans calculer son déterminant, montrer que la matrice A = 5 —13 40 -16|estdans SO(3).
16 20 37

On peut montrer que C; et Co sont normés et orthogonaux et vérifier que C3 = C; A Co.

Définition - Théoréme V.1.7 (Orientation d'une droite et d'un plan).

Supposons que | dim(E) =3 |. On suppose E orienté. Soient u et v deux vecteurs non nuls de E.

(1) Soit w un vecteur non nul de E. On dit que la droite D = Vect(w) est dirigée et orientée par w sila base (w) de D est

considérée directe.  Cette définition ne dépend pas de I'orientation de E.
(2) Soit P un plan de E. On note w un vecteur normal a P.

(a) Deux bases (ej, e») et (e},e)) de P ont la méme orientation dans P si et seulement si les bases (e, e, w) et
1)

(e}, €, w) de E ont laméme orientation dans E.  Cest une propriété!

(b) On dit que le plan P est orienté par le vecteur w si les bases directes de P sont les bases (u, v) de P telles que

(u, v, w) soit une base directe de E.  C’est une définition!

Lorientation d'un plan dépend de I'orientation de E et du choix de w. On change d’orientation en choisissant —w comme vecteur normal.

Proposition V.1.8. Supposons que| dim(E) = 3 |. On suppose E orienté. Soient u et v deux vecteurs de E non colinéaires.
Dans le plan Vect(u, v) orienté par un vecteur normal, on peut définir une mesure 0 de l'angle orienté (u, v).

Si on choisit 'autre orientation du plan E, on obtient une mesure d'angle opposée et la formule ci-dessous est inchangée.

Onaalors:||lunvl = |ul.lvl|.|sin@@)|.




2) Description des rotations d’'un espace euclidien de dimension 3

Théoreme V.9. Supposons que| dim(E) =3 |. On suppose E orienté. Soit f une rotation de E.

o Ilexiste 6 € R et une base orthonormée directe B = (u, v, w) de E tels que

cos(@) -sin(@) O
Matg(f) = | sin(@) cos(@) O0f=

0 0 1
o Si f #1dg (clest-a-dire 8 # 0[27]), Ker(f —Idg) est la droite D = Vect(w) (ensemble des vecteurs invariants par f).

R©O) ©
o 1)

Dirigée et orientée par w, cette droite est appelée axe de la rotation.
o Si f #1dg, la restriction de f au plan {w}* orienté par w est la rotation (plane) d’angle 6. Le réel 0 est alors appelé

mesure de l'angle de la rotation.

Le réel 0 dépend du vecteur w choisi. Ce choix étant fait, le réel 0 est unique a 2w pres.

o Si f #1dg, on dit quer est la rotation d'angle 0 autour de l'axe dirigé et orienté par w.

On peut étendre cette définition et définir la rotation d'angle 0 autour d’'un axe dirigé et orienté par un vecteur non unitaire w'
/

comme la rotation autour de l'axe dirigé et orienté par w = T
w
On rappelle que, pour montrer que f € £ (E) est une rotation, il suffit de trouver une base orthonormée dans laquelle la matrice de f est

dans SO(3).

ExempleV.2.10. Larotation d’angle 7 autour d'un axe est la symétrie orthogonale par rapport a cet axe.
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Meéthode. /@D [Pour calculer l'image d’'un vecteur par une rotation donnéel
Soit 6 # 0[2]. Soit w un vecteur normé de E orienté de dimension 3.

Notons f larotation d’angle 6 autour de I'axe dirigé et orienté par w. Soit x € E.

(1) En notant xp = x — {x, w)w, on écrit x comme somme d’un vecteur de I'axe et d’'un vecteur de P = {w}' :

‘x:xp+<x,w)w ‘

(2) Onaalors f(x) = f(xp) + (x, w)w ou

‘ f(xp) =cos(@).xp +sin(0).(w A xp) ‘

On observe que si on choisit —w a la place de w et —0 ala place de 8, on obtient la méme rotation!

2n
ExerciceV.2.11. Dans R usuel (la base canonique étant supposée directe), on note r la rotation d’angle 3 autour de I'axe

1 1
dirigé et orienté par w = | 1 |. Quelle est 'image par r du vecteur e; = | 0 | ?
1 0

Meéthode. ,@D [Pour trouver l'axe et l'angle d’'une rotation]

Soit f une rotation de E orienté de dimension 3. On suppose que f # Idg.

1) ‘ tr(f) =1+2cos(f) |donc on connait déja 0 au signe pres.

On ne peut pas connaitre 8, on n’a pas encore choisi w!

(2) On choisit w non nul dans Ker(f—Idg) eton écrit que "f est la rotation d’'angle 0 autour de U'axe dirigé et orienté par w”.

On a alors, pour tout x unitaire et orthogonal a w :

sin(0) =

w
xrf(x),m] g

Si x’ est un vecteur non colinéaire a w, le signe de sin(f) est le méme que celui de

X, f(x), wl.

ExerciceV.2.12. On suppose R? muni de sa structure euclidienne usuelle, la base canonique étant supposée directe.
8 1 -4
1
Décrire 'endomorphisme f de R® canoniquement associé a A = 3 -4 4 -7
1 8 4



dim(E) =3 f€SO(E) feO(E)\SO(E)
Ker(f —1dg) E D = Vect(w) avec w normé P =Vect(u,v) ...2(H.P)
rotation d’angle 6 # 0[27n]
f Idg autour de D orienté par w réflexion par rapporta P | ...2 (H.P)
. 1 0 0
cos(@) -sin@) O
. 0 1 0 |dansune
matrice de f I3 sin(@)  cos(®) 0 0 0 -1 ...2(H.P)

0 0 1
dans toute b.o.n. directe (u, v,w) de E

base (u,v, w) ott w e P+




