
Chapitre 12 - Endomorphismes d’un espace euclidien

Dans ce chapitre n est un entier naturel non nul et E est un espace euclidien de dimension n.

On note 〈., .〉 son produit scalaire et ∥.∥ la norme euclidienne associée.

Théorème .1 (RAPPEL). ✌✌
Soit B = (e1, . . . ,en) une base orthonormée de E.

(1) Pour tout x ∈ E, x =
n∑

i=1
〈x,ei 〉ei .

(2) Soient x et y dans E. Notons xi = 〈x,ei 〉 et yi = 〈y,ei 〉 les coordonnées respectives de x et y dans B (obtenues grâce au

point précédent !). Alors :

〈x, y〉 =
n∑

i=1
xi yi et ∥x∥ =

√
n∑

i=1
x2

i .

(3) Soient x et y dans E. Notons X et Y les matrices-colonnes de coordonnées dans B de x et y. Alors :

〈x, y〉 = X T Y et ∥x∥ =
√

X T X .

Dans les expressions ci-dessus, on identifie une matrice 1×1 et un réel.

I – Matrices orthogonales

1 ) Définition - Caractérisations

Définition - Théorème I.1.1. Soit M ∈Mn(R).

On dit que M est une matrice orthogonale si M vérifie l’une des propriétés équivalentes suivantes :

(1) M M T = In ;

(2) M T M = In ;

(3) M est inversible et M−1 = M T ;

(4) les colonnes de M forment une base orthonormée de Rn usuel ;

(5) les lignes de M forment une base orthonormée de Rn usuel.

Exemple I.1.2. Les matrices suivantes sont orthogonales : In ,

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)
,


1p
3

1p
2

1p
6

1p
3

−1p
2

1p
6

1p
3

0 −2p
6

,


1 0 0

0 cos(θ) sin(θ)

0 sin(θ) −cos(θ)

.

Proposition I.1.3. Soit B une base orthonormée de E. Soit B′ une famille de n vecteurs de E.

La famille B′ est une base orthonormée de E si et seulement si la matrice de B′ dans B est une matrice orthogonale.

Cette matrice est alors la matrice de passage PB→B′ .
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Proposition I.1.4. (1) Si M est une matrice orthogonale, alors det(M) ∈ {−1;1} et SpR(M) ⊂ {−1;1}.

(2) Soient B et B′ deux bases orthonormées de E. Alors detB(B′) ∈ {−1;1}.

Définition - Théorème I.1.5 (Groupe orthogonal).

(1) In est une matrice orthogonale.

(2) Le produit de deux matrices orthogonales est une matrice orthogonale.

(3) Une matrice orthogonale est inversible et son inverse est une matrice orthogonale.

(4) On note On(R) ou O(n) l’ensemble des matrices orthogonales de Mn(R), ensemble appelé groupe orthogonal.

Définition - Théorème I.1.6 (Groupe spécial orthogonal).

(1) On note SOn(R) ou SO(n) l’ensemble des matrices de O(n) de déterminant 1, ensemble appelé

groupe spécial orthogonal.

(2) In ∈ SO(n).

(3) Le produit de deux matrices de SO(n) est dans SO(n).

(4) Une matrice de SO(n) est inversible et son inverse est dans SO(n).

Exemple I.1.7. Reprendre les exemples précédents et identifier les matrices qui sont dans SO(n).

II – Endomorphismes autoadjoints et matrices symétriques

1 ) Définition - Caractérisation matricielle

Définition - Théorème II.1.1. • Soit f ∈L (E). On dit que f est (un endomorphisme) autoadjoint si :

∀(x, y) ∈ E 2, 〈x, f (y)〉 = 〈 f (x), y〉.

• L’ensemble des endomorphismes autoadjoints de E est un sous-espace vectoriel de L (E) noté S (E).

Exemple II.1.2. (1) Une symétrie orthogonale de E est un endomorphisme autoadjoint.

(2) Soit n ∈N∗. Notons E =Rn[X ] muni du produit scalaire 〈P,Q〉 =
∫ 1

−1
P (t )Q(t )d t et

ϕ : P 7−→ 2X P ′+ (X 2 −1)P ′′.

Démontrer que ϕ est un endomorphisme autoadjoint de E .

Proposition II.1.3 (Caractérisation des projecteurs orthogonaux).

(1) Si f ∈S (E), alors Im( f ) = Ker( f )⊥ (et donc Ker( f ) = Im( f )⊥).

(2) Soit p un projecteur de E.

p est un projecteur orthogonal si et seulement si p est autoadjoint.

Théorème II.4 (Caractérisation matricielle).

Soit f ∈L (E). Soit B une base orthonormée de E.

f est autoadjoint si et seulement si MatB( f ) est symétrique.

Les endomorphismes autoadjoints sont aussi appelés endomorphismes symétriques. On n’utilisera pas cette terminologie.
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Corollaire II.1.5. On rappelle que dim(E) = n. Alors dim(S (E)) = dim(Sn(R)) = n(n +1)

2
.

Corollaire II.1.6. La composée de deux endomorphismes f et g autoadjoints de E est un endomorphisme autoadjoint si et

seulement si ces deux endomorphismes commutent (c’est-à-dire f ◦ g = g ◦ f ).

Proposition II.1.7 (Caractérisations des symétries orthogonales). Soit s une symétrie de E.

s est une symétrie orthogonale si et seulement si s est un endomorphisme autoadjoint.

2 ) Propriétés et théorème spectral

Proposition II.2.8. Soit u ∈S (E). Si F un sous-espace vectoriel de E stable par u, alors F⊥ est stable par u.

Proposition II.2.9.

(1) Soit u ∈S (E). Soient λ et µ deux valeurs propres distinctes de u. Alors Eλ(u) et Eµ(u) sont orthogonaux.

Autrement dit, les sous-espaces propres d’un endomorphisme auto-adjoint sont deux à deux orthogonaux.

(2) Soit M ∈Sn(R). Soient λ et µ deux valeurs propres réelles distinctes de u. Alors Eλ(M) et Eµ(M) sont orthogonaux.

Autrement dit, les sous-espaces propres d’une matrice symétrique réelle sont deux à deux orthogonaux.

Théorème II.10 (Théorème spectral). ✌✌
(1) [ADMIS] Soit f un endomorphisme autoadjoint de E.

Il existe une base orthonormée B de E telle que MatB( f ) est diagonale.

Autrement dit, il existe une base orthonormée de E formée de vecteurs propres de f OU f est diagonalisable dans une base orthonormée.

(2) Soit M une matrice symétrique réelle (autrement dit M ∈Sn(R)). On donne deux versions du même théorème.

(a) Il existe une matrice P ∈On(R) et une matrice diagonale D ∈Mn(R) telles que

M = PDP−1 = PDP T .

Autrement dit, M est diagonalisable (sur R) avec une matrice de passage orthogonale. On dit parfois que M et D sont orthosemblables.

(b) On munitRn de sa structure euclidienne usuelle. Il existe une base orthonormée de Rn formée de vecteurs propres de M.

Exemple II.2.11. ✌ Soit A ∈Mn(R). Les matrices A+ AT , A AT et AT A sont symétriques réelles donc diagonalisables.

Ce sont des exemples que l’on rencontre fréquemment !

On rappelle qu’en général (A1 × A2 ×·· ·× Ap )T = AT
p ×·· ·× AT

2 × AT
1 .

Remarque. (1) On peut déduire de ce théorème que les valeurs propres complexes d’une matrice symétrique réelle

sont toutes réelles. Si M ∈Sn(R), on pourra alors écrire Sp(M) sans ambiguïté puisque SpR(M) = SpC(M).

En fait, ce résultat est la première étape de la démonstration du théorème spectral.

(2) ✌ La réciproque du théorème spectral est clairement vraie (on ne la cite jamais) :

• si f est diagonalisable dans une base orthonormée, alors f est autoadjoint puisque dans cette base orthonormée,

la matrice de f est diagonale donc symétrique;

• si M = PDP T avec D diagonale, alors M T = PDT P T = PDP T = M et M est symétrique.
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(3) ✍ Dans la pratique, on diagonalise f puis on considère une base orthonormée de chaque sous-espace propre.

En concaténant toutes ces bases, on obtient une base orthonormée B de E formée de vecteurs propres de f .

(4) La matrice

(
1 i

i −1

)
est une matrice symétrique non réelle. Elle n’est pas diagonalisable (exercice !).

Exercice II.2.12.

On note A =


1 −1 1

−1 1 −1

1 −1 1

. Déterminer une matrice P ∈O(3) et une matrice D ∈M3(R) diagonale telles que A = PDP T .

Exercice II.2.13. Soit A ∈Sn(R). On note m la plus petite valeur propre de A et M la plus grande valeur propre de A.

Soit (i , j ) ∈ J1;nK2. Trouver deux matrices colonnes X et Y telles que (A)i , j = X T AY .

Démontrer que, pour tout i ∈ J1;nK, m ≤ (A)i ,i ≤ M .

Le calcul de X T AX pour démontrer une propriété sur les valeurs propres et/ou les coefficients d’une matrice symétrique est une idée très classique.

3 ) Endomorphisme autoadjoint (défini) positif - Matrice symétrique (définie) positive

Définition II.3.14. (1) Soit f un endomorphisme autoadjoint de E . On dit que f est autoadjoint positif (respective-

ment autoadjoint défini positif) si, pour tout x ∈ E \ {0E } : 〈x, f (x)〉 ≥ 0 (respectivement 〈x, f (x)〉 > 0).

On note S +(E) (respectivement S ++(E)) l’ensemble des endomorphismes autoadjoints positifs

(respectivement définis positifs) de E .

(2) Soit A une matrice symétrique de Mn(R). On dit que A est symétrique positive (respectivement

symétrique définie positive) si, pour tout X ∈Mn,1(R) \ {0} : X T AX ≥ 0 (respectivement X T AX > 0).

On note S +
n (R) (respectivement S ++

n (R)) l’ensemble des matrices symétriques positives

(respectivement définies positives) de Mn(R).

Théorème II.15. Soit f ∈L (E). Soit B une base orthonormée de E.

• f ∈S +(E) si et seulement si MatB( f ) ∈S +
n (R).

• f ∈S ++(E) si et seulement si MatB( f ) ∈S ++
n (R).

Théorème II.16 (Caractérisation spectrale).

(1) Soit f ∈ S (E). f est autoadjoint positif (respectivement défini positif) si et seulement si les valeurs propres de f sont

positives (respectivement strictement positives).

(2) Soit A ∈ Sn(R). A est symétrique positive (respectivement définie positive) si et seulement si les valeurs propres de A

sont positives (respectivement strictement positives).



Exemple II.3.17. En utilisant uniquement la trace et le déterminant, dites si les matrices suivantes sont

symétriques positives, définies positives ou pas :

A1 =
(

1 2

2 1

)
, A2 =

(
1 −2

−2 6

)
, A3 =

(
−1 2

2 −6

)
, A4 =

(
−1 −5

1 4

)
.

Exercice II.3.18. (1) Montrer qu’une matrice symétrique réelle définie positive est inversible.

(2) Montrer que si A et B sont deux matrices symétriques positives, alors A+B l’est aussi.

Est-ce que S +
n (R) est un sous-espace vectoriel de Mn(R) ?

Exercice II.3.19. Soit A ∈Mn(R).

(1) Montrer que A est symétrique positive si et seulement s’il existe B ∈Mn(R) telle que A = BB T .

(2) Montrer que A est symétrique positive si et seulement s’il existe R ∈S +
n (R) telle que A = R2.

III – Isométries vectorielles

1 ) Définition - Caractérisations - Exemples

Définition III.1.1. On appelle isométrie vectorielle de E tout endomorphisme f de E qui conserve la norme, c’est-à-dire

qui vérifie :

∀x ∈ E , ∥ f (x)∥ = ∥x∥.

Définition - Théorème III.1.2. Soit F un sous-espace vectoriel de E .

(1) F et F⊥ sont supplémentaires dans E et on appelle symétrie orthogonale par rapport à F

la symétrie par rapport à F parallèlement à F⊥.

(2) Une symétrie orthogonale de E est une isométrie vectorielle.
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Définition - Théorème III.1.3.

(1) On appelle réflexion toute symétrie orthogonale par rapport à un hyperplan H de E .

On parle alors de réflexion par rapport à H .

(2) Soit H un hyperplan de E . Notons u un vecteur normal à H et s la réflexion par rapport à H .

∀x ∈ E , s(x) = x −2
〈x,u〉
∥u∥2 u.

Exemple III.1.4. On note E =M2(R) muni de sa structure euclidienne usuelle.

(1) Démontrer que H = {M ∈ E | tr(M) = 0} est un hyperplan de E dont un vecteur normal est I2.

(2) On note s la réflexion par rapport à H . Soit M ∈ E . Déterminer une expression de s(M).

(3) Justifier que s est diagonalisable et trouver une base de E dans laquelle la matrice de s est diagonale.

Théorème III.5 (Caractérisations des isométries vectorielles). Soit f ∈L (E).

(1) f est une isométrie vectorielle si et seulement si f conserve le produit scalaire, c’est-à-dire :

∀(x, y) ∈ E 2, 〈 f (x), f (y)〉 = 〈x, y〉.

(2) Soit B = (e1, . . . ,en) une base orthonormée de E. On note f (B) = ( f (e1), . . . , f (en)).

f est une isométrie vectorielle si et seulement si f (B) est une base orthonormée de E.

Théorème III.6 (Caractérisation matricielle). Soit B une base orthonormée de E. Soit f un endomorphisme de E.

f est une isométrie vectorielle si et seulement si MatB( f ) est une matrice orthogonale.

Parfois, les isométries vectorielles sont appelées automorphismes orthogonaux mais nous n’utiliserons pas cette terminologie.

Exemple III.1.7. Soit θ ∈R. On note E =R2 muni de sa structure euclidienne usuelle.

Notons f l’endomorphisme de E dont la matrice dans la base canonique (e1,e2) est

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)
.

Démontrer que f est une isométrie vectorielle de E et représenter ci-dessous l’image de e1, de e2 puis d’un vecteur x de E par f .

e1

e2 x

On peut vérifier que si z est l’affixe du vecteur x dans le plan complexe, alors l’affixe de f (x) est eiθ z.
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2 ) Propriétés - Groupe orthogonal

Définition - Théorème III.2.8 (Groupe orthogonal). (1) L’application IdE est une isométrie vectorielle de E .

(2) La composée de deux isométries vectorielles de E est une isométrie vectorielle de E .

(3) Une isométrie vectorielle f de E est un automorphisme de E .

De plus sa réciproque f −1 est également une isométrie vectorielle.

(4) On note O(E) l’ensemble des isométries vectorielles de E , ensemble appelé groupe orthogonal de E .

Exemple III.2.9. Les projecteurs (orthogonaux ou pas) ne sont pas des isométries vectorielles, à l’exception de IdE .

Proposition III.2.10. Soit u une isométrie vectorielle de E. Soit F un sous-espace vectoriel de E stable par u. On a alors :

(1) F⊥ est stable par u ;

(2) dans une base de E adaptée à la somme directe F ⊕F⊥ = E, la matrice de u est diagonale par blocs (il y a 2 blocs).

Proposition III.2.11. Soit f une isométrie vectorielle de E.

(1) det( f ) ∈ {−1;1} ;

(2) Le spectre de f est inclus dans {−1;1}.

Ici E est un espace euclidien donc les valeurs propres considérées sont réelles.

(3) Les sous-espaces vectoriels Ker( f + IdE ) et Ker( f − IdE ) sont orthogonaux.

Il est possible que ces sous-espaces soient réduits à {0E }, ce qui ne change rien à cet énoncé qui est alors de peu d’intérêt ...

Corollaire III.2.12. Soit s une symétrie de E.

s est une symétrie orthogonale si et seulement si s est une isométrie vectorielle.

Exercice III.2.13. Soit f ∈L (E).

f est un endomorphisme autoadjoint et une isométrie si et seulement si f est une symétrie orthogonale.

3 ) Rotations - Groupe spécial orthogonal - Orientation

Définition - Théorème III.3.14. Soit f ∈O(E).

(1) On dit que f est une rotation de E si det( f ) = 1.

On parle aussi d’isométrie vectorielle directe.

(2) Soit B une base orthonormée de E . f est une rotation de E si et seulement si MatB( f ) ∈ SO(n).

(3) L’ensemble des rotations de E se note SO(E) (groupe spécial orthogonal de E).

IdE ∈ SO(E) et, pour tous f et g dans SO(E), on a f ◦ g ∈ SO(E) et f −1 ∈ SO(E).

Exercice III.3.15. Soit f une symétrie orthogonale de E . À quelle condition f est-elle une rotation de E ?

Les réflexions sont des isométries vectorielles indirectes (c’est-à-dire de déterminant −1).
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4 ) Orientation - Bases orthonormées directes

Définition - Théorème III.4.16. (1) Orienter l’espace vectoriel E consiste à choisir une base B0 de E considérée

comme directe. Soit B une base de E :

• si detB0 (B) > 0, on dit que la base B est directe ;

• si detB0 (B) < 0, on dit que la base B est indirecte.

(2) Choisir une autre base directe à la place de B0 ne change pas les ensembles des bases directes et des bases

indirectes. Choisir une base indirecte à la place de B0 échange les ensembles des bases directes et indirectes.

(3) Deux bases B et B′ ont la même orientation (les deux sont directes ou les deux sont indirectes)

si et seulement si detB(B′) > 0 (ou detB′ (B) > 0).

Remarque. Orienter un espace vectoriel est une convention. Il n’y en a que deux possibles. On se souvient que l’orientation

du plan ou de l’espace utilisée en physique est aussi une convention qui permet de discriminer les bases (directes ou

indirectes) : sens trigonométrique, règle du tire-bouchon, ...

Exercice III.4.17. (1) On change l’orientation d’une base en échangeant deux vecteurs ou en remplaçant un vecteur par

son opposé.

(2) Si n est impair (par exemple n = 3) et B = (e1, . . . ,en) est une base de E , alors B′ = (en ,e1, . . . ,en−1) a la même

orientation que B.

On dit que B′ a été obtenue par permutation circulaire des vecteurs de B.

(3) Supposons que n = 2. Soit B une base orthonormée directe de E . Soit u un vecteur normé de E de coordonnées

(
a

b

)
dans B.

Le seul vecteur v de E tel que (u, v) soit une base orthonormée directe est le vecteur de coordonnées

(
−b

a

)
dans B.

Autrement dit, il existe un et un seul vecteur v tel que (u, v) soit une base orthonormée directe de E .

Proposition III.4.18 (Caractérisations des bases orthonormées directes).

On suppose E orienté. Soit B une base orthonormée directe de E.

(1) Soit B′ une base orthonormée de E. On sait que detB(B′) ∈ {−1;1}.

B′ est directe si et seulement si detB(B′) = 1.

"On peut avoir detB (B′) = 1 sans que B′ ne soit orthonormée !

(2) Soit B′ une famille de n vecteurs de E.

B′ est une base orthonormée directe de E si et seulement si MatB(B′) ∈ SO(n) (on alors PB→B′ ∈ SO(n)).

En particulier, une matrice appartient à SO(n) si et seulement si ses colonnes forment une base orthonormée directe de Rn usuel

(orienté par la base canonique).

(3) Soit f ∈L (E). f est une rotation de E (f ∈ SO(E)) si et seulement si f (B) est une base orthonormée directe de E.
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IV – Cas particulier : n = 2

1 ) Produit mixte

Définition - Théorème IV.1.1. Supposons que dim(E) = 2 . On suppose E orienté. Soient u et v deux vecteurs de E .

(1) Soient B et B′ deux bases orthonormées directes de E . Alors detB(u, v) = detB′ (u, v).

(2) On appelle produit mixte de u et v et on note [u, v] le déterminant de la famille (u, v) dans n’importe quelle base

orthonormée directe de E .

Remarque. • Si E =R2, on a déjà vu en première année que |[u, v]| peut être interprété comme l’aire du parallélogramme

construit sur les vecteurs u et v , l’unité d’aire étant l’aire du carré construit sur les vecteurs d’une base orthonormée

(quelle que soit cette base orthonormée!).

• Dans le cas où [u, v] ̸= 0, la famille (u, v) est une base de E et le signe de [u, v] donne l’orientation de la base (u, v).

2 ) Classification des matrices orthogonales de M2(R)

Théorème IV.2. (1) Soit M ∈M2(R).

M est une matrice orthogonale si et seulement s’il existe θ ∈R tel que M est de l’une des deux formes suivantes :

M = R(θ) =
(

cos(θ) −sin(θ)

sin(θ) cos(θ)

)
ou M = S(θ) =

(
cos(θ) sin(θ)

sin(θ) −cos(θ)

)
.

Il y a unicité de θ si on impose θ ∈ [0;2π[ ou θ ∈]−π;π] par exemple.

(2) SO(2) = {R(θ), θ ∈R} et O(2) \ SO(2) = {S(θ), θ ∈R}.

Proposition IV.2.3. Les matrices de SO(2) commutent. Plus précisément, pour tous θ ∈R et θ′ ∈R :

R(θ)R(θ′) = R(θ′)R(θ) = R(θ+θ′).

Si n ≥ 3, SO(n) n’est pas commutatif.

3 ) Classification des isométries vectorielles d’un plan euclidien

Théorème IV.4. Supposons que dim(E) = 2 . On suppose E orienté. Soit r ∈L (E).

(1) • Si r ∈ SO(E), alors il existe un réel θ, unique à 2π près, tel que dans toute base orthonormée directe de E, la

matrice de r soit R(θ).

On dit alors que r est la rotation d’angle θ ou que θ est une mesure de l’angle de la rotation r .

• On rappelle que, pour montrer que r ∈ SO(E), il suffit de trouver une base orthonormée B de E et un réel θ tels

que MatB(r ) = R(θ).

(2) (a) Si θ ≡ 0[2π], r = IdE .

(b) Si θ ̸≡ 0[2π], seul le vecteur nul est invariant par r . Autrement dit Ker(r − IdE ) = {0E }.

En particulier, si θ ≡π[2π] alors r =− IdE .

Remarque. Pour visualiser l’effet d’une rotation sur un vecteur de E , il suffit de reprendre l’exemple III.1.7.
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Méthode. ✍[Pour calculer l’image d’un vecteur par une rotation plane donnée]

Soit θ ∈R. Notons r la rotation d’angle θ. Soit x ∈ E .

(1) On détermine une base orthonormée directe B de E et on écrit la matrice-colonne X des coordonnées de x dans B.

(2) Le calcul de R(θ).X donne alors la matrice-colonne des coordonnées de r (x) dans B.

Exemple IV.3.5. Notons f l’endomorphisme de R2 canoniquement associé à la matrice A = 1

13

(
5 12

−12 5

)
.

(R2 est muni de sa structure euclidienne usuelle et est orienté par la base canonique.)

Décrire l’endomorphisme f .

Définition - Théorème IV.3.6 (Mesure d’un angle orienté).

Supposons que dim(E) = 2 . On suppose E orienté. Soient u et v deux vecteurs non nuls de E .

Notons u′ = 1

∥u∥u et v ′ = 1

∥v∥v .

(1) Il existe une unique rotation r de E telle que r (u′) = v ′. On appelle alors mesure de l’angle orienté (u, v)

une mesure θ de l’angle de cette rotation. On note alors �(u, v) ≡ θ [2π].

Si on choisit l’autre orientation du plan E , on obtient une mesure d’angle opposée.

(2) On a alors 〈u, v〉 = ∥u∥.∥v∥.cos(θ) et [u, v] = ∥u∥.∥v∥. sin(θ), formules qui permettent de retrouver θ à partir des

coordonnées de u et v dans une base orthonormée directe.

Exemple IV.3.7. Dans R2 usuel (la base canonique est supposée directe), on note u =
(
−1

−p3

)
et v =

(
2
p

3

2

)
.

Déterminer une mesure de l’angle orienté (u, v).

Théorème IV.8. Supposons que dim(E) = 2 . Soit s ∈O(E) \ SO(E).

Alors s est une réflexion, c’est-à-dire une symétrie orthogonale par rapport à une droite ( = hyperplan).

Exemple IV.3.9. On note E =R1[X ] muni de sa structure euclidienne usuelle. On note f l’application définie par :

∀P ∈ E , f (P ) = 1

5

(
P (0)(4X +3)−P ′(0)(3X −4)

)
.

Montrer que f est une réflexion par rapport à une droite que l’on déterminera. On montrera d’abord que f est un endomorphisme de E .

dim(E) = 2 f ∈ SO(E) f ∈O(E) \ SO(E)

Sp( f ) {1} {−1} ∅ {−1,1}

Ker( f − IdE ) E {0E } {0E } Vect(u)

f IdE − IdE rotation d’angle θ ̸≡ 0[π] réflexion par rapport à Vect(u)

rotation d’angle π

matrice de f I2 = R(0) −I2 = R(π)
R(θ) =

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)
dans toute b.o.n. directe de E

(
1 0

0 −1

)
dans une base orthogonale (u, v)
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V – Cas particulier : n = 3

1 ) Produit mixte - Produit vectoriel

Définition - Théorème V.1.1. Supposons que dim(E) = 3 . On suppose E orienté. Soient u, v et w trois vecteurs de E .

(1) Soient B et B′ deux bases orthonormées directes de E . Alors detB(u, v, w) = detB′ (u, v, w).

(2) On appelle produit mixte de u, v et w et on note [u, v, w] le déterminant de la famille (u, v, w) dans n’importe quelle

base orthonormée directe de E .

Remarque. • Si E =R3, on a déjà vu en première année que |[u, v, w]| peut être interprété comme le volume du paral-

lélépipède construit sur les vecteurs u, v et w , l’unité de volume étant le volume du cube construit sur les vecteurs

d’une base orthonormée (quelle que soit cette base orthonormée !) .

• Dans le cas où [u, v, w] ̸= 0, la famille (u, v, w) est une base de E et le signe de [u, v, w] donne l’orientation de la base (u, v, w).

Définition - Théorème V.1.2. Supposons que dim(E) = 3 . On suppose E orienté. Soient u et v deux vecteurs de E .

Il existe un et un unique vecteur de E noté u ∧ v et appelé produit vectoriel de u et v qui vérifie :

∀w ∈ E , [u, v, w] = 〈u ∧ v, w〉.

Proposition V.1.3. Supposons que dim(E) = 3 . On suppose E orienté.

L’application (u, v) 7→ u ∧ v est bilinéaire et antisymétrique : ∀(u, v) ∈ E 2, v ∧u =−(u ∧ v).

Proposition V.1.4. Supposons que dim(E) = 3 . On suppose E orienté. Soient u et v deux vecteurs de E.

(1) u et v sont colinéaires si et seulement si u ∧ v = 0E .

(2) Si u et v ne sont pas colinéaires, alors la famille (u, v,u ∧ v) est une base directe de E.

(3) Le vecteur u ∧ v est orthogonal à u et à v.

(4) Soient u et v deux vecteurs de E normés et orthogonaux.

La famille (u, v, w) est une base orthonormée directe de E si et seulement si u ∧ v = w.

La famille (u, v, w) est une base orthonormée indirecte de E si et seulement si u ∧ v =−w.

Proposition V.1.5. Supposons que dim(E) = 3 . On suppose E orienté. Soient u et v deux vecteurs de E.

Soit B une base orthonormée directe de E. On note


x1

y1

z1

 et


x2

y2

z2

 les matrices-colonnes des coordonnées de u et v dans B.

Alors la matrice colonne de coordonnées de u ∧ v dans B est



∣∣∣∣∣y1 y2

z1 z2

∣∣∣∣∣∣∣∣∣∣z1 z2

x1 x2

∣∣∣∣∣∣∣∣∣∣x1 x2

y1 y2

∣∣∣∣∣


=


y1z2 − y2z1

x2z1 −x1z2

x1 y2 −x2 y1

.
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Exercice V.1.6. Dans R3 usuel (la base canonique étant supposée directe), vérifier que e1 =


1p
2

−1p
2

0

 et e2 =


1p
6

1p
6

−2p
6

 sont normés

et orthogonaux. Compléter la famille (e1,e2) en une base orthonormée directe de R3.

Méthode. ✌ Sans calculer son déterminant, montrer que la matrice A = 1

45


40 5 −20

−13 40 −16

16 20 37

 est dans SO(3).

On peut montrer que C1 et C2 sont normés et orthogonaux et vérifier que C3 =C1 ∧C2.

Définition - Théorème V.1.7 (Orientation d’une droite et d’un plan).

Supposons que dim(E) = 3 . On suppose E orienté. Soient u et v deux vecteurs non nuls de E .

(1) Soit w un vecteur non nul de E . On dit que la droite D = Vect(w) est dirigée et orientée par w si la base (w) de D est

considérée directe. Cette définition ne dépend pas de l’orientation de E .

(2) Soit P un plan de E . On note w un vecteur normal à P .

(a) Deux bases (e1,e2) et (e ′1,e ′2) de P ont la même orientation dans P si et seulement si les bases (e1,e2, w) et

(e ′1,e ′2, w) de E ont la même orientation dans E . C’est une propriété !

(b) On dit que le plan P est orienté par le vecteur w si les bases directes de P sont les bases (u, v) de P telles que

(u, v, w) soit une base directe de E . C’est une définition!

L’orientation d’un plan dépend de l’orientation de E et du choix de w . On change d’orientation en choisissant −w comme vecteur normal.

Proposition V.1.8. Supposons que dim(E) = 3 . On suppose E orienté. Soient u et v deux vecteurs de E non colinéaires.

Dans le plan Vect(u, v) orienté par un vecteur normal, on peut définir une mesure θ de l’angle orienté (u, v).

Si on choisit l’autre orientation du plan E, on obtient une mesure d’angle opposée et la formule ci-dessous est inchangée.

On a alors : ∥u ∧ v∥ = ∥u∥.∥v∥. |sin(θ)|.
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2 ) Description des rotations d’un espace euclidien de dimension 3

Théorème V.9. Supposons que dim(E) = 3 . On suppose E orienté. Soit f une rotation de E.

• Il existe θ ∈R et une base orthonormée directe B = (u, v, w) de E tels que

MatB( f ) =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

=
(

R(θ) 0

0 1

)
.

• Si f ̸= IdE (c’est-à-dire θ ̸≡ 0[2π]), Ker( f − IdE ) est la droite D = Vect(w) (ensemble des vecteurs invariants par f ).

Dirigée et orientée par w, cette droite est appelée axe de la rotation.

• Si f ̸= IdE , la restriction de f au plan {w}⊥ orienté par w est la rotation (plane) d’angle θ. Le réel θ est alors appelé

mesure de l’angle de la rotation.

Le réel θ dépend du vecteur w choisi. Ce choix étant fait, le réel θ est unique à 2π près.

• Si f ̸= IdE , on dit que r est la rotation d’angle θ autour de l’axe dirigé et orienté par w.

On peut étendre cette définition et définir la rotation d’angle θ autour d’un axe dirigé et orienté par un vecteur non unitaire w ′

comme la rotation autour de l’axe dirigé et orienté par w = w ′
∥w ′∥ .

On rappelle que, pour montrer que f ∈L (E) est une rotation, il suffit de trouver une base orthonormée dans laquelle la matrice de f est

dans SO(3).

Exemple V.2.10. La rotation d’angle π autour d’un axe est la symétrie orthogonale par rapport à cet axe.
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Méthode. ✍[Pour calculer l’image d’un vecteur par une rotation donnée]

Soit θ ̸≡ 0[2π]. Soit w un vecteur normé de E orienté de dimension 3.

Notons f la rotation d’angle θ autour de l’axe dirigé et orienté par w . Soit x ∈ E .

(1) En notant xP = x −〈x, w〉w , on écrit x comme somme d’un vecteur de l’axe et d’un vecteur de P = {w}⊥ :

x = xP +〈x, w〉w .

(2) On a alors f (x) = f (xP )+〈x, w〉w où

f (xP ) = cos(θ).xP + sin(θ).(w ∧xP ) .

On observe que si on choisit −w à la place de w et −θ à la place de θ, on obtient la même rotation!

Exercice V.2.11. Dans R3 usuel (la base canonique étant supposée directe), on note r la rotation d’angle
2π

3
autour de l’axe

dirigé et orienté par w =


1

1

1

. Quelle est l’image par r du vecteur e1 =


1

0

0

?

Méthode. ✍[Pour trouver l’axe et l’angle d’une rotation]

Soit f une rotation de E orienté de dimension 3. On suppose que f ̸= IdE .

(1) tr( f ) = 1+2cos(θ) donc on connaît déjà θ au signe près.

On ne peut pas connaître θ, on n’a pas encore choisi w !

(2) On choisit w non nul dans Ker( f −IdE ) et on écrit que ” f est la rotation d’angle θ autour de l’axe dirigé et orienté par w”.

On a alors, pour tout x unitaire et orthogonal à w :

sin(θ) =
[

x, f (x),
w

∥w∥
]

.

Si x ′ est un vecteur non colinéaire à w , le signe de sin(θ) est le même que celui de

[x ′, f (x ′), w].

Exercice V.2.12. On suppose R3 muni de sa structure euclidienne usuelle, la base canonique étant supposée directe.

Décrire l’endomorphisme f de R3 canoniquement associé à A = 1

9


8 1 −4

−4 4 −7

1 8 4

.
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dim(E) = 3 f ∈ SO(E) f ∈O(E) \ SO(E)

Ker( f − IdE ) E D = Vect(w) avec w normé P = Vect(u,v) . . . ? (H.P.)

f IdE

rotation d’angle θ ̸≡ 0[2π]

autour de D orienté par w réflexion par rapport à P . . . ? (H.P.)

matrice de f I3


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


dans toute b.o.n. directe (u, v,w) de E


1 0 0

0 1 0

0 0 −1

 dans une

base (u,v, w) où w ∈ P⊥
. . . ? (H.P.)


