TP n°0 Analyse spectrale

PSI 2022/2023

Compétences expérimentales

- s'initier au traitement FFT du logicel LatisPro,
- étudier le spectre d'amplitude de différents signaux,
- étudier l'influence d'une modification du spectre sur l'allure du signal.

Matériel

Vous disposez :

- d'une carte sysam,
- d'un ordinateur.

I Signal sinusoïdal

Procédure à suivre :

- Télécharger les fichiers sinusoïde, carre et melange à partir du site Cahier de Prépa sur le bureau
- Ouvrir le logiciel LatisPro et ouvrir le fichier sinusoïde à l'aide de : Fichier / Ouvrir (ou icône Ouvrir fichier)
- S'affiche alors :
 - * en fenêtre n°1 : un signal sinusoïdal appelé Signal,

I.1 Mesures sur le signal

Procédure à suivre :

- Dans la fenêtre Paramètres, située à gauche de l'écran, cliquer sur l'icône Liste des courbes.
- Cliquer sur le Menu **Outils / Mesures Automatiques** (ou icône Mesures Automatiques).
- Glisser Signal de la liste des courbes, située dans la fenêtre Paramètres, vers la fenêtre de dialogue.

Relever alors :

- a) la fréquence f_1 du signal x(t),
- b) son amplitude x_m ,

- c) sa valeur moyenne x_0 ,
- d) sa valeur efficace x_{eff} . A-t-on $x_{\text{eff}} = \frac{x_m}{\sqrt{2}}$?

I.2 Mesures sur le spectre

Procédure à suivre :

- Cliquer sur Traitements/Calculs specifiques/Analyse de Fourier
- Sélectionner la courbe du signal en cliquant sur 📖 et la glisser dans la case Courbe
- Sélectionner le spectre S_Amplitude en cliquant sur la fenêtre n°2.
- Appeler le réticule par un clic droit de la souris.

Relever alors :

- a) le nombre d'harmoniques contenus dans le spectre,
- b) la fréquence de l'harmonique,
- c) l'amplitude de l'harmonique.

I.3 Résumé

Reproduire sur votre feuille l'allure du signal et son spectre. Sur les deux figures, faire apparaître l'amplitude et la fréquence du signal.

II Signal plus complexe

Procédure à suivre :

- Dans la Fenêtre n°1, supprimer le graphe de Signal en pointant "Signal" (sur l'axe des ordonnées) clic droit Retirer. Fermer la fenêtre.
- Faire de même en Fenêtre n°2 pour "S_Amplitude en V ". Fermer la fenêtre.
- Ouvrir le fichier melange
- S'affichent alors :
 - ★ en fenêtre n°1 : un signal melange appelé B,

II.1 Mesures sur le signal

A l'aide du menu Outils / Mesures Automatiques, relever comme précédemment :

- a) la fréquence f_1 du signal x(t),
- b) son amplitude x_m ,
- c) sa valeur moyenne x_0 ,
- d) sa valeur efficace x_{eff} . A-t-on $x_{\text{eff}} = \frac{x_m}{\sqrt{2}}$?

A l'aide du réticule et en utilisant éventuellement la loupe (clic droit), mesurer les deux fréquences caractéristiques f_1, f_2 associées aux deux oscillations (lente, rapide) contenues dans le signal.

II.2 Mesures sur le spectre

Comme précédemment, tracer le spectre de Fourier du signal et relever :

- a) le nombre d'harmoniques contenus dans le spectre,
- b) les fréquences des harmoniques f_1, f_2 .
- c) les amplitudes des harmoniques : x_0, x_1, x_2 .

Vérifier que le théorème de Parceval est bien valide :

$$x_{\text{eff}}^2 = x_0^2 + \frac{1}{2}(x_1^2 + x_2^2)$$

II.3 Résumé

Reproduire sur votre feuille l'allure du signal et son spectre. Sur les deux figures, faire apparaître les valeurs x_0, x_1, x_2, x_3 et f_1, f_2, f_3 .

III Signal carré

Procédure à suivre :

- Dans la Fenêtre n°1, supprimer le graphe de B en pointant " B" (sur l'axe des ordonnées) clic droit - Retirer. Fermer la fenêtre
- Faire de même en Fenêtre n°2 pour "S Amplitude en V ". Fermer la fenêtre.
- Ouvrir le fichier carre.

III.1 Mesures sur le signal

A l'aide du menu Outils / Mesures Automatiques, relever comme précédemment :

- a) la fréquence f_0 du signal x(t),
- b) son amplitude x_m ,
- c) sa valeur moyenne x_0 ,
- d) sa valeur efficace x_{eff} . A-t-on $x_{\text{eff}} = \frac{x_m}{\sqrt{2}}$?

III.2 Mesures sur le spectre

Comme précédemment, relever :

- a) le nombre d'harmoniques contenus dans le spectre,
- b) les fréquences f_n des harmoniques,
- c) les amplitudes des harmoniques x_n (au moins les 5 premières).

$$x(t) = x_0 + \frac{2x_m}{\pi} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n} \cos(2\pi n f_0 t)$$

Vérifier que les amplitudes mesurées sont cohérentes avec cette expression.

Vérifier que le théorème de Parceval est bien valide :

$$x_{\text{eff}}^2 = x_0^2 + \frac{1}{2} \sum_n x_n^2$$

IV Influence des harmoniques

Sortir du mode réticule de LatisPro, par un clic droit de la souris, puis l'indication Terminer. Conserver le signal carré.

IV.1 Mode synthèse

Procédure à suivre :

- Dans le menu Traitements, appeler le sous-menu Calculs spécifiques / Synthèse harmonique.
- Dans la fenêtre de dialogue, choisir **Synthèse simplifiée**.
- Glisser Signal de la liste des courbes, située dans la fenêtre **Paramètres**, vers le champ **Courbe de la fenêtre de dialogue**.
- Enfoncer le bouton **Calcul**, puis fermer la fenêtre de dialogue.
- Dans la Fenêtre n°3, supprimer le graphe de Signal en pointant "Signal " (sur l'axe des ordonnées) clic droit Retirer.
- Zoomer avec la loupe le spectre de la fenêtre n°2 (clic droit -**Loupe+**), afin d'afficher le spectre jusqu'à environ l'harmonique 9.
- Sortir ensuite du mode Loupe (clic droit Terminer).
- Bien faire apparaître l'axe des ordonnées f = 0 en cliquant sur le spectre, et en translatant la souris vers la droite, tout en maintenant le clic gauche.

IV.2 Modification du spectre du signal

Procédure à suivre :

- Sélectionner le spectre en fenêtre n°2.
- Clic droit de la souris Pointeur.
- 1. Ajouter une composante continue, en positionnant le pointeur sur l'axe des ordonnées f = 0, puis en cliquant avec la souris. Décrire en quelques mots l'effet sur le signal synthétisé et sur le son entendu.

- 2. Supprimer la raie en f = 0. Ajouter ensuite une raie basse fréquence. Décrire en quelques mots l'effet sur le signal et sur le son synthétisé.
- 3. Supprimer la raie basse fréquence et ajouter une raie haute fréquence. Décrire en quelques mots l'effet sur le signal et sur le son synthétisé.

V Reconstitution d'un signal à partir de ses harmoniques

Nous allons à présent observer la reconstitution d'un signal carré, harmonique par harmonique. <u>Procédure à suivre :</u>

- Sortir et rentrer dans le logiciel LatisPro, afin d'avoir une configuration « propre ».
- Ouvrir le fichier Synthese calculée situé dans le répertoire Latis Pro / exemples :
 - * La fenêtre n°1 visualise le signal reconstitué pas à pas,
 - * La fenêtre n°2 visualise chaque harmonique ajouté.

Le lancement de la synthèse se fait par F2.

On observe alors la reconstitution jusqu'à l'harmonique 19 du signal carré.

Observer :

- les ondulations de Gibbs, qui s'atténuent au fur et à mesure de la prise en compte d'harmoniques d'ordre supérieur.
- la corrélation entre hautes fréquences et variations temporelles brusques (discontinuités et non dérivabilités).