Dans tout ce chapitre I désigne un intervalle de \mathbf{R} non vide et non réduit à un point et \mathbf{K} désigne le corps des réels ou des complexes.

On considère alors une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N},\quad f_n$ est définie sur I et est à valeurs dans K.

Si $f: I \subset \mathbf{R} \to \mathbf{K}$ est bornée sur I, on notera $||f||_{\infty}^{I} = \sup_{x \in I} |f(x)|$.

Comme pour les séries numériques, à la suite de fonctions $(f_n)_{n \in \mathbb{N}}$, on associe la série de fonctions $\sum f_n$ et la suite des sommes partielles $(S_p)_{p \in \mathbb{N}}$ associée, qui est la suite de fonctions :

$$\forall p \in \mathbf{N}, \quad S_p: \quad \underset{n=0}{\stackrel{I}{\longrightarrow}} \mathbf{K}$$

Exemples:

• Si
$$f_n: x \mapsto \frac{x^n}{n!}$$
 alors, $\forall p \in \mathbf{N}^*$, $S_p: x \mapsto \sum_{n=0}^p \frac{x^n}{n!}$. On sait que $\forall x \in \mathbf{R}$, $\lim_{p \to +\infty} S_p(x) = e^x$.

• Si
$$f_n: x \mapsto x^n$$
 alors, $S_p: x \mapsto \sum_{n=0}^p x^n = \begin{cases} \frac{1-x^{p+1}}{1-x} & \text{si } x \neq 1\\ 1 & \text{si } x = 1 \end{cases}$.

On sait que la suite $(S_p(x))_{p \in \mathbb{N}}$ converge si et seulement si |x| < 1, et dans ce cas $\lim_{p \to +\infty} S_p(x) = \frac{1}{1-x}$.

1 Modes de convergence

1.1 Convergence simple sur un intervalle

Definition 1.1

On dit que la série de fonctions $\sum f_n$ converge simplement sur l'intervalle I si et seulement si pour tout x de I la série numérique $\sum f_n(x)$ converge.

Ce qui revient à dire que la suite de fonctions $(S_p)_{p \in \mathbb{N}}$ converge simplement sur I.

Dans ce cas,

- on définit la fonction $S: x \in I \mapsto \sum_{n=0}^{+\infty} f_n(x) = \lim_{p \to +\infty} S_p(x)$, appelée somme de la série de fonctions et notée $S = \sum_{n=0}^{+\infty} f_n$,
- on définit la fonction $R_p = S S_p : x \in I \mapsto \sum_{n=p+1}^{+\infty} f_n(x)$, appelée **reste d'ordre** p de la série de fonctions et notée $R_p = \sum_{n=p+1}^{+\infty} f_n$.

Remarque 1.1

Si la série de fonctions $\sum f_n$ converge simplement sur I alors :

- la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ converge simplement vers la fonction nulle sur I,
- la suite des restes $(R_p)_{p \in \mathbb{N}}$ est une suite de fonctions qui converge simplement vers la fonction nulle sur I.

Remarque 1.2

Si $\forall n \in \mathbb{N}$, f_n est définie sur I alors , la série de fonctions $\sum f_n$ peut ne converger que sur un sous-ensemble $D \subset I$, D est alors appelé le domaine de définition de la fonction somme $S = \sum_{n=0}^{+\infty} f_n$.

Exemple 1.1

Reprise des deux exemples donnés au début.

Regarder la convergence simple sur
$$]0, +\infty[$$
 lorsque : $f_n(x) = \frac{e^{-nx}}{n}, f_n(x) = \frac{(-1)^n x}{n+x}.$

1.2 Convergence uniforme sur un intervalle

Definition 1.2

On dit que la série de fonctions $\sum f_n$ converge uniformément sur l'intervalle I si et seulement si la suite des sommes partielles $(S_p)_{p \in \mathbb{N}}$ converge uniformément sur I.

Proposition 1.1

La série de fonctions $\sum f_n$ converge uniformément sur I si et seulement si elle converge simplement et la suite des restes $\left(R_p = \sum_{n=p+1}^{+\infty} f_n\right)_{p \in \mathbb{N}}$ converge uniformément sur I vers la fonction nulle,

c'est-à-dire si et seulement si
$$\lim_{p \to +\infty} ||S - S_p||_{\infty}^I = \lim_{p \to +\infty} ||R_p||_{\infty}^I = \lim_{p \to +\infty} \left| \left| \sum_{n=p+1}^{+\infty} f_n \right| \right|_{\infty}^I = 0.$$

Exemple 1.2

Soit $f_n: x \mapsto \frac{(-1)^n}{n+x}$, la série de fonctions $\sum f_n$ converge uniformément sur $I =]0, +\infty[$.

Proposition 1.2

Si la série de fonctions $\sum f_n$ converge uniformément sur I alors la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers la fonction nulle sur I.

Exemple 1.3

La série de fonctions $\sum f_n$ avec $f_n: x \mapsto x^n$ ne converge pas uniformément sur]-1,1[, mais converge uniformément sur tout segment $[a,b] \subset]-1,1[$.

1.3Convergence normale sur un intervalle

Definition 1.3

On considère une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions définies sur I, on note, sous réserve d'existence, $||f_n||_{\infty}^I = \sup_{x \in I} |f_n(x)|.$

On dit que la série de fonctions $\sum f_n$ converge normalement sur I si, et seulement si

$$\begin{cases} \forall n \in \mathbf{N} & f_n \text{ est born\'ee sur } I \\ \text{et} & \text{la s\'erie num\'erique } \sum \|f_n\|_{\infty}^I \text{converge} \end{cases}.$$

Remarque 1.3 Convergence normale et convergence absolue en tout point

On considère une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions sur I.

Si la série de fonctions $\sum f_n$ converge normalement sur I alors $\forall x \in I$, $\sum f_n(x)$ converge absolue.

On en déduit que la convergence normale sur I entraîne la convergence simple sur I.

Proposition 1.3

On considère une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions sur I.

Si la série de fonctions $\sum f_n$ converge normalement sur I alors elle converge uniformément sur I.

Remarque 1.4

Il n'y a pas la réciproque pour la propriété précédente : la série de fonctions $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$ converge uniformément sur [0, 1] mais pas normalement.

Plan d'étude d'une série de fonctions :

- On étudie d'abord la convergence normale de $\sum f_n$ sur I

 - soit on trouve $||f_n||_{\infty}^{I}$ (par étude de fonction), soit on trouve une suite (a_n) de réels positifs indépendants de x telle que $\forall x \in I, \quad |f_n(x)| \leq a_n \text{ et } \sum a_n \text{ converge.}$

S'il n'y a pas convergence normale sur I:

• On étudie la convergence simple de la série de fonctions $\sum f_n$.

S'il y a convergence simple alors on étudie la convergence uniforme sur I:

— on peut regarder si la suite (f_n) converge uniformément vers 0, si ce n'est pas le cas, il n'y a pas convergence uniforme de $\sum f_n$ sur I,

— on essaie de trouver (a_n) indépendante de x telle que :

$$\forall x \in I$$
, $\left| R_p(x) = \sum_{n=p+1}^{+\infty} f_n(x) \right| \leqslant a_p$ avec a_p qui converge vers 0 (critère spécial des séries alternées, comparaison série-intégrale, ou autre)

— on essaie de trouver (a_n) indépendante de x telle que :

$$\forall x \in I$$
, $\left| R_p(x) = \sum_{n=p+1}^{+\infty} f_n(x) \right| \geqslant a_p \geqslant 0$ avec (a_n) qui ne converge pas vers 0, alors $\sum f_n$ ne convergera pas uniformément sur I .

Exemple 1.4

1. Étude des différents modes de convergence sur \mathbf{R} des séries de fonctions $\sum f_n$ et $\sum g_n$ lorsque :

$$f_n(x) = \frac{\sin(2^n \pi x)}{2^n}$$
 et $g_n(x) = \frac{x}{n(1+nx^2)}$.

- 2. Déterminer l'intervalle le plus grand sur lequel la série de fonctions $\sum f_n$ converge simplement lorsque $f_n(x) = e^{-n^2x}$, étudier ensuite les autres modes de convergence sur cet intervalle.
 - Montrer que la série de fonctions $\sum f_n$ où $f_n(x) = \frac{\cos(nx)}{e^{nx}}$ converge simplement sur $]0, +\infty[$ et que $\forall a < 0 \quad \exists x \in]-\infty, a], \quad \sum f_n(x)$ diverge. Étudier les différents mode de convergence de $\sum f_n$ sur $]0, +\infty[$.
- 3. Étude des mode de convergences sur $[1, +\infty[$ de la série de fonctions $\sum f_n$ avec $f_n: x \mapsto (-1)^n \frac{x^2 + n}{n^2}$.

2 Propriétés de la fonction somme en cas de convergence uniforme

Proposition 2.1 Continuité par convergence uniforme

Soit $(f_n)_n$ une suite de fonctions définies sur I.

Si
$$\begin{cases} \forall n \in \mathbb{N}, & f_n \text{ est continue sur } I \\ \sum f_n \text{ converge uniformément sur } I \end{cases}$$
 alors $S = \sum_{n=0}^{+\infty} f_n$ est continue sur I .

Proposition 2.2 Extension au cas de la convergence uniforme sur tout segment

La propriété précédente reste vraie si on remplace la convergence uniforme sur I par la convergence uniforme sur tout segment inclus dans I.

La continuité en un point a est une notion locale, la convergence uniforme sur tout segment est donc suffisante.

Exemple 2.1

La fonction exp : $x \mapsto \sum_{n=1}^{+\infty} \frac{x^n}{n!}$ est continue sur **R**.

Proposition 2.3 Théorème d'inversion limite et \sum

Admis

Soit $(f_n)_n$ une suite de fonctions définies sur I et soit a une extrémité de I.

Si:

- chaque f_n admet une limite finie ℓ_n en a
- la série de fonctions $\sum f_n$ converge uniformément sur I

Alors

la série numérique
$$\sum \ell_n$$
 converge et $\lim_{x \to a} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \ell_n = \sum_{n=0}^{+\infty} \lim_{x \to a} f_n(x)$

On peut remplacer la convergence uniforme sur I par la convergence uniforme sur un intervalle d'extrémité a inclus dans I.

Exemple 2.2

- La fonction $S: x \mapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{nx+1}$ est définie et continue sur $]0, +\infty[$ et $\lim_{x\to +\infty} S(x) = 1$.
- Soit $(f_n)_{n \in \mathbb{N}^*}$ avec $f_n : x \mapsto \frac{1}{n^x}$.

La série de fonctions $\sum f_n$ converge simplement sur $]1,+\infty[$ mais pas uniformément sur $]1,+\infty[.$

Proposition 2.4 Intégration terme à terme sur un segment

Soit $(f_n)_n$ une suite de **fonctions continues** sur un segment [a,b].

Si la série de fonctions $\sum f_n$ converge uniformément sur le segment [a,b] alors :

• la série
$$\sum \int_a^b f_n(t)dt$$
 est convergente et

$$\bullet \left| \sum_{n=0}^{+\infty} \int_a^b f_n(t) dt = \int_a^b \sum_{n=0}^{+\infty} f_n(t) dt \right|$$

Exemple 2.3

Montrer que $\forall x \in]-1,1[\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} x^n.$

Puis en déduire que $\ln(2) = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{n}$.

Proposition 2.5 Dérivation terme à terme

Soit $(f_n)_n$ une suite de fonctions définies sur un intervalle I.

Si

- $\forall n \in \mathbb{N}$ f_n est de classe C^1 sur I,
- la série de fonctions $\sum f_n$ converge simplement sur I, la série de fonctions $\sum f'_n$ converge uniformément sur tout segment inclus dans I (ou sur I)

Alors

la fonction somme $S = \sum_{n=0}^{+\infty} f_n$ est de classe \mathcal{C}^1 sur I et $\left| S' = \left(\sum_{n=0}^{+\infty} f_n \right)' = \sum_{n=0}^{+\infty} f'_n \right|$

$$S' = \left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'$$

Exemple 2.4

La fonction exponentielle $\exp: x \mapsto \sum_{n=0}^{+\infty} \frac{x^n}{n!}$ est de classe C^1 sur \mathbf{R} et $\forall x \in \mathbf{R}$, $\exp'(x) = \exp(x)$

Proposition 2.6 Extension à la classe C^k

Soit $k \in \mathbb{N}^*$.

- $\forall n \in \mathbf{N}$ f_n est de classe C^k sur I,
- pour tout $j \in [0, k-1]$, la série de fonctions $\sum f_n^{(j)}$ converge simplement sur I,
- ullet la série de fonctions $\sum f_n^{(k)}$ converge uniformément sur tout segment inclus dans I (ou sur I)

Alors

la fonction somme $S = \sum_{n=0}^{+\infty} f_n$ est de classe C^k sur I et $\forall j \in [0, k]$ $S^{(j)} = \sum_{n=0}^{+\infty} f_n^{(j)}$.

$$\forall j \in [0, k] \quad S^{(j)} = \sum_{n=0}^{+\infty} f_n^{(j)}.$$

Pour montrer qu'une somme de série de fonctions $\sum f_n$ est de classe C^{∞} sur I, on montre que $\sum f_n$ converge simplement sur I et que $\forall k \in \mathbf{N}^*$ $\sum f_n^{(k)}$ converge uniformément sur tout segment inclus dans I.