DM 0 : A rendre le Lundi 1er septembre 2025

EXERCICE 1 : Analyse

Les questions 1. 2. 3. sont indépendantes.

- 1. Soit $f: \mathbb{R}^* \to \mathbb{R}, x \mapsto \frac{1 \cos(x)}{x^2}$. Montrer que f est prolongeable par continuité en 0 en une fonction de classe C^1 sur \mathbb{R} .
- 2. Fonction définie par une intégrale. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que : $\forall x \in \mathbb{R}$, $f(2x) = 1 + \int_0^x (x-t)f(2t)dt$.
 - (a) Montrer que f est dérivable et calculer f'(x).
 - (b) Montrer que f est solution d'une équation différentielle du second ordre que l'on déterminera.
 - (c) Déterminer f.
- 3. Calcular $\lim_{x \to +\infty} \left(\frac{\ln(x+1)}{\ln x} \right)^{x \ln x}$.

EXERCICE 2 : Analyse : étude de fonctions : à faire sans calculatrice

Les deux parties sont indépendantes.

Partie 1.

On considère la fonction f définie sur \mathbb{R} par :

$$f: x \to \begin{cases} \frac{1}{x^2} e^{-\frac{1}{x}} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}.$$

- 1. Etudier la continuité à gauche et à droite de f en 0, la dérivabilité à gauche et à droite de f en 0. Interpréter graphiquement ces résultats.
- 2. Etudier les variations et les limites de f. Résumer ces résultats dans un tableau. Préciser les branches infinies.
- 3. Tracer la courbe représentative C_f de la fonction f dans un repère orthonormal $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$. On donne les valeurs approchées suivantes : $e^{-2} \simeq 0.135$, $e^{-1} \simeq 0.36$, $e \simeq 2.72$
- 4. Montrer que f est de classe C^{∞} sur $]0,+\infty[$
- 5. Démontrer que, pour tout $n \in \mathbb{N}$, il existe un polynôme P_n tel que :

$$\forall x \in]0, +\infty[, f^{(n)}(x) = \frac{P_n(x)}{x^{2n+2}} e^{-\frac{1}{x}}$$
avec $P_{n+1}(x) = x^2 P'_n(x) + (1 - 2(n+1)x) P_n(x)$ (1)

On précisera P_0 et P_1 .

Partie 2.

Pour $n \in \mathbb{N}^*$ tel que $n \ge 2$, on note $f_n :]0, +\infty[\to \mathbb{R}, : x \mapsto x + \frac{n}{2} \ln x - n.$

- 1. Soit $n \geq 2$. Justifier que f_n est dérivable puis dresser son tableau de variations.
- 2. Soit $n \geq 2$. Montrer que l'équation $f_n(x) = 0$ admet une unique solution $a_n \in [1, e^2]$.
- 3. Déterminer pour tout $n \geq 2$ le signe de $f_{n+1}(a_n)$. En déduire que la suite $(a_n)_n$ est croissante.
- 4. Justifier que la suite $(a_n)_n$ converge. On note ℓ sa limite. Que peut-on dire de ℓ ?
- 5. Déterminer ℓ . On pourra raisonner par l'absurde.

EXERCICE 3 : Algèbre

Les question 1. 2. 3. et 4. sont indépendantes.

- 1. Calculer le reste de la division euclidienne de $P = \prod_{k=1}^{n} (X \sin(k\frac{\pi}{n}) + \cos(k\frac{\pi}{n}))$ par $X^2 + 1$.
- 2. On se place dans $E = \mathbb{R}^4$ muni de son produit scalaire canonique.
 - (a) Déterminer une base puis un système d'équations de $F = \text{Vect}\{(1, 1, 1, 0), (1, 1, 0, 1)\}$.
 - (b) Déterminer une base et un système d'équations de F^{\perp} .
 - (c) Déterminer la matrice dans la base canonique de la projection orthogonale sur F.
- 3. On considère le \mathbb{R} -espace vectoriel $E = \mathbb{C}$.

On définit l'application
$$p: \begin{bmatrix} \mathbb{C} \to \mathbb{C} \\ z \mapsto p(z) = \bar{z} - jz \end{bmatrix}$$
 où $j = e^{\frac{2i\pi}{3}}$.

- (a) Montrer que p est un endomorphisme de E.
- (b) Montrer que p est une projection de E.
- (c) Déterminer Ker(p). Vérifier que c'est une droite vectorielle.
- (d) Déterminer Im(p). Vérifier que c'est une droite vectorielle.
- 4. On considère $\phi: M_2(\mathbb{R}) \to M_2(\mathbb{R}), A \mapsto A^T$.
 - (a) Vérifier que ϕ est un endomorphisme de $M_2(\mathbb{R})$ et donner sa matrice dans la base canonique de $M_2(\mathbb{R})$.
 - (b) Montrer que ϕ est une symétrie et préciser ses espaces caractéristiques.